Association between Osteopontin Promoter Gene Polymorphisms and Haplotypes with Risk of Diabetic Nephropathy
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Study Population
2.2. Genotyping
2.3. Statistical Analysis
3. Results
3.1. Association between OPN SNPs and Risk of DN and Estimated GFR
delG-156G | Cohort 1 | Cohort 2 | |||||
---|---|---|---|---|---|---|---|
T2DM (n = 255) | DN (n = 240) | Adjusted OR (95% CI) p * | T2DM (n = 215) | DN (n = 455) | Adjusted OR (95% CI) p * | ||
Allele Frequency | delG = 288 (0.56) | delG = 347 (0.72) | 0.69 (0.58–0.85) <0.00001 | delG = 237 (0.55) | delG = 656 (0.72) | 0.68 (0.58–0.81) <0.0001 | |
G = 222 (0.44) | G = 133 (0.28) | G = 193 (0.45) | G = 254 (0.28) | ||||
Genotype Frequency | delGdelG = 84 (0.33) delG G = 120 (0.47) GG = 51 (0.20) delG G + GG = 171 (0.67) | delGdelG = 122 (0.51) delG G = 103 (0.43) GG = 15 (0.06) delG G + GG = 118 (0.49) | 0.79 (0.50–0.97) 0.009 0.40 (0.21–0.58) <0.0001 0.68 (0.53–0.88) <0.0001 | delGdelG = 67 (0.31) delG G = 103 (0.48) GG = 45 (0.21) delG G + GG = 148 (0.69) | delGdelG = 228 (0.50) delG G = 200 (0.44) GG = 27 (0.06) delG G + GG = 227 (0.50) | 0.77 (0.60–0.97) 0.003 0.38 (0.31–0.52) <0.0001 0.65 (0.52–0.83) <0.0001 | |
G-66T | |||||||
Allele Frequency | G = 383 (0.75) | G = 350 (0.73) | 0.97 (0.72–1.30) 0.88 | G = 313 (0.73) | G = 683 (0.75) | - | |
T = 127 (0.25) | T = 130 (0.27) | T = 117 (0.27) | T = 227 (0.25) | 0.88 (0.68–1.14) 0.37 | |||
Genotype Frequency | GG = 138 (0.54) GT = 107 (0.42) TT = 10 (0.04) GT + TT = 117 (0.46) | GG = 127 (0.53) GT = 96 (0.40) TT = 17 (0.07) GT + TT = 113 (0.47) | 1.07 (0.75–1.54) 0.58 0.98 (0.71–1.63) 0.31 1.03 (0.72–1.47) 0.92 | GG = 109 (0.51) GT = 95 (0.44) TT = 11 (0.05) GT + TT = 106 (0.49) | GG = 255 (0.56) GT = 173 (0.38) TT = 27 (0.06) GT + TT = 200 (0.44) | 0.79 (0.56–1.10) 0.17 0.97 (0.56–1.48) 1 0.81 (0.58–1.12) 0.23 | |
C-443T | |||||||
Allele Frequency | C = 454 (0.89) | C = 360 (0.75) | 2.68 (1.87–3.84) <0.0001 | C = 378 (0.88) | C = 673 (0.74) | 1.59 (1.12–2.50) <0.0001 | |
T = 56 (0.11) | T = 120 (0.25) | T = 52 (0.12) | T = 237 (0.26) | ||||
Genotype Frequency | CC = 206 (0.81) CT = 41 (0.16) | CC = 151 (0.63) CT = 58 (0.24) | 1.96 (1.22–3.13) 0.007 | CC = 172 (0.80) CT = 32 (0.15) | CC = 278 (0.61) CT = 118 (0.26) | 1.69 (1.18–3.11) 0.0002 | |
TT = 8 (0.03) | TT = 31 (0.13) | 3.78 (2.05–3.13) 0.0001 | TT = 11 ( 0.05) | TT = 59 (0.13) | 2.04 (1.59–2.89) 0.0003 | ||
CT + TT = 49 (0.19) | CT + TT = 89 (0.37) | 1.98 (1.65–2.72) 0.0001 | CT + TT = 43 (0.20) | CT + TT = 177 (0.39) | 1.54 (1.28–2.50) 0.0002 |
Cohort 1 | Cohort 2 | |||||||
---|---|---|---|---|---|---|---|---|
delGdelG (122) | delG G (103) | GG (15) | p | delGdelG (228) | delG G (200) | GG (47) | p | |
eGFR | 46.1 ± 23.4 | 51.4 ± 20.2 | 66.8 ± 22.0 | 0.008 | 44.8 ± 22.9 | 49 ± 21.1 | 67.2 ± 21.6 | 0.009 |
3.2. Haplotype Analysis
3.3. Linkage Disequilibria (LD) Analysis
3.4. Comparison between Genotypes and Haplotypes
Cohort 1 | Cohort 2 | |||||||
