Perspectives on the Role of Thoracic Fascial Blocks in Cardiac Anaesthesia: Will They Represent a New Era?
Abstract
:1. Introduction
2. Thoracic Fascial Blocks in Cardiac Surgery
- Pecto-Intercostal Plane (PIP) Block;
- Rectus Sheath Block (RSB);
- Interpectoral Plane (IPP) Block;
- Pectoserratus Plane (PSP) Block;
- Serratus Anterior Plane (SAP) Block;
- Erector Spinae Plane (ESP).
2.1. Pecto-Intercostal Plane (PIP) Block
2.1.1. Technique for Superficial PIP Block
2.1.2. Technique for Deep PIP Block
2.2. Rectus Sheath Block
Technique for RSB
2.3. Interpectoral Plane Block (IPP) and Pectoserratus Plane Block (PSP)
Technique for IPP and PSP
2.4. Serratus Anterior Plane Block
Technique for SAP Block
2.5. Erector Spinae Plane Block
Technique for ESP Block
3. Thoracic Fascial Blocks in Cardiac Surgery: What Is the Evidence?
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CPSP | Chronic Post-Sternotomy Pain |
D-SAP | Deep Serratus Anterior Plane |
EIM | External Intercostal Muscle |
ERACS | Enhanced Recovery After Cardiac Surgery |
ESM | Erector Spinae Muscle |
ESP | Erector Spinae Plane |
ICD | Implantable Cardioverter Defibrillator |
IIM | Internal Intercostal Muscle |
IM | Intercostal Muscle |
IMA | Internal Mammary Artery |
IMV | Internal Mammary Vein |
IPP | Interpectoral Plane |
ITP | Intertransverse Process |
LA | Local Anaesthetic |
LAM | Left Rectus Abdominis Muscle |
LDM | Lastissimus Dorsi Muscle |
LPN | Lateral Pectoral Nerve |
MME | Morphine Milligram Equivalent |
MPN | Medial Pectoral Nerve |
N | Needle |
PCA | Patient-Controlled Analgesia |
IPP | Interpectorale Plane Block |
PSP | Pectoserratus Plane Block |
PIP | Pecto-Intercostal plane |
PMM | Pectoralis Major Muscle |
ppm | Pectoralis Minor Muscle |
PSP | Pectoserratus Plane |
RAM | Right Rectus Abdominis Muscle |
RAMS | Rectus Abdominis Muscle Sheath |
RCTs | Randomized Controlled Trials |
RM | Rhomboid Muscle |
RSB | Rectus Sheath Block |
SAM | Serratus Anterior Muscle |
SAP | Serratus Anterior Plane |
SCTL | Superior Costotransverse Ligament |
S-SAP | Superficial Serratus Anterior Plane |
TAA | Thoraco-Acromial Artery |
TFBs | Thoracic Fascial Blocks |
TM | Trapezius Muscle |
TP | Transversus Process |
References
- Adil, A.; Setiawan, P.; Sembiring, Y.; Arif, S.; Amin, H. Acute kidney injury incidence following cardiac surgery: A risk factor analysis. Bali J. Anesthesiol. 2021, 5, 6–10. [Google Scholar] [CrossRef]
- Sanfilippo, F.; Palumbo, G.J.; Bignami, E.; Pavesi, M.; Ranucci, M.; Scolletta, S.; Pelosi, P.; Astuto, M. Acute Respiratory Distress Syndrome in the Perioperative Period of Cardiac Surgery: Predictors, Diagnosis, Prognosis, Management Options, and Future Directions. J. Cardiothorac. Vasc. Anesth. 2022, 36, 1169–1179. [Google Scholar] [CrossRef] [PubMed]
- Ghaffary, S.; Talasaz, A.H.; Ghaeli, P.; Karimi, A.; Salehiomran, A.; Hajighasemi, A.; Bina, P.; Darabi, S.; Jalali, A.; Dianatkhah, M.; et al. Association between perioperative parameters and cognitive impairment in post-cardiac surgery patients. J. Tehran Univ. Heart Cent. 2015, 10, 85–92. [Google Scholar]
- Sanfilippo, F.; Noto, A.; Ajello, V.; Martinez Lopez de Arroyabe, B.; Aloisio, T.; Bertini, P.; Mondino, M.; Silvetti, S.; Putaggio, A.; Continella, C.; et al. The Use of Pulmonary Artery Catheters and Echocardiography in the Cardiac Surgery Setting: A Nationwide Italian Survey. J. Cardiothorac. Vasc. Anesth. 2024, 38, 1941–1950. [Google Scholar] [CrossRef]
