Hypothalamic-Pituitary-Adrenal Axis Programming after Recurrent Hypoglycemia during Development
Abstract
:1. Introduction
2. Hypoglycemia-Induced Brain Injury during Development
3. Counterregulatory Hormonal Response during Hypoglycemia
4. Hypoglycemia and the HPA Axis
4.1. HPA Axis-Components and Normal Response
4.2. Age-Related Variations in HPA Axis Response to Hypoglycemia
4.3. Recurrent Hypoglycemia and the HPA Axis
4.4. Recurrent Hypoglycemia and HPA Axis Programming
5. Clinical Implications
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Rao, R.; Hershey, T. The impact of hypoglycemia on the developing brain. In Translational Endocrinology and Metabolism: Hypoglycemia in Diabetes Update; Seaquist, E.R., Robertson, P.R., Eds.; Endocrine Society: Chevy Chase, MD, USA, 2012; Volume 3, pp. 137–159. [Google Scholar]
- Reno, C.M.; Litvin, M.; Clark, A.L.; Fisher, S.J. Defective counterregulation and hypoglycemia unawareness in diabetes: Mechanisms and emerging treatments. Endocrinol. Metab. Clin. N. Am. 2013, 42, 15–38. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Amiel, S.A. Hypoglycaemia unawareness and the brain. Diabetologia 2002, 45, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Cryer, P.E. Mechanisms of hypoglycemia-associated autonomic failure and its component syndromes in diabetes. Diabetes 2005, 54, 3592–3601. [Google Scholar] [CrossRef] [PubMed]
- Levine, S. Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology 2005, 30, 939–946. [Google Scholar] [CrossRef] [PubMed]
- Matthews, S.G. Early programming of the hypothalamo-pituitary-adrenal axis. Trends Endocrinol. Metab. 2002, 13, 373–380. [Google Scholar] [CrossRef]
- Xiong, F.; Zhang, L. Role of the hypothalamic-pituitary-adrenal axis in developmental programming of health and disease. Front. Neuroendocrinol. 2013, 34, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Ennis, K.; Tran, P.V.; Seaquist, E.R.; Rao, R. Postnatal age influences hypoglycemia-induced neuronal injury in the rat brain. Brain Res. 2008, 1224, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.A.; Rensing, N.; Izumi, Y.; De Erausquin, G.A.; Gazit, V.; Dorsey, D.A.; Herrera, D.G. Repetitive hypoglycemia in young rats impairs hippocampal long-term potentiation. Pediatr. Res. 2004, 55, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Moore, H.; Craft, T.K.; Grimaldi, L.M.; Babic, B.; Brunelli, S.A.; Vannucci, S.J. Moderate recurrent hypoglycemia during early development leads to persistent changes in affective behavior in the rat. Brain Behav. Immun. 2010, 24, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Vuguin, P.M. Animal models for small for gestational age and fetal programming of adult disease. Horm. Res. 2007, 68, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.W.; Hamby, A.M.; Swanson, R.A. Hypoglycemia, brain energetics, and hypoglycemic neuronal death. Glia 2007, 55, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Sperr, D.; Ennis, K.; Tran, P. Postnatal age influences hypoglycemia-induced poly(ADP-ribose) polymerase-1 activation in the brain regions of rats. Pediatr. Res. 2009, 66, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Auer, R.N.; Wieloch, T.; Olsson, Y.; Siesjo, B.K. The distribution of hypoglycemic brain damage. Acta Neuropathol. (Berl.) 1984, 64, 177–191. [Google Scholar] [CrossRef]
- O’Connell, S.M.; Cooper, M.N.; Bulsara, M.K.; Davis, E.A.; Jones, T.W. Reducing rates of severe hypoglycemia in a population-based cohort of children and adolescents with type 1 diabetes over the decade 2000–2009. Diabetes Care 2011, 34, 2379–2380. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.A.; Rensing, N.; Thio, L.L. Ketogenic diet reduces hypoglycemia-induced neuronal death in young rats. Neurosci. Lett. 2005, 385, 210–214. [Google Scholar] [CrossRef] [PubMed]