---|---|---|---|---|---|---|---|---|
Haplotype | DN (2n = 480) | T2DM (2n = 510) | p * | OR 95% CI | DN (2n = 910) | T2DM (2n = 430) | p * | OR 95% CI |
G-C-delG | 62 (0.13) | 62 (0.12) | Reference | 100 (0.11) | 44 (0.10) | Reference | ||
G-T-G | 130 (0.27) | 142 (0.28) | 0.72 | 0.83 (0.45–1.39) | 254 (0.28) | 124 (0.29) | 0.75 | 0.81 (0.51–1.12) |
G-T-delG | 62 (0.13) | 36 (0.07) | 0.02 | 1.74 (1.12–2.81) | 128 (0.14) | 26 (0.06) | 0.01 | 1.81 (1.19–2.87) |
G-C-G | 52 (0.11) | 86 (0.17) | 0.04 | 0.39 (0.20–0.74) | 82 (0.09) | 74 (0.17) | 0.02 | 0.41 (0.23–0.68) |
T-T-G | 20 (0.04) | 16 (0.03) | 0.95 | 1.04 (0.68–1.80) | 28 (0.03) | 16 (0.04) | 0.81 | 0.97 (0.71–1.54) |
T-T-delG | 62 (0.13) | 40 (0.08) | 0.02 | 1.70 (1.10–2.51) | 128 (0.14) | 38 (0.09) | 0.02 | 1.58 (1.07–2.18) |
T-C-G | 30 (0.06) | 52 (0.10) | 0.007 | 0.38 (0.23–0.70) | 54 (0.06) | 52 (0.12) | 0.008 | 0.41 (0.24–0.64) |
T-C-delG | 62 (0.13) | 76 (0.15) | 0.79 | 0.81 (0.56–1.3) | 136 (0.15) | 56 (0.13) | 0.82 | 1.12 (0.71–1.28) |
Cohort 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|
G-C-delG (62) | G-T-delG (62) | T-T-delG (62) | G-C-G (52) | T-C-G (30) | G-C-delG | G-C-delG | G-C-delG | G-C-delG | |
vs. | vs. | vs. | vs. | ||||||
G-T-delG | T-T-delG | G-C-G | T-C-G | ||||||
p | p | p | p | ||||||
eGFR | 46.1 ± 23.4 | 35.6 ± 20.0 | 35.8 ± 21.3 | 65.3 ± 21.6 | 65.9 ± 21.6 | 0.006 | 0.009 | 0.008 | 0.006 |
Cohort 2 | |||||||||
G-C-delG (100) | G-T-delG (128) | T-T-delG (128) | G-C-G (82) | T-C-G (54) | G-C-delG | G-C-delG | G-C-delG | G-C-delG | |
vs. | vs. | vs. | vs. | ||||||
G-T-delG | T-T-delG | G-C-G | T-C-G | ||||||
p | p | p | p | ||||||
eGFR | 45.8 ± 22.9 | 36.0 ± 19.8 | 35.7 ± 20.7 | 66.0 ± 20.7 | 65.3 ± 20.8 | 0.01 | 0.009 | 0.01 | 0.009 |
Variant 1 | Variant 2 | D′ | LOD | r2 |
---|---|---|---|---|
G-66T | C-443T | 0.033 | 0.1 | 0.0010 |
G-66T | delG-156G | 0.142 | 0.89 | 0.01 |
C-443T | delG-156G | 0.01 | 0.0 | 0.0 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Quinn, M.; Angelico, M.C.; Warram, J.H.; Krolewski, A.S. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia 1996, 39, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Dronavalli, S.; Duka, I.; Bakris, G.L. The pathogenesis of diabetic nephropathy. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Junaid, A.; Amara, F.M. Osteopontin: Correlation with interstitial fibrosis in human diabetic kidney and PI3-kinase-mediated enhancement of expression by glucose in human proximal tubular epithelial cells. Histopathology 2004, 44, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Kramer, A.B.; Ricardo, S.D.; Kelly, D.J.; Waanders, F.; van Goor, H.; Navis, G. Modulation of osteopontin in proteinuria-induced renal interstitial fibrosis. J. Pathol. 