Treatment of Acute Myeloid Leukemia in Adolescent and Young Adult Patients
Abstract
:1. Introduction
2. Management
Principles of Treatment
3. Remission Induction Therapy
Protocol/Courses (References) | Induction Drugs | Postremission Drugs | BMT |
---|---|---|---|
CALGB 9022 [12] | AraC and DNM | HiDAC, VP-16/Cyclophosphamide, and AZQ/mitoxantrone | None |
CALGB 9621 [12] | AraC, DNM, VP-16, (±Valspodar) | HiDAC | Autologous (except CBF + AML) |
AML BFM-93 [13] | AraC, VP-16, and DNM/Ida | HAM-Consolidation therapy (6-thioguanine; prednisolone; vincristine; adriamycin; Ara-C; intrathecal Ara-C; cyclophosphamide) Intensification (HiDAC and VP-16 and cranial irradiation)-Maintenance therapy (thioguanine and Ara-C) | Allogeneic |
MRC AML12 [14] | AraC, VP-16 and DNM/Mitoxantrone (±GCSF) | Amsacrine, AraC, VP-16-AraC, Mitoxantrone/AraC, Ida, VP-16/BMT | Allogeneic Autolog |
AML-BFM 2004 [14] | AraC, VP-16 and l-DNM/Ida HAM | AraC/, Ida (±2-chloro-2-deoxyadenosine) HAM-Intensification (HiDAC, VP-16 and cranial irradiation) Maintenance therapy (intrathecal AraC) | Allogeneic |
AML 10 [15] | AraC, DNM/Ida/Mitoxantrone | Intermediate-dose AraC | Allogeneic Autolog |
MRC AML15 [16] | AraC, DNM, VP-16, Fludarabine, Ida, GCSF (±Mylotarg) | Amsacrine, AraC, VP-16 (±Mylotarg) HiDAC (±Mylotarg) | Allogeneic |
PALG [17] | AraC, DNM (±2-chloro-2-deoxyadenosine) CLAG | HAM-HiDAC (±2-chloro-2-deoxyadenosine) Maintenance therapy (AraC, DNM, 6-thioguanine) | Allogeneic Autolog |
SWOG S0106 [18] | AraC, DNM, and GO | HiDAC (±GO) | Allogeneic |
CALGB 8525 [19] | AraC and DNM | AraC | None |
CCG-2891 [20] | Dexamethasone, AraC, 6-Thioguanine, VP-16, DNM, intrathecal AraC | AraC and l-asparaginase-AraC, 6-thioguanine, vincristine, l-asparaginase cyclophosphamide and 5-azacytidine AraC, DNM, VP-16, 6-thioguanine and dexamethasone | Allogeneic Autolog |
4. Postremission Therapy
5. Primary Refractory and Relapsed Acute Myeloid Leukemia
6. New Therapy Approaches
7. Conclusions
Author Contributions
Conflicts of Interest
References
- Gramatges, M.M.; Rabin, K.R. The adolescent and young adult with cancer: State of the art—Acute leukemias. Curr. Oncol. Rep. 2013, 15, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, U.; Büchner, T.; Sauerland, M.C.; Zimmermann, M.; Reinhardt, D.; Döhner, H.; Schlenk, R.F. Significance of age in acute myeloid leukemia patients younger than 30 years: A common analysis of the pediatric trials AML-BFM 93/98 and the adult trials AMLCG 92/99 and AMLSG HD93/98A. Cancer 2008, 112, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Garrido, S.M.; Cooper, J.J.; Appelbaum, F.R.; Willman, C.L.; Kopecky, K.; Banker, D.E. Blasts from elderly acute myeloid leukemia patients are characterized by low levels of culture- and drug-induced apoptosis. Leuk. Res. 2001, 25, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Ofran, Y.; Rowe, J.M. Acute myeloid leukemia in adolescents and young adults: Challenging aspects. Acta Haematol. 2014, 132, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Grimwade, D.; Howe, K.; Langrbeer, S.; Davis, L.; Oliver, F.; Walker, H.; Swirsky, D.; Wheatley, K.; Goldstone, A.; Burnett, A.; et al. Establishing the presence of the t(15;17) in suspected acute promyelocytic leukaemia: Cytogenetic, molecular and PML immunofluorescence assessment of patients entered into the M.R.C. ATRA trial. Br. J. Haematol. 1996, 94, 557–573. [Google Scholar] [PubMed]