- Haces, M.L.; Montiel, T.; Massieu, L. Selective vulnerability of brain regions to oxidative stress in a non-coma model of insulin-induced hypoglycemia. Neuroscience 2010, 165, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Tkacs, N.C.; Pan, Y.; Raghupathi, R.; Dunn-Meynell, A.A.; Levin, B.E. Cortical fluoro-jade staining and blunted adrenomedullary response to hypoglycemia after noncoma hypoglycemia in rats. J. Cereb. Blood Flow Metab. 2005, 25, 1645–1655. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.R.; Quach, H.; Smith, E.; Vatassery, G.T.; Rao, R. Changes in ascorbate, glutathione and alpha-tocopherol concentrations in the brain regions during normal development and moderate hypoglycemia in rats. Neurosci. Lett. 2014, 568C, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.; Ennis, K.; Long, J.D.; Ugurbil, K.; Gruetter, R.; Tkac, I. Neurochemical changes in the developing rat hippocampus during prolonged hypoglycemia. J. Neurochem. 2010, 114, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Ennis, K.; Dotterman, H.; Stein, A.; Rao, R. Hyperglycemia accentuates and ketonemia attenuates hypoglycemia-induced neuronal injury in the developing rat brain. Pediatr. Res. 2015, 77, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Nehlig, A. Respective roles of glucose and ketone bodies as substrates for cerebral energy metabolism in the suckling rat. Dev. Neurosci. 1996, 18, 426–433. [Google Scholar] [CrossRef] [PubMed]
- McNay, E.C.; Sherwin, R.S. Effect of recurrent hypoglycemia on spatial cognition and cognitive metabolism in normal and diabetic rats. Diabetes 2004, 53, 418–425. [Google Scholar] [CrossRef] [PubMed]
- McNay, E.C.; Williamson, A.; McCrimmon, R.J.; Sherwin, R.S. Cognitive and neural hippocampal effects of long-term moderate recurrent hypoglycemia. Diabetes 2006, 55, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Hershey, T.; Perantie, D.C.; Warren, S.L.; Zimmerman, E.C.; Sadler, M.; White, N.H. Frequency and timing of severe hypoglycemia affects spatial memory in children with type 1 diabetes. Diabetes Care 2005, 28, 2372–2377. [Google Scholar] [CrossRef] [PubMed]
- The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group; Jacobson, A.M.; Musen, G.; Ryan, C.M.; Silvers, N.; Cleary, P.; Waberski, B.; Burwood, A.; Weinger, K.; Bayless, M.; et al. Long-term effect of diabetes and its treatment on cognitive function. N. Engl. J. Med. 2007, 356, 1842–1852. [Google Scholar] [PubMed]
- Sprague, J.E.; Arbelaez, A.M. Glucose counterregulatory responses to hypoglycemia. Pediatr. Endocrinol. Rev. 2011, 9, 463–473. [Google Scholar] [PubMed]
- McCrimmon, R.J. Update in the CNS response to hypoglycemia. J. Clin. Endocrinol. Metab. 2012, 97, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Verberne, A.J.; Sabetghadam, A.; Korim, W.S. Neural pathways that control the glucose counterregulatory response. Front. Neurosci. 2014, 8. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.W.; Borg, W.P.; Boulware, S.D.; McCarthy, G.; Sherwin, R.S.; Tamborlane, W.V. Enhanced adrenomedullary response and increased susceptibility to neuroglycopenia: Mechanisms underlying the adverse effects of sugar ingestion in healthy children. J. Pediatr. 1995, 126, 171–177. [Google Scholar] [CrossRef]
- Hay, W.W., Jr.; Raju, T.N.; Higgins, R.D.; Kalhan, S.C.; Devaskar, S.U. Knowledge gaps and research needs for understanding and treating neonatal hypoglycemia: Workshop report from eunice kennedy shriver national institute of child health and human development. J. Pediatr. 2009, 155, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Gisslen, T.; Nathan, B.; Thompson, T.; Rao, R. Prolonged neonatal-onset hyperinsulinism in the absence of predisposing factors. J. Neonatal Perinat. Med. 2011, 4, 59–64. [Google Scholar]
- Hussain, K.; Hindmarsh, P.; Aynsley-Green, A. Neonates with symptomatic hyperinsulinemic hypoglycemia generate inappropriately low serum cortisol counterregulatory hormonal responses. J. Clin. Endocrinol. Metab. 2003, 88, 4342–4347. [Google Scholar] [CrossRef] [PubMed]
- Gisslen, T.; Nathan, B.; Thompson, T.; Rao, R. Hyperinsulinism associated with gestational exposure to bupropion in a newborn infant. J. Pediatr. Endocrinol. Metab. 2011, 24, 819–822. [Google Scholar] [CrossRef] [PubMed]