- Patel, H.; Parikh, N.; Shah, R.; Patel, R.; Thosani, R.; Shah, P.; Prajapat, L. Effect of goal-directed hemodynamic therapy in postcardiac surgery patients. Indian J. Crit. Care Med. 2020, 24, 321–326. [Google Scholar] [CrossRef]
- Ramsingh, D.; Hu, H.; Yan, M.; Lauer, R.; Rabkin, D.; Gatling, J.; Floridia, R.; Martinez, M.; Dorotta, I.; Razzouk, A. Perioperative individualized goal directed therapy for cardiac surgery: A historical-prospective, comparative effectiveness study. J. Clin. Med. 2021, 10, 400. [Google Scholar] [CrossRef]
- Bignami, E.; Guarneri, M.; Gemma, M. Fluid management in cardiac surgery patients: Pitfalls, challenges and solutions. Minerva Anestesiol. 2017, 83, 638–651. [Google Scholar] [CrossRef]
- Swenson, J.D.; Bailey, P.L. Opioids in Cardiovascular Anesthesia. Semin. Cardiothorac. Vasc. Anesth. 1997, 1, 146–163. [Google Scholar] [CrossRef]
- Kwanten, L.E.; O’Brien, B.; Anwar, S. Opioid-Based Anesthesia and Analgesia for Adult Cardiac Surgery: History and Narrative Review of the Literature. J. Cardiothorac. Vasc. Anesth. 2019, 33, 808–816. [Google Scholar] [CrossRef]
- Grant, M.C.; Isada, T.; Ruzankin, P.; Gottschalk, A.; Whitman, G.; Lawton, J.S.; Dodd, O.J.; Barodka, V. Opioid-Sparing Cardiac Anesthesia: Secondary Analysis of an Enhanced Recovery Program for Cardiac Surgery. Anesth. Analg. 2020, 131, 1852–1861. [Google Scholar] [CrossRef]
- Mondal, S.; Bergbower, E.A.S.; Cheung, E.; Grewal, A.S.; Ghoreishi, M.; Hollander, K.N.; Anders, M.G.; Taylor, B.S.; Tanaka, K.A. Role of Cardiac Anesthesiologists in Intraoperative Enhanced Recovery After Cardiac Surgery (ERACS) Protocol: A Retrospective Single-Center Study Analyzing Preliminary Results of a Yearlong ERACS Protocol Implementation. J. Cardiothorac. Vasc. Anesth. 2023, 37, 2450–2460. [Google Scholar] [CrossRef] [PubMed]
- Richebé, P.; Pouquet, O.; Jelacic, S.; Mehta, S.; Calderon, J.; Picard, W.; Rivat, C.; Cahana, A.; Janvier, G. Target-controlled dosing of remifentanil during cardiac surgery reduces postoperative hyperalgesia. J. Cardiothorac. Vasc. Anesth. 2011, 25, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Gregory, A.; Ender, J.; Shaw, A.D.; Denault, A.; Ibekwe, S.; Stoppe, C.; Alli, A.; Manning, M.W.; Brodt, J.L.; Galhardo, C.; et al. ERAS/STS 2024 Expert Consensus Statement on Perioperative Care in Cardiac Surgery: Continuing the Evolution of Optimized Patient Care and Recovery. J. Cardiothorac. Vasc. Anesth. 2024, 38, 2155–2162. [Google Scholar] [CrossRef] [PubMed]
- Zarate, E.; Latham, P.; White, P.F.; Bossard, R.; Morse, L.; Douning, L.K.; Shi, C.; Chi, L. Fast-track cardiac anesthesia: Use of remifentanil combined with intrathecal morphine as an alternative to sufentanil during desflurane anesthesia. Anesth. Analg. 2000, 91, 283–287. [Google Scholar] [CrossRef]
- Koponen, M.E.; Naray, E.; Hales, T.G.; Forget, P. Pharmacological interventions for remifentanil-induced hyperalgesia: A systematic review and network meta-analysis of preclinical trials. PLoS ONE 2024, 19, e0313749. [Google Scholar] [CrossRef]
- Wilson, S.H.; Hellman, K.M.; James, D.; Adler, A.C.; Chandrakantan, A. Mechanisms, diagnosis, prevention and management of perioperative opioid-induced hyperalgesia. Pain Manag. 2021, 11, 405–417. [Google Scholar] [CrossRef]
- Santonocito, C.; Noto, A.; Crimi, C.; Sanfilippo, F. Remifentanil-induced postoperative hyperalgesia: Current perspectives on mechanisms and therapeutic strategies. Local Reg. Anesth. 2018, 11, 15–23. [Google Scholar] [CrossRef]