- Rowley, J.D. Chromosomal translocations: Revisited yet again. Blood 2008, 112, 2183–2189. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Estey, E.H.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Burnett, A.K.; Dombret, H.; Fenaux, P.; Grimwade, D.; Larson, R.A.; et al. Diagnosis and management of acute myeloid leukemia in adults: Recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010, 115, 453–474. [Google Scholar] [CrossRef] [PubMed]
- Bleyer, A.; Budd, T.; Montello, M. Older adolescentsand young adults with cancer, and clinical trials: Lack of participation and progress in North America. In Cancer in Adolescents and Young Adults; Springer: Berlin, Germany, 2007; pp. 71–81. [Google Scholar]
- Pui, C.-H.H.; Schrappe, M.; Ribeiro, R.C.; Niemeyer, C.M. Childhood and adolescent lymphoid and myeloid leukemia. In Hematology/the Education Program of the American Society of Hematology; American Society of Hematology: Washington, DC, USA, 2004; pp. 118–145. [Google Scholar]
- Shapira, M.; Raanani, H.; Cohen, Y.; Meirow, D. Fertility preservation in young females with hematological malignancies. Acta Haematol. 2014, 132, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Dillman, R.O.; Davis, R.B.; Green, M.R.; Weiss, R.B.; Gottlieb, A.J.; Caplan, S.; Kopel, S.; Preisler, H.; McIntyre, O.R.; Schiffer, C. A comparative study of two different doses of cytarabine for acute myeloid leukemia: A phase III trial of Cancer and Leukemia Group B. Blood 1991, 78, 2520–2526. [Google Scholar] [PubMed]
- Woods, W.G.; Franklin, A.R.; Alonzo, T.A.; Gerbing, R.B.; Donohue, K.A.; Othus, M.; Horan, J.; Appelbaum, F.R.; Estey, E.H.; Bloomfield, C.D.; et al. Outcome of adolescents and young adults with acute myeloid leukemia treated on COG trials compared to CALGB and SWOG trials. Cancer 2013, 119, 4170–4179. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, U.; Ritter, J.; Zimmermann, M.; Hermann, J.; Gadner, H.; Sawatzki, D.B.; Niemeyer, C.M.; Schwabe, D.; Selle, B.; Boos, J.; et al. Idarubicin improves blast cell clearance during induction therapy in children with AML: Results of study AML-BFM 93. AML-BFM study group. Leukemia 2001, 15, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Burnett, A.K.; Hills, R.K.; Milligan, D.W.; Goldstone, A.H.; Prentice, A.G.; McMullin, M.-F.F.; Duncombe, A.; Gibson, B.; Wheatley, K. Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: Results of the MRC AML12 trial. J. Clin. Oncol. 2010, 28, 586–595. [Google Scholar] [CrossRef] [PubMed]
- Mandelli, F.; Vignetti, M.; Suciu, S.; Stasi, R.; Petti, M.-C.C.; Meloni, G.; Muus, P.; Marmont, F.; Marie, J.-P.P.; Labar, B.; et al. Daunorubicin versus mitoxantrone versus idarubicin as induction and consolidation chemotherapy for adults with acute myeloid leukemia: The EORTC and GIMEMA Groups Study AML-10. J. Clin. Oncol. 2009, 27, 5397–5403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnett, A.K.; Russell, N.H.; Hills, R.K.; Hunter, A.E.; Kjeldsen, L.; Yin, J.; Gibson, B.E.; Wheatley, K.; Milligan, D. Optimization of chemotherapy for younger patients with acute myeloid leukemia: Results of the medical research council AML15 trial. J. Clin. Oncol. 2013, 31, 3360–3368. [Google Scholar] [CrossRef]