2005, 207, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Ziyadeh, F.N.; Goldfarb, S. The renal tubulointerstitium in diabetes mellitus. Kidney Int. 1991, 39, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Giacopelli, F.; Marciano, R.; Pistorio, A.; Catarsi, P.; Canini, S.; Karsenty, G.; Ravazzolo, R. Polymorphisms in the osteopontin promoter affect its transcriptional activity. Physiol. Genomics 2004, 20, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, T.; Franek, B.S.; Green, S.L.; Kariuki, S.N.; Kumabe, M.; Mikolaitis, R.A.; Jolly, M.; Utset, T.O.; Niewold, T.B. Osteopontin alleles are associated with clinical characteristics in systemic lupus erythematosus. J. Biomed. Biotechnol. 2011, 2011. [Google Scholar] [CrossRef] [PubMed]
- Maver, A.; Medica, I.; Salobir, B.; Tercelj, M.; Peterlin, B. Genetic variation in osteopontin gene is associated with susceptibility to sarcoidosis in Slovenian population. Dis. Markers 2009, 27, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, H.; Mir, S.; Berdeli, A.; Aksu, N. Renal scarring and osteopontin gene C/T polymorphism in children with primary vesicoureteral reflux. Indian Pediatr. 2012, 49, 311–313. [Google Scholar] [CrossRef] [PubMed]
- Cheema, B.S.; Iyengar, S.; Ahluwalia, T.S.; Kohli, H.S.; Sharma, R.; Shah, V.N.; Bhansali, A.; Sakhuja, V.; Khullar, M. Association of an osteopontin gene promoter polymorphism with susceptibility to diabetic nephropathy in Asian Indians. Clin. Chim. Acta 2012, 413, 1600–1604. [Google Scholar] [CrossRef] [PubMed]
- Hummelshoj, T.; Ryder, L.P.; Madsen, H.O.; Odum, N.; Svejgaard, A. A functional polymorphism in the Eta-1 promoter is associated with allele specific binding to the transcription factor Sp1 and elevated gene expression. Mol. Immunol. 2006, 43, 980–986. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Yasui, T.; Itoh, Y.; Li, Z.; Okada, A.; Tozawa, K.; Hayashi, Y.; Kohri, K. Association of osteopontin gene haplotypes with nephrolithiasis. Kidney Int. 2007, 72, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Hendig, D.; Arndt, M.; Szliska, C.; Kleesiek, K.; Götting, C. SPP1 promoter polymorphisms: Identification of the first modifier gene for pseudoxanthomaelasticum. Clin. Che. 2007, 53, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, Q.; Lu, Y.; Xu, T.; Huang, Y.; Ribas, J.; Ni, X.; Hu, G.; Huang, F.; Zhou, L.; et al. SPP1 promoter polymorphisms and glioma risk in a Chinese Han population. J. Hum. Genet 2010, 55, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Glas, J.; Seiderer, J.; Bayrle, C.; Wetzke, M.; Fries, C.; Tillack, C.; Olszak, T.; Beigel, F.; Steib, C.; Friedrich, M.; et al. The Role of osteopontin (OPN/SPP1) haplotypes in the susceptibility to Crohn’s disease. PLoS ONE 2011, 6, e29309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, Y.W.; Tu, H.F.; Wang, I.K.; Wu, C.H.; Chang, K.W.; Liu, T.Y.; Kao, S.Y. The implication of osteopontin (OPN) expression and genetic polymorphisms of OPN promoter in oral carcinogenesis. Oral Oncol. 2010, 46, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Court Lab Hardy-Weinberg Equilibrium (HWE) Calculator. Available online: http://www.tufts.edu/~mcourt01/Documents/Court%20lab%20-%20HW%20calculator.xls (accessed on 1 July 2012).