- Engelman, D.T.; Ben Ali, W.; Williams, J.B.; Perrault, L.P.; Reddy, V.S.; Arora, R.C.; Roselli, E.E.; Khoynezhad, A.; Gerdisch, M.; Levy, J.H.; et al. Guidelines for Perioperative Care in Cardiac Surgery: Enhanced Recovery After Surgery Society Recommendations. JAMA Surg. 2019, 154, 755–766. [Google Scholar] [CrossRef]
- Szamborski, M.; Janc, J.; Rosińczuk, J.; Janc, J.J.; Leśnik, P.; Łysenko, L. Use of Ultrasound-Guided Interfascial Plane Blocks in Anterior and Lateral Thoracic Wall Region as Safe Method for Patient Anesthesia and Analgesia: Review of Techniques and Approaches during COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 8696. [Google Scholar] [CrossRef]
- El-Boghdadly, K.; Wolmarans, M.; Stengel, A.D.; Albrecht, E.; Chin, K.J.; Elsharkawy, H.; Kopp, S.; Mariano, E.R.; Xu, J.L.; Adhikary, S.; et al. Standardizing nomenclature in regional anesthesia: An ASRA-ESRA Delphi consensus study of abdominal wall, paraspinal, and chest wall blocks. Reg. Anesth. Pain Med. 2021, 46, 571–580. [Google Scholar] [CrossRef]
- Kunigo, T.; Murouchi, T.; Yamamoto, S.; Yamakage, M. Injection Volume and Anesthetic Effect in Serratus Plane Block. Reg. Anesth. Pain Med. 2017, 42, 737–740. [Google Scholar] [CrossRef] [PubMed]
- Patacsil, J.A.; McAuliffe, M.S.; Feyh, L.S.; Sigmon, L.L. Local Anesthetic Adjuvants Providing the Longest Duration of Analgesia for Single- Injection Peripheral Nerve Blocks in Orthopedic Surgery: A Literature Review. AANA J. 2016, 84, 95–103. [Google Scholar] [PubMed]
- Xu, J.; Yang, X.; Hu, X.; Chen, X.; Zhang, J.; Wang, Y. Multilevel Thoracic Paravertebral Block Using Ropivacaine With/Without Dexmedetomidine in Video-Assisted Thoracoscopic Surgery. J. Cardiothorac. Vasc. Anesth. 2018, 32, 318–324. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, M.; Zhang, X.R.; Wang, X.R.; Wang, Z.H.; Feng, X.Y.; Lei, Y.J.; Zhang, J.W. Ropivacaine with Dexmedetomidine or Dexamethasone in a Thoracic Paravertebral Nerve Block Combined with an Erector Spinae Plane Block for Thoracoscopic Lobectomy Analgesia: A Randomized Controlled Trial. Drug Des. Dev. Ther. 2022, 16, 1561–1571. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, S.; Zhu, J.; Rao, Z.; Liu, C. Dexamethasone and dexmedetomidine as adjuvants to local anesthetic mixture in intercostal nerve block for thoracoscopic pneumonectomy: A prospective randomized study. Reg. Anesth. Pain Med. 2019, 44, 917–922. [Google Scholar] [CrossRef]
- Desai, N.; Pararajasingham, S.; Onwochei, D.; Albrecht, E. Comparison of intravenous versus perineural dexamethasone as a local anaesthetic adjunct for peripheral nerve blocks in the lower limb: A meta-analysis and systematic review. Eur. J. Anaesthesiol. 2024, 41, 749–759. [Google Scholar] [CrossRef]
- Liu, Q.F.; Shi, C.N.; Tong, J.H.; Li, K.P.; Yang, J.J.; Ji, M.H.; Liu, Q.R. Dexmedetomidine and Dexamethasone as Adjuvants to the Local Anesthetic Mixture in Rhomboid Intercostal and Sub-Serratus Block for Video-Assisted Thoracoscopic Surgery: A Randomized, Double-Blind, Controlled Trial. Drug Des. Dev. Ther. 2024, 18, 4485–4496. [Google Scholar] [CrossRef]
- Droghetti, A.; Fusco, P.; Marini, M.; Harizai, F.; Scimia, P. Ultrasound-guided serratus anterior plane block and parasternal block in cooperative sedation for S-ICD implantation. Pacing Clin. Electrophysiol. 2019, 42, 1076–1078. [Google Scholar] [CrossRef]
- Sepolvere, G.; Fusco, P.; Tedesco, M.; Scimia, P. Bilateral ultrasound-guided parasternal block for postoperative analgesia in cardiac surgery: Could it be the safest strategy? Reg. Anesth. Pain Med. 2020, 45, 316–317. [Google Scholar] [CrossRef]
