Bronchopulmonary Dysplasia: Chronic Lung Disease of Infancy and Long-Term Pulmonary Outcomes
Abstract
:1. Introduction
1.1. Prevalence of Bronchopulmonary Dysplasia (BPD)
1.2. Definition of BPD
2. Pathophysiology of BPD
2.1. Mechanical Trauma
2.2. Oxygen Toxicity
2.3. Infection and Inflammation
2.4. Growth Restriction
2.5. Genetics
3. Prevention of BPD
3.1. Ventilation Strategies
3.2. Saturation Targets
3.3. Corticosteroids
3.4. Caffeine
3.5. Vitamin A
3.6. Nitric Oxide
4. Long-Term Outcomes of BPD
4.1. Compromised Pulmonary Function
4.2. Compromised Pulmonary Defenses
4.3. Asthma-Like Symptoms
4.4. Exercise Intolerance
4.5. Abnormal Ventilatory Responses
4.6. Pulmonary Arterial Hypertension
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Northway, W.H., Jr.; Rosan, R.C.; Porter, D.Y. Pulmonary disease following respirator therapy of hyaline-membrane disease. Bronchopulmonary dysplasia. New Engl. J. Med. 1967, 276, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Bland, R.D.; Albertine, K.H.; Carlton, D.P.; Kullama, L.; Davis, P.; Cho, S.C.; Kim, B.I.; Dahl, M.; Tabatabaei, N. Chronic lung injury in preterm lambs: Abnormalities of the pulmonary circulation and lung fluid balance. Pediatr. Res. 2000, 48, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Bancalari, E.; Claure, N.; Sosenko, I.R. Bronchopulmonary dysplasia: Changes in pathogenesis, epidemiology and definition. Semin. Neonatol. 2003, 8, 63–71. [Google Scholar] [CrossRef]
- Zysman-Colman, Z.; Tremblay, G.M.; Bandeali, S.; Landry, J.S. Bronchopulmonary dysplasia–trends over three decades. Pediatr. Child Health 2013, 18, 86–90. [Google Scholar]
- Jobe, A.J. The new bpd: An arrest of lung development. Pediatr. Res. 1999, 46, 641–643. [Google Scholar] [CrossRef] [PubMed]
- Ehrenkranz, R.A.; Das, A.; Wrage, L.A.; Poindexter, B.B.; Higgins, R.D.; Stoll, B.J.; Oh, W. Early nutrition mediates the influence of severity of illness on extremely LBW infants. Pediatr. Res. 2011, 69, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Wemhoner, A.; Ortner, D.; Tschirch, E.; Strasak, A.; Rudiger, M. Nutrition of preterm infants in relation to bronchopulmonary dysplasia. BMC Pulm. Med. 2011, 11, 7. [Google Scholar] [CrossRef]
- Jobe, A.H. Mechanisms of lung injury and bronchopulmonary dysplasia. Am. J. Perinatol. 2016, 33, 1076–1078. [Google Scholar] [CrossRef] [PubMed]
- Day, C.L.; Ryan, R.M. Bronchopulmonary dysplasia: Old becomes new again! Pediatr. Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- Lapcharoensap, W.; Gage, S.C.; Kan, P.; Profit, J.; Shaw, G.M.; Gould, J.B.; Stevenson, D.K.; O'Brodovich, H.; Lee, H.C. Hospital variation and risk factors for bronchopulmonary dysplasia in a population-based cohort. JAMA Pediatr. 2015, 169, e143676. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Shankaran, S.; Laptook, A.R.; Walsh, M.C.; Hale, E.C.; Newman, N.S.; Schibler, K.; Carlo, W.A.; et al. Neonatal outcomes of extremely preterm infants from the nichd neonatal research network. Pediatrics 2010, 126, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Berkelhamer, S.K.; Mestan, K.K.; Steinhorn, R.H. Pulmonary hypertension in bronchopulmonary dysplasia. Semin. Perinatol. 2013, 37, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.A.; Schmidt, B. Epidemiology of bronchopulmonary dysplasia. Birth Defect. Res. Part A Clin. Mol. Teratol. 2014, 100, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Latini, G.; De Felice, C.; Giannuzzi, R.; Del Vecchio, A. Survival rate and prevalence of bronchopulmonary dysplasia in extremely low birth weight infants. Early Hum. Dev. 2013, 89, S69–S73. [Google Scholar] [CrossRef]