- Holowiecki, J.; Grosicki, S.; Robak, T.; Kyrcz-Krzemien, S.; Giebel, S.; Hellmann, A.; Skotnicki, A.; Jedrzejczak, W.W.; Konopka, L.; Kuliczkowski, K.; et al. Addition of cladribine to daunorubicin and cytarabine increases complete remission rate after a single course of induction treatment in acute myeloid leukemia. Multicenter, phase III study. Leukemia 2004, 18, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Petersdorf, S.H.; Kopecky, K.J.; Slovak, M.; Willman, C.; Nevill, T.; Brandwein, J.; Larson, R.A.; Erba, H.P.; Stiff, P.J.; Stuart, R.K.; et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood 2013, 121, 4854–4860. [Google Scholar] [CrossRef] [PubMed]
- Mayer, R.; Davis, R.; Schiffer, C.; Berg, D.; Powell, B.; Schulman, P.; Omura, G.; Moore, J.; McIntyre, O.; Frei, E. Intensive postremission chemotherapy in adults with acute myeloid leukemia. N. Engl. J. Med. 1994, 331, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Woods, W.G.; Kobrinsky, N.; Buckley, J.D.; Lee, J.W.; Sanders, J.; Neudorf, S.; Gold, S.; Barnard, D.R.; DeSwarte, J.; Dusenbery, K.; et al. Timed-sequential induction therapy improves postremission outcome in acute myeloid leukemia: A report from the Children’s Cancer Group. Blood 1996, 87, 4979–4989. [Google Scholar] [PubMed]
- Bennett, J.M.; Young, M.L.; Andersen, J.W.; Cassileth, P.A.; Tallman, M.S.; Paietta, E.; Wiernik, P.H.; Rowe, J.M. Long-term survival in acute myeloid leukemia: The eastern cooperative oncology group experience. Cancer 1997, 80, 2205–2209. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, H.; Sun, Z.; Yao, X.; Litzow, M.; Luger, S.; Paietta, E.; Racevskis, J.; Dewald, G.; Ketterling, R.; Bennett, J.; et al. Anthracycline dose intensification in acute myeloid leukemia. N. Engl. J. Med. 2009, 361, 1249–1259. [Google Scholar] [CrossRef] [PubMed]
- Gibson, B.E.; Webb, D.K.; Howman, A.J.; de Graaf, S.S.; Harrison, C.J.; Wheatley, K. Results of a randomized trial in children with Acute Myeloid Leukaemia: Medical research council AML12 trial. Br. J. Haematol. 2011, 155, 366–376. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, U.; Zimmermann, M.; Bourquin, J.-P.P.; Dworzak, M.N.; Fleischhack, G.; Graf, N.; Klingebiel, T.; Kremens, B.; Lehrnbecher, T.; von Neuhoff, C.; et al. Randomized trial comparing liposomal daunorubicin with idarubicin as induction for pediatric acute myeloid leukemia: Results from Study AML-BFM 2004. Blood 2013, 122, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Preisler, H.; Davis, R.B.; Kirshner, J.; Dupre, E.; Richards, F.; Hoagland, H.C.; Kopel, S.; Levy, R.N.; Carey, R.; Schulman, P. Comparison of three remission induction regimens and two postinduction strategies for the treatment of acute nonlymphocytic leukemia: A cancer and leukemia group B study. Blood 1987, 69, 1441–1449. [Google Scholar] [PubMed]
- Holowiecki, J.; Grosicki, S.; Giebel, S.; Robak, T.; Kyrcz-Krzemien, S.; Kuliczkowski, K.; Skotnicki, A.B.; Hellmann, A.; Sulek, K.; Dmoszynska, A.; et al. Cladribine, but not fludarabine, added to daunorubicin and cytarabine during induction prolongs survival of patients with acute myeloid leukemia: A multicenter, randomized phase III study. J. Clin. Oncol. 2012, 30, 2441–2448. [Google Scholar] [CrossRef] [PubMed]
- Gamis, A.S.; Alonzo, T.A.; Meshinchi, S.; Sung, L.; Gerbing, R.B.; Raimondi, S.C.; Hirsch, B.A.; Kahwash, S.B.; Heerema-McKenney, A.; Winter, L.; et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: Results from the randomized phase iii Children’s Oncology Group trial AAML0531. J. Clin. Oncol. 2014, 32, 3021–3032. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, C.D.; Lawrence, D.; Byrd, J.C.; Carroll, A.; Pettenati, M.J.; Tantravahi, R.; Patil, S.R.; Davey, F.R.; Berg, D.T.; Schiffer, C.A.; et al. Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res. 1998, 58, 4173–4179. [Google Scholar] [PubMed]