- Toscano, A.; Capuano, P.; Costamagna, A.; Burzio, C.; Ellena, M.; Scala, V.; Pasero, D.; Rinaldi, M.; Brazzi, L. The Serratus Anterior Plane Study: Continuous Deep Serratus Anterior Plane Block for Mitral Valve Surgery Performed in Right Minithoracotomy. J. Cardiothorac. Vasc. Anesth. 2020, 34, 2975–2982. [Google Scholar] [CrossRef]
- King, M.; Stambulic, T.; Hassan, S.M.A.; Norman, P.A.; Derry, K.; Payne, D.M.; El Diasty, M. Median sternotomy pain after cardiac surgery: To block, or not? A systematic review and meta-analysis. J. Card. Surg. 2022, 37, 3729–3742. [Google Scholar] [CrossRef] [PubMed]
- Scimia, P.; Gentili, L.; Tedesco, M.; Fusco, P.; Sepolvere, G. A Modified Approach to a Parasternal Block: A Case Report. A A Pract. 2023, 17, e01644. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; Caruso, S.; Pascarella, G.; Nenna, A.; Grande, S.; Sarubbi, D.; Chello, M.; Agrò, F.E. Sternotomy debridement in critical patient with difficult predicted airway: Can regional anesthesia be the labyrinth exit? Minerva Anestesiol. 2020, 86, 462–463. [Google Scholar] [CrossRef]
- Dost, B.; Taflan, M.G.; Kaya, C.; Gurz, S.; Tulgar, S. Awake Sternal Fixation Using the Ultrasound-Guided Superficial Parasternal Intercostal Plane Block in a Patient With Cervical Spine Fracture. Cureus 2022, 14, e28618. [Google Scholar] [CrossRef]
- Scimia, P.; Fusco, P. The ultrasound-guided Parasternal block: The story continues. Minerva Anestesiol. 2020, 86, 790–791. [Google Scholar] [CrossRef]
- Ueshima, H.; Kitamura, A. Blocking of Multiple Anterior Branches of Intercostal Nerves (Th2-6) Using a Transversus Thoracic Muscle Plane Block. Reg. Anesth. Pain Med. 2015, 40, 388. [Google Scholar] [CrossRef]
- Sepolvere, G.; Tognù, A.; Tedesco, M.; Coppolino, F.; Cristiano, L. Avoiding the Internal Mammary Artery During Parasternal Blocks: Ultrasound Identification and Technique Considerations. J. Cardiothorac. Vasc. Anesth. 2021, 35, 1594–1602. [Google Scholar] [CrossRef]
- Abdelsalam, K.; Mohamdin, O.W. Ultrasound-guided rectus sheath and transversus abdominis plane blocks for perioperative analgesia in upper abdominal surgery: A randomized controlled study. Saudi J. Anaesth. 2016, 10, 25–28. [Google Scholar] [CrossRef]
- Osaka, Y.; Kashiwagi, M.; Nagatsuka, Y.; Oosaku, M.; Hirose, C. [Ultrasound-guided rectus sheath block for upper abdominal surgery]. Masui 2010, 59, 1039–1041. [Google Scholar]
- Yu, S.; Wen, Y.; Lin, J.; Yang, J.; He, Y.; Zuo, Y. Combined rectus sheath block with transverse abdominis plane block by one puncture for analgesia after laparoscopic upper abdominal surgery: A randomized controlled prospective study. BMC Anesthesiol. 2024, 24, 58. [Google Scholar] [CrossRef]
- Kang, H.; Chung, Y.S.; Choe, J.W.; Woo, Y.C.; Kim, S.W.; Park, S.J.; Hong, J. Application of lidocaine jelly on chest tubes to reduce pain caused by drainage catheter after coronary artery bypass surgery. J. Korean Med. Sci. 2014, 29, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Sepolvere, G.; Tedesco, M.; Fusco, P.; Scimia, P.; Donatiello, V.; Cristiano, L. Subxiphoid cardiac drainage pain management: Could ultrasound rectus sheath block be the answer? Minerva Anestesiol. 2020, 86, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Strumia, A.; Pascarella, G.; Sarubbi, D.; Di Pumpo, A.; Costa, F.; Conti, M.C.; Rizzo, S.; Stifano, M.; Mortini, L.; Cassibba, A.; et al. Rectus sheath block added to parasternal block may improve postoperative pain control and respiratory performance after cardiac surgery: A superiority single-blinded randomized controlled clinical trial. Reg. Anesth. Pain Med. 2024. published online first. [Google Scholar] [CrossRef] [PubMed]