- Roberts, D.; Dalziel, S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev. 2006, 19, CD004454. [Google Scholar]
- Seger, N.; Soll, R. Animal derived surfactant extract for treatment of respiratory distress syndrome. Cochrane Database Syst. Rev. 2009. [Google Scholar] [CrossRef]
- Walsh, M.C.; Yao, Q.; Gettner, P.; Hale, E.; Collins, M.; Hensman, A.; Everette, R.; Peters, N.; Miller, N.; Muran, G.; et al. Impact of a physiologic definition on bronchopulmonary dysplasia rates. Pediatrics 2004, 114, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, H.; Uchiyama, A.; Kusuda, S. Impact of pulmonary hypertension on neurodevelopmental outcome in preterm infants with bronchopulmonary dysplasia: A cohort study. J. Perinatol. 2016, 36, 890–896. [Google Scholar] [CrossRef] [PubMed]
- Poindexter, B.B.; Feng, R.; Schmidt, B.; Aschner, J.L.; Ballard, R.A.; Hamvas, A.; Reynolds, A.M.; Shaw, P.A.; Jobe, A.H. Comparisons and limitations of current definitions of bronchopulmonary dysplasia for the prematurity and respiratory outcomes program. Ann. Am. Thorac. Soc. 2015, 12, 1822–1830. [Google Scholar] [CrossRef] [PubMed]
- An, H.S.; Bae, E.J.; Kim, G.B.; Kwon, B.S.; Beak, J.S.; Kim, E.K.; Kim, H.S.; Choi, J.H.; Noh, C.I.; Yun, Y.S. Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Korean Circ. J. 2010, 40, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, H.S.; Choi, C.W.; Kim, E.K.; Kim, B.I.; Choi, J.H. Risk factors for pulmonary artery hypertension in preterm infants with moderate or severe bronchopulmonary dysplasia. Neonatology 2012, 101, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, J.L.; Pakrashi, T.; Jones, D.E.; South, A.P.; Shah, T.A. Echocardiographic detection of pulmonary hypertension in extremely low birth weight infants with bronchopulmonary dysplasia requiring prolonged positive pressure ventilation. J. Perinatol. 2011, 31, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Khemani, E.; McElhinney, D.B.; Rhein, L.; Andrade, O.; Lacro, R.V.; Thomas, K.C.; Mullen, M.P. Pulmonary artery hypertension in formerly premature infants with bronchopulmonary dysplasia: Clinical features and outcomes in the surfactant era. Pediatrics 2007, 120, 1260–1269. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, E.; Filippone, M. Chronic lung disease after premature birth. New Engl. J. Med. 2007, 357, 1946–1955. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Walsh, M.C.; Carlo, W.A.; Shankaran, S.; Laptook, A.R.; Sanchez, P.J.; Van Meurs, K.P.; Wyckoff, M.; et al. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993-2012. JAMA 2015, 314, 1039–1051. [Google Scholar] [CrossRef] [PubMed]
- Jobe, A.H.; Hillman, N.; Polglase, G.; Kramer, B.W.; Kallapur, S.; Pillow, J. Injury and inflammation from resuscitation of the preterm infant. Neonatology 2008, 94, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Hillman, N.H.; Kallapur, S.G.; Jobe, A.H. Physiology of transition from intrauterine to extrauterine life. Clin. Perinatol. 2012, 39, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, T.H.; Bhutani, V.K.; Wolfson, M.R.; Penn, R.B.; Tran, N.N. In vivo mechanical properties of the developing airway. Pediatr. Res. 1989, 25, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Davidovich, N.; DiPaolo, B.C.; Lawrence, G.G.; Chhour, P.; Yehya, N.; Margulies, S.S. Cyclic stretch-induced oxidative stress increases pulmonary alveolar epithelial permeability. Am. J. Respir. Cell Mol. Boil. 2013, 49, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Ambalavanan, N.; Morty, R.E. Searching for better animal models of BPD: A perspective. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016, 311, L924–L927. [Google Scholar] [CrossRef] [PubMed]