- Matthew Stephens Lab. Available online: http://stephenslab.uchicago.edu/software.html (accessed on 1 July 2012).
- Haploview Software. Available online: http://www.broad.mit.edu/mpg/haploview/ (accessed on 1 July 2012).
- Nakayama, H.; Nagai, H.; Matsumoto, K.; Oguro, R.; Sugimoto, K.; Kamide K Ohishi, M.; Katsuya, T.; Okamoto, H.; Maeda, M.; et al. Association between osteopontin promoter variants and diastolic dysfunction in hypertensive heart in the Japanese population. Hypertens. Res. 2011, 34, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Huang, S.P.; Tsai, L.Y.; Wu, W.J.; Juo, S.H.; Chou, Y.H.; Huang, C.H.; Wu, M.T. The impact of osteopontin promoter polymorphisms on the risk of calcium urolithiasis. Clin. Chim. Acta 2010, 411, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Pegoraro, E.; Hoffman, E.P.; Piva, L.; Gavassini, B.F.; Cagnin, S.; Ermani, M.; Bello, L.; Soraru, G.; Pacchioni, B.; Bonifati, M.D.; et al. SPP1 genotype is a determinant of disease severity in Duchenne muscular dystrophy. Neurology 2011, 76, 219–226. [Google Scholar] [CrossRef] [PubMed]
- D’Alfonso, S.; Barizzone, N.; Giordano, M.; Chiocchetti, A.; Magnani, C.; Castelli, L.; Indelicato, M.; Giacopelli, F.; Marchini, M.; Scorza, R.; et al. Two single-nucleotide polymorphisms in the 5′ and 3′ ends of the osteopontin gene contribute to susceptibility to systemic lupus erythematosus. Arthritis Rheum. 2005, 52, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Marciano, R.; D’Annunzio, G.; Minuto, N.; Pasquali, L.; Santamaria, A.; di Duca, M.; Ravazzolo, R.; Lorini, R. Association of alleles at polymorphic sites in the osteopontin encoding gene in young type 1 diabetic patients. Clin. Immunol. 2009, 131, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Heuer, J.G.; Breyer, M.D. Osteopontin in diabetic nephropathy: Signpost or road? Kidney Int. 2010, 77, 565–566. [Google Scholar] [CrossRef] [PubMed]
- Bird, T.D.; Jarvik, G.P.; Wood, N.W. Genetic association studies. Neurology 2001, 57, 1153–1154. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheema, B.S.; Iyengar, S.; Sharma, R.; Kohli, H.S.; Bhansali, A.; Khullar, M. Association between Osteopontin Promoter Gene Polymorphisms and Haplotypes with Risk of Diabetic Nephropathy. J. Clin. Med. 2015, 4, 1281-1292. https://doi.org/10.3390/jcm4061281
Cheema BS, Iyengar S, Sharma R, Kohli HS, Bhansali A, Khullar M. Association between Osteopontin Promoter Gene Polymorphisms and Haplotypes with Risk of Diabetic Nephropathy. Journal of Clinical Medicine. 2015; 4(6):1281-1292. https://doi.org/10.3390/jcm4061281
Chicago/Turabian StyleCheema, Balneek Singh, Sreenivasa Iyengar, Rajni Sharma, Harbir Singh Kohli, Anil Bhansali, and Madhu Khullar. 2015. "Association between Osteopontin Promoter Gene Polymorphisms and Haplotypes with Risk of Diabetic Nephropathy" Journal of Clinical Medicine 4, no. 6: 1281-1292. https://doi.org/10.3390/jcm4061281
APA StyleCheema, B. S., Iyengar, S., Sharma, R., Kohli, H. S., Bhansali, A., & Khullar, M. (2015). Association between Osteopontin Promoter Gene Polymorphisms and Haplotypes with Risk of Diabetic Nephropathy. Journal of Clinical Medicine, 4(6), 1281-1292. https://doi.org/10.3390/jcm4061281