- Everett, L.; Davis, T.A.; Deshpande, S.P.; Mondal, S. Implementation of Bilateral Rectus Sheath Blocks in Conjunction With Transversus Thoracis Plane and Pectointercostal Fascial Blocks for Immediate Postoperative Analgesia After Cardiac Surgery. Cureus 2022, 14, e26592. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Seino, Y.; Matsuda, K.; Imai, H.; Bamba, K.; Sugimoto, A.; Shiraishi, S.; Schindler, E. Preoperative Implementation of Transverse Thoracic Muscle Plane Block and Rectus Sheath Block Combination for Pediatric Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2020, 34, 3367–3372. [Google Scholar] [CrossRef]
- Kumar, K.N.; Kalyane, R.N.; Singh, N.G.; Nagaraja, P.S.; Krishna, M.; Babu, B.; Varadaraju, R.; Sathish, N.; Manjunatha, N. Efficacy of bilateral pectoralis nerve block for ultrafast tracking and postoperative pain management in cardiac surgery. Ann. Card. Anaesth. 2018, 21, 333–338. [Google Scholar] [CrossRef]
- Magoon, R.; Kaushal, B.; Chauhan, S.; Bhoi, D.; Bisoi, A.K.; Khan, M.A. A randomised controlled comparison of serratus anterior plane, pectoral nerves and intercostal nerve block for post-thoracotomy analgesia in adult cardiac surgery. Indian J. Anaesth. 2020, 64, 1018–1024. [Google Scholar] [CrossRef]
- Blanco, R.; Parras, T.; McDonnell, J.G.; Prats-Galino, A. Serratus plane block: A novel ultrasound-guided thoracic wall nerve block. Anaesthesia 2013, 68, 1107–1113. [Google Scholar] [CrossRef]
- He, Y.; Li, Z.; Xu, M.; Du, B.; Zuo, Y. Single-injection serratus anterior plane block for cardiothoracic surgery via thoracotomy in children: A systematic review and meta-analysis of randomised controlled trials. BMJ Paediatr. Open 2023, 7, e001912. [Google Scholar] [CrossRef]
- Forero, M.; Adhikary, S.D.; Lopez, H.; Tsui, C.; Chin, K.J. The Erector Spinae Plane Block: A Novel Analgesic Technique in Thoracic Neuropathic Pain. Reg. Anesth. Pain Med. 2016, 41, 621–627. [Google Scholar] [CrossRef]
- King, M.; Stambulic, T.; Servito, M.; Mizubuti, G.B.; Payne, D.; El-Diasty, M. Erector spinae plane block as perioperative analgesia for midline sternotomy in cardiac surgery: A systematic review and meta-analysis. J. Card. Surg. 2022, 37, 5220–5229. [Google Scholar] [CrossRef] [PubMed]
- Dost, B.; Kaya, C.; Turunc, E.; Dokmeci, H.; Yucel, S.M.; Karakaya, D. Erector spinae plane block versus its combination with superficial parasternal intercostal plane block for postoperative pain after cardiac surgery: A prospective, randomized, double-blind study. BMC Anesthesiol. 2022, 22, 295. [Google Scholar] [CrossRef] [PubMed]
- Keshwani, M.; Dey, S.; Arora, P.; Singha, S.K. A randomized trial to compare the analgesic effect of pecto-intercostal fascial plane block with erector spinae plane block after mid-sternotomy incision for cardiac surgery. Kardiochirurgia Torakochirurgia Pol. = Pol. J. Cardio-Thorac. Surg. 2023, 20, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.H.; Kim, S.H.; Jehoon, O.; Kwon, H.J.; Kim, K.W.; Yang, H.M. Anatomy of the thoracic paravertebral space: 3D micro-CT findings and their clinical implications for nerve blockade. Reg. Anesth. Pain Med. 2021, 46, 699–703. [Google Scholar] [CrossRef]
- Cho, T.H.; Kwon, H.J.; Jehoon, O.; Cho, J.; Kim, S.H.; Yang, H.M. The pathway of injectate spread during thoracic intertransverse process (ITP) block: Micro-computed tomography findings and anatomical evaluations. J. Clin. Anesth. 2022, 77, 110646. [Google Scholar] [CrossRef]