- Payne, N.R.; LaCorte, M.; Karna, P.; Chen, S.; Finkelstein, M.; Goldsmith, J.P.; Carpenter, J.H. Reduction of bronchopulmonary dysplasia after participation in the breathsavers group of the Vermont Oxford network neonatal intensive care quality improvement collaborative. Pediatrics 2006, 118, S73–S77. [Google Scholar] [CrossRef] [PubMed]
- Vento, M.; Moro, M.; Escrig, R.; Arruza, L.; Villar, G.; Izquierdo, I.; Roberts, L.J.; Arduini, A.; Escobar, J.J.; Sastre, J.; et al. Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics 2009, 124, e439–e449. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Parad, R.B.; Michele, T.; Allred, E.; Price, A.; Rosenfeld, W. Pulmonary outcome at 1 year corrected age in premature infants treated at birth with recombinant human CuZn superoxide dismutase. Pediatrics 2003, 111, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Berkelhamer, S.K.; Kim, G.A.; Radder, J.E.; Wedgwood, S.; Czech, L.; Steinhorn, R.H.; Schumacker, P.T. Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radic. Biol. Med. 2013, 61, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Berkelhamer, S.K.; Farrow, K.N. Developmental regulation of antioxidant enzymes and their impact on neonatal lung disease. Antioxid. Redox Signal. 2014, 21, 1837–1848. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.; Sosenko, I.R. Development of lung antioxidant enzyme system in late gestation: Possible implications for the prematurely born infant. J. Pediatr. 1987, 110, 9–14. [Google Scholar] [CrossRef]
- Yee, M.; White, R.J.; Awad, H.A.; Bates, W.A.; McGrath-Morrow, S.A.; O’Reilly, M.A. Neonatal hyperoxia causes pulmonary vascular disease and shortens life span in aging mice. Am. J. Pathol. 2011, 178, 2601–2610. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Kim, G.A.; Taylor, J.M.; Gugino, S.F.; Farrow, K.N.; Schumacker, P.T.; Berkelhamer, S.K. Mouse lung development and nox1 induction during hyperoxia are developmentally regulated and mitochondrial ros dependent. Am. J. physiol. Lung Cell. Mol. Physiol. 2015, 309, L369–L377. [Google Scholar] [CrossRef] [PubMed]
- Filippone, M.; Bonetto, G.; Corradi, M.; Frigo, A.C.; Baraldi, E. Evidence of unexpected oxidative stress in airways of adolescents born very pre-term. Eur. Respir. J. 2012, 40, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Hartling, L.; Liang, Y.; Lacaze-Masmonteil, T. Chorioamnionitis as a risk factor for bronchopulmonary dysplasia: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2012, 97, F8–F17. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, M.; Hirano, H.; Gotoh, K.; Otomo, K.; Maki, M. The relation between amniotic fluid surfactant concentration in preterm labour and histological evidence of chorioamnionitis. Arch. Gynecol. Obstet. 1992, 251, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Watterberg, K.L.; Demers, L.M.; Scott, S.M.; Murphy, S. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics 1996, 97, 210–215. [Google Scholar] [PubMed]
- Kramer, B.W.; Kramer, S.; Ikegami, M.; Jobe, A.H. Injury, inflammation, and remodeling in fetal sheep lung after intra-amniotic endotoxin. Am. J. physiol. Lung Cell. Mol. Physiol. 2002, 283, L452–L459. [Google Scholar] [CrossRef] [PubMed]
- Jobe, A.H. Antenatal factors and the development of bronchopulmonary dysplasia. Semin. Neonatol. 2003, 8, 9–17. [Google Scholar] [CrossRef]
- Ballard, A.R.; Mallett, L.H.; Pruszynski, J.E.; Cantey, J.B. Chorioamnionitis and subsequent bronchopulmonary dysplasia in very-low-birth weight infants: A 25-year cohort. J. Perinatol. 2016, 36, 1045–1048. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.A.; Gonzalez, A.; Bancalari, E.; Claure, N.; Poole, C.; Silva-Neto, G. Changing trends in the epidemiology and pathogenesis of neonatal chronic lung disease. J. Pediatr. 1995, 126, 605–610. [Google Scholar] [CrossRef]