- De Kloet, E.R.; Vreugdenhil, E.; Oitzl, M.S.; Joels, M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 1998, 19, 269–301. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, D.M. Stress and the developing limbic-hypothalamic-pituitary-adrenal axis. Psychoneuroendocrinology 1998, 23, 663–700. [Google Scholar] [CrossRef]
- Pavlova, E.B.; Pronina, T.S.; Skebelskaya, Y.B. Histostructure of adenohypophysis of human fetuses and contents of somatotropic and adrenocorticotropic hormones. Gen. Comp. Endocrinol. 1968, 10, 269–276. [Google Scholar] [CrossRef]
- Schwartzberg, D.G.; Nakane, P.K. Ontogenesis of adrenocorticotropin-related peptide determinants in the hypothalamus and pituitary gland of the rat. Endocrinology 1982, 110, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Widmaier, E.P. Development in rats of the brain-pituitary-adrenal response to hypoglycemia in vivo and in vitro. Am. J. Physiol. 1989, 257, E757–E763. [Google Scholar] [PubMed]
- Muret, L.; Priou, A.; Oliver, C.; Grino, M. Stimulation of adrenocorticotropin secretion by insulin-induced hypoglycemia in the developing rat involves arginine vasopressin but not corticotropin-releasing factor. Endocrinology 1992, 130, 2725–2732. [Google Scholar] [PubMed]
- Grino, M.; Oliver, C. Ontogeny of insulin-induced hypoglycemia stimulation of adrenocorticotropin secretion in the rat: Role of catecholamines. Endocrinology 1992, 131, 2763–2768. [Google Scholar] [PubMed]
- Gunnar, M.R.; Donzella, B. Social regulation of the cortisol levels in early human development. Psychoneuroendocrinology 2002, 27, 199–220. [Google Scholar] [CrossRef]
- Jacobson, L.; Ansari, T.; McGuinness, O.P. Counterregulatory deficits occur within 24 h of a single hypoglycemic episode in conscious, unrestrained, chronically cannulated mice. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E678–E684. [Google Scholar] [CrossRef] [PubMed]
- Martin-Timon, I.; Del Canizo-Gomez, F.J. Mechanisms of hypoglycemia unawareness and implications in diabetic patients. World J. Diabetes 2015, 6, 912–926. [Google Scholar] [CrossRef] [PubMed]
- Criego, A.B.; Tkac, I.; Kumar, A.; Thomas, W.; Gruetter, R.; Seaquist, E.R. Brain glucose concentrations in patients with type 1 diabetes and hypoglycemia unawareness. J. Neurosci. Res. 2005, 79, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Pelligrino, D.A.; Segil, L.J.; Albrecht, R.F. Brain glucose utilization and transport and cortical function in chronic vs. Acute hypoglycemia. Am. J. Physiol. 1990, 259, E729–E735. [Google Scholar] [PubMed]
- McCall, A.L.; Fixman, L.B.; Fleming, N.; Tornheim, K.; Chick, W.; Ruderman, N.B. Chronic hypoglycemia increases brain glucose transport. Am. J. Physiol. 1986, 251, E442–E447. [Google Scholar] [PubMed]
- Simpson, I.A.; Vannucci, S.J. Glucose transport into brain: Effects of hypoglycemia. Diabetes Nutr. Metab. 2002, 15, 281–284. [Google Scholar] [PubMed]
- Flanagan, D.E.; Keshavarz, T.; Evans, M.L.; Flanagan, S.; Fan, X.; Jacob, R.J.; Sherwin, R.S. Role of corticotrophin-releasing hormone in the impairment of counterregulatory responses to hypoglycemia. Diabetes 2003, 52, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Chintamaneni, K.; Bruder, E.D.; Raff, H. Programming of the hypothalamic-pituitary-adrenal axis by neonatal intermittent hypoxia: Effects on adult male acth and corticosterone responses are stress specific. Endocrinology 2014, 155, 1763–1770. [Google Scholar] [CrossRef] [PubMed]
- Anacker, C.; O’Donnell, K.J.; Meaney, M.J. Early life adversity and the epigenetic programming of hypothalamic-pituitary-adrenal function. Dialogues Clin. Neurosci. 2014, 16, 321–333. [Google Scholar] [PubMed]
- Walker, C.D. Chemical sympathectomy and maternal separation affect neonatal stress responses and adrenal sensitivity to acth. Am. J. Physiol. 1995, 268, R1281–R1288. [Google Scholar] [PubMed]