- Ivanusic, J.; Konishi, Y.; Barrington, M.J. A Cadaveric Study Investigating the Mechanism of Action of Erector Spinae Blockade. Reg. Anesth. Pain Med. 2018, 43, 567–571. [Google Scholar] [CrossRef]
- Vaughan, B.N.; Bartone, C.L.; McCarthy, C.M.; Answini, G.A.; Hurford, W.E. Ultrasound-Guided Continuous Bilateral Erector Spinae Plane Blocks Are Associated with Reduced Opioid Consumption and Length of Stay for Open Cardiac Surgery: A Retrospective Cohort Study. J. Clin. Med. 2021, 10, 5022. [Google Scholar] [CrossRef]
- Leyva, F.M.; Mendiola, W.E.; Bonilla, A.J.; Cubillos, J.; Moreno, D.A.; Chin, K.J. Continuous Erector Spinae Plane (ESP) Block for Postoperative Analgesia after Minimally Invasive Mitral Valve Surgery. J. Cardiothorac. Vasc. Anesth. 2018, 32, 2271–2274. [Google Scholar] [CrossRef]
- Chaney, M.A. Intrathecal and epidural anesthesia and analgesia for cardiac surgery. Anesth. Analg. 1997, 84, 1211–1221. [Google Scholar] [CrossRef]
- Riedel, B.J. Regional anesthesia for major cardiac and noncardiac surgery: More than just a strategy for effective analgesia? J. Cardiothorac. Vasc. Anesth. 2001, 15, 279–281. [Google Scholar] [CrossRef]
- Hemmerling, T.M.; Cyr, S.; Terrasini, N. Epidural catheterization in cardiac surgery: The 2012 risk assessment. Ann. Card. Anaesth. 2013, 16, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Horlocker, T.T.; Vandermeuelen, E.; Kopp, S.L.; Gogarten, W.; Leffert, L.R.; Benzon, H.T. Regional Anesthesia in the Patient Receiving Antithrombotic or Thrombolytic Therapy: American Society of Regional Anesthesia and Pain Medicine Evidence-Based Guidelines (Fourth Edition). Reg. Anesth. Pain Med. 2018, 43, 263–309. [Google Scholar] [CrossRef] [PubMed]
- Chiew, J.K.; Low, C.J.W.; Zeng, K.; Goh, Z.J.; Ling, R.R.; Chen, Y.; Ti, L.K.; Ramanathan, K. Thoracic Epidural Anesthesia in Cardiac Surgery: A Systematic Review, Meta-Analysis, and Trial Sequential Analysis of Randomized Controlled Trials. Anesth. Analg. 2023, 137, 587–600. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, S.; Paternoster, G.; Abelardo, D.; Ajello, V.; Aloisio, T.; Baiocchi, M.; Capuano, P.; Caruso, A.; Del Sarto, P.A.; Guarracino, F.; et al. Recommendations for fast-track extubation in adult cardiac surgery patients: A consensus statement. Minerva Anestesiol. 2024, 90, 957–968. [Google Scholar] [CrossRef]
- Dost, B.; De Cassai, A.; Balzani, E.; Tulgar, S.; Ahiskalioglu, A. Effects of ultrasound-guided regional anesthesia in cardiac surgery: A systematic review and network meta-analysis. BMC Anesthesiol. 2022, 22, 409. [Google Scholar] [CrossRef]
- Greene, J.J.; Chao, S.; Tsui, B.C.H. Clinical Outcomes of Erector Spinae Plane Block for Midline Sternotomy in Cardiac Surgery: A Systematic Review and Meta-Analysis. J. Cardiothorac. Vasc. Anesth. 2024, 38, 964–973. [Google Scholar] [CrossRef]
- Wang, W.; Yang, W.; Liu, A.; Liu, J.; Yuan, C. The Analgesic Effect of Ultrasound-guided Erector Spinae Plane Block in Median Sternotomy Cardiac Surgery in Adults: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J. Cardiothorac. Vasc. Anesth. 2024, 38, 2792–2800. [Google Scholar] [CrossRef]
- Cameron, M.J.; Long, J.; Kardash, K.; Yang, S.S. Superficial parasternal intercostal plane blocks in cardiac surgery: A systematic review and meta-analysis. Can. J. Anaesth. = J. Can. D’anesthesie 2024, 71, 883–895. [Google Scholar] [CrossRef]
- Nair, A.; Saxena, P.; Borkar, N.; Rangaiah, M.; Arora, N.; Mohanty, P.K. Erector spinae plane block for postoperative analgesia in cardiac surgeries- A systematic review and meta-analysis. Ann. Card. Anaesth. 2023, 26, 247–259. [Google Scholar] [CrossRef]