- Lapcharoensap, W.; Kan, P.; Powers, R.J.; Shaw, G.M.; Stevenson, D.K.; Gould, J.B.; Wirtschafter, D.D.; Lee, H.C. The relationship of nosocomial infection reduction to changes in neonatal intensive care unit rates of bronchopulmonary dysplasia. J. Pediatr. 2016, 180, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Novitsky, A.; Tuttle, D.; Locke, R.G.; Saiman, L.; Mackley, A.; Paul, D.A. Prolonged early antibiotic use and bronchopulmonary dysplasia in very low birth weight infants. Am. J. Perinatol. 2015, 32, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Tullus, K.; Noack, G.W.; Burman, L.G.; Nilsson, R.; Wretlind, B.; Brauner, A. Elevated cytokine levels in tracheobronchial aspirate fluids from ventilator treated neonates with bronchopulmonary dysplasia. Eur. J. Pediatr. 1996, 155, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, B.; Tullus, K.; Brauner, A.; Lu, Y.; Noack, G. Early increase of tnf alpha and il-6 in tracheobronchial aspirate fluid indicator of subsequent chronic lung disease in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 1997, 77, F198–F201. [Google Scholar] [CrossRef] [PubMed]
- D’Angio, C.T.; Ambalavanan, N.; Carlo, W.A.; McDonald, S.A.; Skogstrand, K.; Hougaard, D.M.; Shankaran, S.; Goldberg, R.N.; Ehrenkranz, R.A.; Tyson, J.E.; et al. Blood cytokine profiles associated with distinct patterns of bronchopulmonary dysplasia among extremely low birth weight infants. J. Pediatr. 2016, 174, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Poindexter, B.B.; Martin, C.R. Impact of nutrition on bronchopulmonary dysplasia. Clin. Perinat. 2015, 42, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.; Haglund, B.; Odlind, V.; Altman, M.; Ewald, U.; Kieler, H. Perinatal conditions related to growth restriction and inflammation are associated with an increased risk of bronchopulmonary dysplasia. Acta Pediatr. 2015, 104, 259–263. [Google Scholar]
- Reiss, I.; Landmann, E.; Heckmann, M.; Misselwitz, B.; Gortner, L. Increased risk of bronchopulmonary dysplasia and increased mortality in very preterm infants being small for gestational age. Arch. Gynecol. Obstet. 2003, 269, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Bose, C.; Van Marter, L.J.; Laughon, M.; O’Shea, T.M.; Allred, E.N.; Karna, P.; Ehrenkranz, R.A.; Boggess, K.; Leviton, A. Fetal growth restriction and chronic lung disease among infants born before the 28th week of gestation. Pediatrics 2009, 124, e450–e458. [Google Scholar] [CrossRef] [PubMed]
- Check, J.; Gotteiner, N.; Liu, X.; Su, E.; Porta, N.; Steinhorn, R.; Mestan, K.K. Fetal growth restriction and pulmonary hypertension in premature infants with bronchopulmonary dysplasia. J. Perinatol. 2013, 33, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Gortner, L.; Hilgendorff, A.; Bahner, T.; Ebsen, M.; Reiss, I.; Rudloff, S. Hypoxia-induced intrauterine growth retardation: Effects on pulmonary development and surfactant protein transcription. Biol. Neonate 2005, 88, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Gortner, L.; Reiss, I.; Hilgendorff, A. Bronchopulmonary dysplasia and intrauterine growth restriction. Lancet 2006, 368, 28. [Google Scholar] [CrossRef]
- Rozance, P.J.; Seedorf, G.J.; Brown, A.; Roe, G.; O’Meara, M.C.; Gien, J.; Tang, J.R.; Abman, S.H. Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011, 301, L860–L871. [Google Scholar] [CrossRef] [PubMed]