- Schlenk, R.F.; Döhner, K.; Krauter, J.; Fröhling, S.; Corbacioglu, A.; Bullinger, L.; Habdank, M.; Späth, D.; Morgan, M.; Benner, A.; et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 2008, 358, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Creutzig, U.; van den Heuvel-Eibrink, M.M.; Gibson, B.; Dworzak, M.N.; Adachi, S.; de Bont, E.; Harbott, J.; Hasle, H.; Johnston, D.; Kinoshita, A.; et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: Recommendations from an international expert panel. Blood 2012, 120, 3187–3205. [Google Scholar] [CrossRef] [PubMed]
- Büchner, T.; Hiddemann, W.; Berdel, W.E.; Wörmann, B.; Schoch, C.; Fonatsch, C.; Löffler, H.; Haferlach, T.; Ludwig, W.-D.D.; Maschmeyer, G.; et al. 6-Thioguanine, cytarabine, and daunorubicin (TAD) and high-dose cytarabine and mitoxantrone (HAM) for induction, TAD for consolidation, and either prolonged maintenance by reduced monthly TAD or TAD-HAM-TAD and one course of intensive consolidation by sequential HAM in adult patients at all ages with de novo acute myeloid leukemia (AML): A randomized trial of the German AML Cooperative Group. J. Clin. Oncol. 2003, 21, 4496–4504. [Google Scholar] [CrossRef] [PubMed]
- De Lima, M.; Giralt, S.; Thall, P.F.; de Padua Silva, L.; Jones, R.B.; Komanduri, K.; Braun, T.M.; Nguyen, H.Q.; Champlin, R.; Garcia-Manero, G. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome: A dose and schedule finding study. Cancer 2010, 116, 5420–5431. [Google Scholar] [CrossRef] [PubMed]
- Govindaraj, C.; Madondo, M.; Kong, Y.Y.; Tan, P.; Wei, A.; Plebanski, M. Lenalidomide-based maintenance therapy reduces TNF receptor 2 on CD4 T cells and enhances immune effector function in acute myeloid leukemia patients. Am. J. Hematol. 2014, 89, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Hann, I.M.; Stevens, R.F.; Goldstone, A.H.; Rees, J.K.; Wheatley, K.; Gray, R.G.; Burnett, A.K. Randomized comparison of DAT versus ADE as induction chemotherapy in children and younger adults with acute myeloid leukemia. Results of the Medical Research Council’s 10th AML trial (MRC AML10). Adult and Childhood Leukaemia Working Parties of the Medical Research Council. Blood 1997, 89, 2311–2318. [Google Scholar] [PubMed]
- Majhail, N.S.; Brazauskas, R.; Hassebroek, A.; Bredeson, C.N.; Hahn, T.; Hale, G.A.; Horowitz, M.M.; Lazarus, H.M.; Maziarz, R.T.; Wood, W.A.; et al. Outcomes of allogeneic hematopoietic cell transplantation for adolescent and young adults compared with children and older adults with acute myeloid leukemia. Biol. Blood Marrow Transplant. 2012, 18, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Horan, J.T.; Alonzo, T.A.; Lyman, G.H.; Gerbing, R.B.; Lange, B.J.; Ravindranath, Y.; Becton, D.; Smith, F.O.; Woods, W.G. Impact of disease risk on efficacy of matched related bone marrow transplantation for pediatric acute myeloid leukemia: The Children’s Oncology Group. J. Clin. Oncol. 2008, 26, 5797–5801. [Google Scholar] [CrossRef] [PubMed]
- Vettenranta, K. Current European practice in pediatric myeloablative conditioning. Bone Marrow Transplant. 2008, 41 (Suppl. S2), 14–17. [Google Scholar] [CrossRef]