- Suh, S.W.; Gum, E.T.; Hamby, A.M.; Chan, P.H.; Swanson, R.A. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal nadph oxidase. J. Clin. Investig. 2007, 117, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Haces, M.L.; Hernandez-Fonseca, K.; Medina-Campos, O.N.; Montiel, T.; Pedraza-Chaverri, J.; Massieu, L. Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions. Exp. Neurol. 2008, 211, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, A.E.; Ennis, K.; Georgieff, M.K.; Rao, R.; Tran, P.V. Evidence for a hyporesponsive limbic-hypothalamic-pituitary-adrenal axis following early-life repetitive hypoglycemia in adult male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, R484–R490. [Google Scholar] [CrossRef] [PubMed]
- Hazell, G.G.; Hindmarch, C.C.; Pope, G.R.; Roper, J.A.; Lightman, S.L.; Murphy, D.; O’Carroll, A.M.; Lolait, S.J. G protein-coupled receptors in the hypothalamic paraventricular and supraoptic nuclei—Serpentine gateways to neuroendocrine homeostasis. Front. Neuroendocrinol. 2012, 33, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Newson, M.J.; Pope, G.R.; Roberts, E.M.; Lolait, S.J.; O’Carroll, A.M. Stress-dependent and gender-specific neuroregulatory roles of the apelin receptor in the hypothalamic-pituitary-adrenal axis response to acute stress. J. Endocrinol. 2013, 216, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Sominsky, L.; Fuller, E.A.; Bondarenko, E.; Ong, L.K.; Averell, L.; Nalivaiko, E.; Dunkley, P.R.; Dickson, P.W.; Hodgson, D.M. Functional programming of the autonomic nervous system by early life immune exposure: Implications for anxiety. PLoS ONE 2013, 8, e57700. [Google Scholar] [CrossRef] [PubMed]
- Hadid, R.; Spinedi, E.; Giovambattista, A.; Chautard, T.; Gaillard, R.C. Decreased hypothalamo-pituitary-adrenal axis response to neuroendocrine challenge under repeated endotoxemia. Neuroimmunomodulation 1996, 3, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Bosch, N.M.; Riese, H.; Reijneveld, S.A.; Bakker, M.P.; Verhulst, F.C.; Ormel, J.; Oldehinkel, A.J. Timing matters: Long term effects of adversities from prenatal period up to adolescence on adolescents’ cortisol stress response. The trails study. Psychoneuroendocrinology 2012, 37, 1439–1447. [Google Scholar] [CrossRef] [PubMed]
- Nehlig, A.; Pereira de Vasconcelos, A. Glucose and ketone body utilization by the brain of neonatal rats. Prog. Neurobiol. 1993, 40, 163–221. [Google Scholar] [CrossRef]
- Souto, M.; Piezzi, R.S.; Bianchi, R. Catecholaminergic responses of neonatal adrenal gland to insulin. J. Neural. Transm. 1988, 73, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.I.; Munford, J.W.; Ryker, R.M. Insulin during infancy attenuates insulin-induced hypoglycemia in adult male rats. Physiol. Behav. 1997, 62, 841–848. [Google Scholar] [CrossRef]
- Moisiadis, V.G.; Matthews, S.G. Glucocorticoids and fetal programming part 1: Outcomes. Nat. Rev. Endocrinol. 2014, 10, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Nikkheslat, N.; Zunszain, P.A.; Horowitz, M.A.; Barbosa, I.G.; Parker, J.A.; Myint, A.M.; Schwarz, M.J.; Tylee, A.T.; Carvalho, L.A.; Pariante, C.M. Insufficient glucocorticoid signaling and elevated inflammation in coronary heart disease patients with comorbid depression. Brain Behav. Immun. 2015, 48. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, R. Hypothalamic-Pituitary-Adrenal Axis Programming after Recurrent Hypoglycemia during Development. J. Clin. Med. 2015, 4, 1729-1740. https://doi.org/10.3390/jcm4091729
Rao R. Hypothalamic-Pituitary-Adrenal Axis Programming after Recurrent Hypoglycemia during Development. Journal of Clinical Medicine. 2015; 4(9):1729-1740. https://doi.org/10.3390/jcm4091729
Chicago/Turabian StyleRao, Raghavendra. 2015. "Hypothalamic-Pituitary-Adrenal Axis Programming after Recurrent Hypoglycemia during Development" Journal of Clinical Medicine 4, no. 9: 1729-1740. https://doi.org/10.3390/jcm4091729
APA StyleRao, R. (2015). Hypothalamic-Pituitary-Adrenal Axis Programming after Recurrent Hypoglycemia during Development. Journal of Clinical Medicine, 4(9), 1729-1740. https://doi.org/10.3390/jcm4091729