- Spiegler, J.; Preuss, M.; Gebauer, C.; Bendiks, M.; Herting, E.; Gopel, W. Does breastmilk influence the development of bronchopulmonary dysplasia? J. Pediatr. 2016, 169, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Warford, C.; Agvateesiri, S.; Berkelhamer, S.; Perez, M.; Underwood, M.; Steinhorn, R.; Wedgwood, S. Postnatal growth restriction augments oxygen-induced pulmonary hypertension in a neonatal rat model of bronchopulmonary dysplasia. Pediatr. Res. 2016, 80, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.M.; O’Brodovich, H.M. Progress in understanding the genetics of bronchopulmonary dysplasia. Semin. Perinatol. 2013, 37, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, V.; Bizzarro, M.J.; Shetty, A.; Zhong, X.; Page, G.P.; Zhang, H.; Ment, L.R.; Gruen, J.R. Familial and genetic susceptibility to major neonatal morbidities in preterm twins. Pediatrics 2006, 117, 1901–1906. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, P.M.; Pham, C.; Jang, K.L. Heritability of bronchopulmonary dysplasia, defined according to the consensus statement of the national institutes of health. Pediatrics 2008, 122, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; St Julien, K.R.; Stevenson, D.K.; Hoffmann, T.J.; Witte, J.S.; Lazzeroni, L.C.; Krasnow, M.A.; Quaintance, C.C.; Oehlert, J.W.; Jelliffe-Pawlowski, L.L.; et al. A genome-wide association study (gwas) for bronchopulmonary dysplasia. Pediatrics 2013, 132, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Hadchouel, A.; Durrmeyer, X.; Bouzigon, E.; Incitti, R.; Huusko, J.; Jarreau, P.H.; Lenclen, R.; Demenais, F.; Franco-Montoya, M.L.; Layouni, I.; et al. Identification of spock2 as a susceptibility gene for bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2011, 184, 1164–1170. [Google Scholar] [CrossRef] [PubMed]
- Woodgate, P.G.; Davies, M.W. Permissive hypercapnia for the prevention of morbidity and mortality in mechanically ventilated newborn infants. Cochrane Database Syst. Rev. 2001. [Google Scholar] [CrossRef]
- Thome, U.H.; Genzel-Boroviczeny, O.; Bohnhorst, B.; Schmid, M.; Fuchs, H.; Rohde, O.; Avenarius, S.; Topf, H.G.; Zimmermann, A.; Faas, D.; et al. Permissive hypercapnia in extremely low birthweight infants (phelbi): A randomised controlled multicentre trial. Lancet Respir. Med. 2015, 3, 534–543. [Google Scholar] [CrossRef]
- Kennedy, K.A.; Cotten, C.M.; Watterberg, K.L.; Carlo, W.A. Prevention and management of bronchopulmonary dysplasia: Lessons learned from the neonatal research network. Semin. Perinatol. 2016, 40, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Carlo, W.A.; Stark, A.R.; Wright, L.L.; Tyson, J.E.; Papile, L.A.; Shankaran, S.; Donovan, E.F.; Oh, W.; Bauer, C.R.; Saha, S.; et al. Minimal ventilation to prevent bronchopulmonary dysplasia in extremely-low-birth-weight infants. J. Pediatr. 2002, 141, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, K.; Klingenberg, C.; McCallion, N.; Morley, C.J.; Davis, P.G. Volume-targeted versus pressure-limited ventilation in the neonate. Cochrane Database Syst. Rev. 2010. [Google Scholar] [CrossRef]
- Lista, G.; Colnaghi, M.; Castoldi, F.; Condo, V.; Reali, R.; Compagnoni, G.; Mosca, F. Impact of targeted-volume ventilation on lung inflammatory response in preterm infants with respiratory distress syndrome (rds). Pediatr. Pulmonol. 2004, 37, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Carlo, W.A. Gentle ventilation: The new evidence from the support, coin, von, curpap, colombian network, and neocosur network trials. Early Hum. Dev. 2012, 88, S81–S83. [Google Scholar] [CrossRef]