- Zhou, K.; Li, D.; Song, G. Comparison of regional anesthetic techniques for postoperative analgesia after adult cardiac surgery: Bayesian network meta-analysis. Front. Cardiovasc. Med. 2023, 10, 1078756. [Google Scholar] [CrossRef]
- Marcassa, C.; Faggiano, P.; Greco, C.; Ambrosetti, M.; Temporelli, P.L. A retrospective multicenter study on long-term prevalence of chronic pain after cardiac surgery. J. Cardiovasc. Med. 2015, 16, 768–774. [Google Scholar] [CrossRef]
- Sudin, A.; Chong, C.; Hassan, R. Incidence and Factors Associated With Post-Sternotomy Pain Syndrome in the National Heart Institute, Malaysia. J. Cardiothorac. Vasc. Anesth. 2024, 38, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Van Gulik, L.; Janssen, L.I.; Ahlers, S.J.; Bruins, P.; Driessen, A.H.; van Boven, W.J.; van Dongen, E.P.; Knibbe, C.A. Risk factors for chronic thoracic pain after cardiac surgery via sternotomy. Eur. J. Cardiothorac. Surg. 2011, 40, 1309–1313. [Google Scholar] [CrossRef]
- Van Gulik, L.; Ahlers, S.J.; van de Garde, E.M.; Bruins, P.; van Boven, W.J.; Tibboel, D.; van Dongen, E.P.; Knibbe, C.A. Remifentanil during cardiac surgery is associated with chronic thoracic pain 1 yr after sternotomy. Br. J. Anaesth. 2012, 109, 616–622. [Google Scholar] [CrossRef]
- Forero, M.; Rajarathinam, M.; Adhikary, S.; Chin, K.J. Erector spinae plane (ESP) block in the management of post thoracotomy pain syndrome: A case series. Scand. J. Pain 2017, 17, 325–329. [Google Scholar] [CrossRef]
- Sahoo, R.K.; Kar, R.; Patel, R.; Kumar, M.; Giri, D.; Biswas, M.; Nair, A.S. Pectoral-intercostal fascial plane block in chronic post-sternotomy pain. Ann. Card. Anaesth. 2022, 25, 97–99. [Google Scholar] [CrossRef]
- Kotani, Y.; Turi, S.; Ortalda, A.; Baiardo Redaelli, M.; Marchetti, C.; Landoni, G.; Bellomo, R. Positive single-center randomized trials and subsequent multicenter randomized trials in critically ill patients: A systematic review. Crit. Care 2023, 27, 465. [Google Scholar] [CrossRef]
- Smith, G.C.; Pell, J.P. Parachute use to prevent death and major trauma related to gravitational challenge: Systematic review of randomised controlled trials. BMJ (Clin. Res. Ed.) 2003, 327, 1459–1461. [Google Scholar] [CrossRef]
Block | Indications in Cardiac Surgery Setting | Nervous and Anatomical Target, Injection Site, and Volume of LA | Tips and Tricks for Successful Block |
---|---|---|---|
PIP | Median sternotomy, mammary region pain after harvesting, sternal resynthesis/fractures, wire removal, sternal wound debridement, muscle flap reconstruction, ICD or pacemaker implant (with addition of SAP). | Anterior cutaneous branches of T2–T6 intercostal nerves. Medial Thoracic region. 2nd and 4th intercostal space. Bilaterally if sternotomy. 5–10 mL of LA. | Placing the tip of the needle on the dome of the rib allows an easier and more homogeneous diffusion of the LA, obtaining a wider dermatomal coverage. |
RSB | Postoperative subxiphoid drainages pain management. | T7 to T11 intercostal nerves, and subcostal nerve (T12). Posterior rectus muscle sheath. 10–15 mL of LA. | The LA is injected between the muscle and its posterior sheath, not between the two lines appearing as binary shaped. The “double V” sign (opening of two fascial planes) is not visible. Caution is needed to avoid inferior epigastric artery injury. |