- Nemecek, E.R.; Guthrie, K.A.; Sorror, M.L.; Wood, B.L.; Doney, K.C.; Hilger, R.A.; Scott, B.L.; Kovacsovics, T.J.; Maziarz, R.T.; Woolfrey, A.E.; et al. Conditioning with treosulfan and fludarabine followed by allogeneic hematopoietic cell transplantation for high-risk hematologic malignancies. Biol. Blood Marrow Transplant. 2011, 17, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Tewari, P.; Franklin, A.R.; Tarek, N.; Askins, M.A.; Mofield, S.; Kebriaei, P. Hematopoietic stem cell transplantation in adolescents and young adults. Acta Haematol. 2014, 132, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Sisler, I.; Koehler, E.; Koyama, T.; Domm, J.; Ryan, R.; Levine, J.; Pulsipher, M.; Haut, P.; Schultz, K.; Taylor, D.; et al. Impact of conditioning regimen in allogeneic hematopoetic stem cell transplantation for children with acute myelogenous leukemia beyond first complete remission: A pediatric blood and marrow transplant consortium (PBMTC) study. Biol. Blood Marrow Transplant. 2009, 15, 1620–1627. [Google Scholar] [CrossRef] [PubMed]
- Aristei, C.; Santucci, A.; Corvò, R.; Gardani, G.; Ricardi, U.; Scarzello, G.; Magrini, S.M.; Donato, V.; Falcinelli, L.; Bacigalupo, A.; et al. In haematopoietic SCT for acute leukemia TBI impacts on relapse but not survival: Results of a multicentre observational study. Bone Marrow Transplant. 2013, 48, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Nemecek, E.R.; Gooley, T.A.; Woolfrey, A.E.; Carpenter, P.A.; Matthews, D.C.; Sanders, J.E. Outcome of allogeneic bone marrow transplantation for children with advanced acute myeloid leukemia. Bone Marrow Transplant. 2004, 34, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Kanate, A.; Pasquini, M.; Hari, P.; Hamadani, M. Allogeneic hematopoietic cell transplant for acute myeloid leukemia: Current state in 2013 and future directions. World J. Stem Cells 2014, 6, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.J.; Horan, J.T.; Alonzo, T.A.; Eapen, M.; Gerbing, R.B.; He, W.; Lange, B.J.; Parsons, S.K.; Woods, W.G. Comparable survival for pediatric acute myeloid leukemia with poor-risk cytogenetics following chemotherapy, matched related donor, or unrelated donor transplantation. Pediatr. Blood Cancer 2014, 61, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Ebihara, Y.; Takahashi, S.; Mochizuki, S.; Kato, S.; Kawakita, T.; Ooi, J.; Yokoyama, K.; Nagamura, F.; Tojo, A.; Asano, S.; et al. Unrelated cord blood transplantation after myeloablative conditioning regimen in adolescent and young adult patients with hematologic malignancies: A single institute analysis. Leuk. Res. 2012, 36, 128–131. [Google Scholar] [CrossRef] [PubMed]
- González-Vicent, M.; Molina, B.; Andión, M.; Sevilla, J.; Ramirez, M.; Pérez, A.; Díaz, M.A. Allogeneic hematopoietic transplantation using haploidentical donor vs. unrelated cord blood donor in pediatric patients: A single-center retrospective study. Eur. J. Haematol. 2011, 87, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Aversa, F.; Tabilio, A.; Velardi, A.; Cunningham, I.; Terenzi, A.; Falzetti, F.; Ruggeri, L.; Barbabietola, G.; Aristei, C.; Latini, P.; et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N. Engl. J. Med. 1998, 339, 1186–1193. [Google Scholar] [CrossRef] [PubMed]
- Ciceri, F.; Labopin, M.; Aversa, F.; Rowe, J.M.; Bunjes, D.; Lewalle, P.; Nagler, A.; Di Bartolomeo, P.; Lacerda, J.F.; Lupo Stanghellini, M.T.; et al. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: A risk factor analysis of outcomes for patients in remission at transplantation. Blood 2008, 112, 3574–3581. [Google Scholar] [CrossRef] [PubMed]