IPP | Postoperative sternal analgesia, placement of anterior chest drains, post-traumatic chest injuries, ICD or pacemaker implant. | Lateral and medial pectoral nerves. Pectoral muscles. Anterior thoracic wall. Between pectoralis major and minor muscles. 10 mL of LA. | The lateral to medial approach allows a more comfortable position than the medial to lateral one. The pectoral branch of the thoraco-acromial artery is an important landmark to identify the inter-fascial plane. An effective block is realized when the ultrasound “double V” sign is visualized. |
PSP | Pain management after thoracotomy in association with SAP block. | T2–T6 intercostal nerves lateral cutaneous branches. Lateral thoracic wall. Intercosto-brachial, thoracic longus and thoraco-dorsal nerves. 4th rib. 20 mL of LA. | Opposite decubitus to the surgical site; probe placed on the mid-axillary line. At level of 4th rib, the LA can be injected below the plane of serratus muscle realizing a deep SAP block or blocking the branches of intercostal nerves in the middle axillary line. |
SAP | Pain management after mini-thoracotomies; continuous analgesia for thoracotomies; placement of chest drains, ICD, or pacemaker implant (with addition of IPP or PIP); pain due to rib fractures or thoracic trauma. | Lateral cutaneous branches of T2–T7 intercostal nerves. Lateral thoracic wall. 5th rib, Superficial or deep to serratus anterior muscle. 30 mL of LA. | Anatomical target of PECS II block is similar to deep SAP block in terms of dermatomal coverage and efficacy. If the probe is positioned along the mid-axillary line and the LA is deposited below the serratus muscle plane the technique could also be named “BRILMA”. Placing the needle tip on the rib avoids pleural puncture, achieving better diffusion of LA. |
ESP | Cardiac surgery with mini-thoracotomy, open thoracotomy, rib fractures after mini-thoracotomy, chronic post thoracotomy pain syndrome. | Ventral rami of the spinal nerves. Dorsal rami when LA spreads into the paravertebral space. Posterior and lateral thoracic wall. Intercosto-brachial nerve. Between erector spinae muscle and T4–T5 transverse processes. 20–25 mL of LA. | The rib has a convex ultrasound shape, while the transverse process has a squared ultrasound shape. An effective ESP block is realized when the ultrasound erector spinae muscle lift is observed during the injection of LA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepolvere, G.; Marianello, D.; Santonocito, C.; Messina, S.; Silvetti, S.; Franchi, F.; Paternoster, G.; Sanfilippo, F. Perspectives on the Role of Thoracic Fascial Blocks in Cardiac Anaesthesia: Will They Represent a New Era? J. Clin. Med. 2025, 14, 973. https://doi.org/10.3390/jcm14030973
Sepolvere G, Marianello D, Santonocito C, Messina S, Silvetti S, Franchi F, Paternoster G, Sanfilippo F. Perspectives on the Role of Thoracic Fascial Blocks in Cardiac Anaesthesia: Will They Represent a New Era? Journal of Clinical Medicine. 2025; 14(3):973. https://doi.org/10.3390/jcm14030973
Chicago/Turabian StyleSepolvere, Giuseppe, Daniele Marianello, Cristina Santonocito, Simone Messina, Simona Silvetti, Federico Franchi, Gianluca Paternoster, and Filippo Sanfilippo. 2025. "Perspectives on the Role of Thoracic Fascial Blocks in Cardiac Anaesthesia: Will They Represent a New Era?" Journal of Clinical Medicine 14, no. 3: 973. https://doi.org/10.3390/jcm14030973
APA StyleSepolvere, G., Marianello, D., Santonocito, C., Messina, S., Silvetti, S., Franchi, F., Paternoster, G., & Sanfilippo, F. (2025). Perspectives on the Role of Thoracic Fascial Blocks in Cardiac Anaesthesia: Will They Represent a New Era? Journal of Clinical Medicine, 14(3), 973. https://doi.org/10.3390/jcm14030973