- Luznik, L.; O’Donnell, P.V.; Symons, H.J.; Chen, A.R.; Leffell, M.S.; Zahurak, M.; Gooley, T.A.; Piantadosi, S.; Kaup, M.; Ambinder, R.F.; et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol. Blood Marrow Transplant. 2008, 14, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Woods, W.G.; Neudorf, S.; Gold, S.; Sanders, J.; Buckley, J.D.; Barnard, D.R.; Dusenbery, K.; DeSwarte, J.; Arthur, D.C.; Lange, B.J.; et al. A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood 2001, 97, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Suciu, S.; Mandelli, F.; de Witte, T.; Zittoun, R.; Gallo, E.; Labar, B.; de Rosa, G.; Belhabri, A.; Giustolisi, R.; Delarue, R.; et al. Allogeneic compared with autologous stem cell transplantation in the treatment of patients younger than 46 years with acute myeloid leukemia (AML) in first complete remission (CR1): An intention-to-treat analysis of the EORTC/GIMEMAAML-10 trial. Blood 2003, 102, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Pui, C.-H.; Sandlund, J.; Pei, D.; Campana, D.; Rivera, G.; Ribeiro, R.; Rubnitz, J.; Razzouk, B.; Howard, S.; Hudson, M.; et al. Improved outcome for children with acute lymphoblastic leukemia: Results of Total Therapy Study XIIIB at St Jude Children’s Research Hospital. Blood 2004, 104, 2690–2696. [Google Scholar] [CrossRef] [PubMed]
- Ofran, Y.; Rowe, J.M. Treatment for relapsed acute myeloid leukemia: What is new? Curr. Opin. Hematol. 2012, 19, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Larson, S.M.; Campbell, N.P.; Huo, D.; Artz, A.; Zhang, Y.; Gajria, D.; Green, M.; Weiner, H.; Daugherty, C.; Odenike, O.; et al. High dose cytarabine and mitoxantrone: An effective induction regimen for high-risk acute myeloid leukemia (AML). Leuk. Lymphoma 2012, 53, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, H.; Tabuchi, K.; Tawa, A.; Tsukimoto, I.; Tsuchida, M.; Morimoto, A.; Yabe, H.; Horibe, K.; Hanada, R.; Imaizumi, M.; et al. Outcome of children with relapsed acute myeloid leukemia following initial therapy under the AML99 protocol. Int. J. Hematol. 2014, 100, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ma, Y.; Liu, D. Novel agents and regimens for acute myeloid leukemia: 2009 ASH annual meeting highlights. J. Hematol. Oncol. 2010, 3. [Google Scholar] [CrossRef] [PubMed]
- Kaspers, G.J.; Zimmermann, M.; Reinhardt, D.; Gibson, B.E.; Tamminga, R.Y.; Aleinikova, O.; Armendariz, H.; Dworzak, M.; Ha, S.-Y.Y.; Hasle, H.; et al. Improved outcome in pediatric relapsed acute myeloid leukemia: Results of a randomized trial on liposomal daunorubicin by the International BFM Study Group. J. Clin. Oncol. 2013, 31, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Malfuson, J.V.; Konopacki, J.; Thepenier, C.; Eddou, H.; Foissaud, V.; de Revel, T. Fractionated doses of gemtuzumab ozogamicin combined with 3 + 7 induction chemotherapy as salvage treatment for young patients with acute myeloid leukemia in first relapse. Ann. Hematol. 2012, 91, 1871–1877. [Google Scholar] [CrossRef] [PubMed]
- Borthakur, G.; Cortes, J.E.; Estey, E.E.; Jabbour, E.; Faderl, S.; O’Brien, S.; Garcia-Manero, G.; Kadia, T.M.; Wang, X.; Patel, K.; et al. Gemtuzumab ozogamicin with fludarabine, cytarabine, and granulocyte colony stimulating factor (FLAG-GO) as front-line regimen in patients with core binding factor acute myelogenous leukemia. Am. J. Hematol. 2014, 89, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Mato, A.R.; Morgans, A.; Luger, S.M. Novel strategies for relapsed and refractory acute myeloid leukemia. Curr. Opin. Hematol. 2008, 15, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Faderl, S.; Ferrajoli, A.; Wierda, W.; Huang, X.; Verstovsek, S.; Ravandi, F.; Estrov, Z.; Borthakur, G.; Kwari, M.; Kantarjian, H.M. Clofarabine combinations as acute myeloid leukemia salvage therapy. Cancer 2008, 113, 2090–2096. [Google Scholar] [CrossRef] [PubMed]
- Hijiya, N.; Gaynon, P.; Barry, E.; Silverman, L.; Thomson, B.; Chu, R.; Cooper, T.; Kadota, R.; Rytting, M.; Steinherz, P.; et al. A multi-center phase I study of clofarabine, etoposide and cyclophosphamide in combination in pediatric patients with refractory or relapsed acute leukemia. Leukemia 2009, 23, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.L.; Davies, S.M.; McMasters, R.; Absalon, M.; O’Brien, M.; Mo, J.; Broun, R.; Moscow, J.A.; Smolarek, T.; Garzon, R.; et al. Low dose decitabine in very high risk relapsed or refractory acute myeloid leukaemia in children and young adults. Br. J. Haematol. 2013, 161, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Watt, T.C.; Cooper, T. Sorafenib as treatment for relapsed or refractory pediatric acute myelogenous leukemia. Pediatr. Blood Cancer 2012, 59, 756–757. [Google Scholar] [CrossRef] [PubMed]
- Ravandi, F.; Arana Yi, C.; Cortes, J.E.; Levis, M.; Faderl, S.; Garcia-Manero, G.; Jabbour, E.; Konopleva, M.; O’Brien, S.; Estrov, Z.; et al. Final report of phase II study of sorafenib, cytarabine and idarubicin for initial therapy in younger patients with acute myeloid leukemia. Leukemia 2014, 28, 1543–1545. [Google Scholar] [CrossRef] [PubMed]
- Inaba, H.; Rubnitz, J.; Coustan-Smith, E.; Li, L.; Furmanski, B.; Mascara, G.; Heym, K.; Christensen, R.; Onciu, M.; Shurtleff, S.; et al. Phase I pharmacokinetic and pharmacodynamic study of the multikinase inhibitor sorafenib in combination with clofarabine and cytarabine in pediatric relapsed/refractory leukemia. J. Clin. Oncol. 2011, 29, 3293–3300. [Google Scholar] [CrossRef] [PubMed]
- Levis, M.; Ravandi, F.; Wang, E.S.; Baer, M.R.; Perl, A.; Coutre, S.; Erba, H.; Stuart, R.K.; Baccarani, M.; Cripe, L.D.; et al. Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood 2011, 117, 3294–3301. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.; Levis, M. FLT3 inhibitors: A story of the old and the new. Curr. Opin. Hematol. 2011, 18, 71–76. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seval, G.C.; Ozcan, M. Treatment of Acute Myeloid Leukemia in Adolescent and Young Adult Patients. J. Clin. Med. 2015, 4, 441-459. https://doi.org/10.3390/jcm4030441
Seval GC, Ozcan M. Treatment of Acute Myeloid Leukemia in Adolescent and Young Adult Patients. Journal of Clinical Medicine. 2015; 4(3):441-459. https://doi.org/10.3390/jcm4030441
Chicago/Turabian StyleSeval, Guldane Cengiz, and Muhit Ozcan. 2015. "Treatment of Acute Myeloid Leukemia in Adolescent and Young Adult Patients" Journal of Clinical Medicine 4, no. 3: 441-459. https://doi.org/10.3390/jcm4030441
APA StyleSeval, G. C., & Ozcan, M. (2015). Treatment of Acute Myeloid Leukemia in Adolescent and Young Adult Patients. Journal of Clinical Medicine, 4(3), 441-459. https://doi.org/10.3390/jcm4030441