- Keszler, M.; Modanlou, H.D.; Brudno, D.S.; Clark, F.I.; Cohen, R.S.; Ryan, R.M.; Kaneta, M.K.; Davis, J.M. Multicenter controlled clinical trial of high-frequency jet ventilation in preterm infants with uncomplicated respiratory distress syndrome. Pediatrics 1997, 100, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Cheng, R.; Kang, W.; Xiong, H.; Zhou, C.; Zhang, Y.; Wang, X.; Zhu, C. High-frequency oscillatory ventilation versus synchronized intermittent mandatory ventilation plus pressure support in preterm infants with severe respiratory distress syndrome. Respir. Care 2014, 59, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Cools, F.; Offringa, M.; Askie, L.M. Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev 2015. [Google Scholar] [CrossRef]
- Fischer, H.S.; Buhrer, C. Avoiding endotracheal ventilation to prevent bronchopulmonary dysplasia: A meta-analysis. Pediatrics 2013, 132, e1351–e1360. [Google Scholar] [CrossRef] [PubMed]
- Schmolzer, G.M.; Kumar, M.; Pichler, G.; Aziz, K.; O’Reilly, M.; Cheung, P.Y. Non-invasive versus invasive respiratory support in preterm infants at birth: Systematic review and meta-analysis. BMJ 2013, 347, f5980. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, P.; Ho, J.J.; Davis, P.G. Prophylactic nasal continuous positive airway pressure for preventing morbidity and mortality in very preterm infants. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef]
- Hutchison, A.A.; Bignall, S. Non-invasive positive pressure ventilation in the preterm neonate: Reducing endotrauma and the incidence of bronchopulmonary dysplasia. Arch. Dis. Child. Fetal Neonatal Ed. 2008, 93, F64–F68. [Google Scholar] [CrossRef] [PubMed]
- Kugelman, A.; Feferkorn, I.; Riskin, A.; Chistyakov, I.; Kaufman, B.; Bader, D. Nasal intermittent mandatory ventilation versus nasal continuous positive airway pressure for respiratory distress syndrome: A randomized, controlled, prospective study. J. Pediatr. 2007, 150, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Yoder, B.A.; Stoddard, R.A.; Li, M.; King, J.; Dirnberger, D.R.; Abbasi, S. Heated, humidified high-flow nasal cannula versus nasal cpap for respiratory support in neonates. Pediatrics 2013, 131, e1482–e1490. [Google Scholar] [CrossRef] [PubMed]
- Lemyre, B.; Davis, P.G.; De Paoli, A.G.; Kirpalani, H. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef]
- Roberts, C.T.; Davis, P.G.; Owen, L.S. Neonatal non-invasive respiratory support: Synchronised NIPPV, non-synchronised NIPPV or Bi-Level CPAP: What is the evidence in 2013? Neonatology 2013, 104, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Dumpa, V.; Katz, K.; Northrup, V.; Bhandari, V. Snippv vs nippv: Does synchronization matter? J. Perinatol. 2012, 32, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Stein, H.; Beck, J.; Dunn, M. Non-invasive ventilation with neurally adjusted ventilatory assist in newborns. Semin. Fetal Neonatal. Med. 2016, 21, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.A.; DeMauro, S.B.; Kornhauser, M.; Aghai, Z.H.; Greenspan, J.S.; Dysart, K.C. Effects of multiple ventilation courses and duration of mechanical ventilation on respiratory outcomes in extremely low-birth-weight infants. JAMA Pediatr. 2015, 169, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Robbins, M.; Trittmann, J.; Martin, E.; Reber, K.M.; Nelin, L.; Shepherd, E. Early extubation attempts reduce length of stay in extremely preterm infants even if re-intubation is necessary. J. Neonatal-Perinat. Med. 2015, 8, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Manja, V.; Lakshminrusimha, S.; Cook, D.J. Oxygen saturation target range for extremely preterm infants: A systematic review and meta-analysis. JAMA Pediatr. 2015, 169, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Stenson, B.J. Oxygen saturation targets for extremely preterm infants after the neoprom trials. Neonatology 2016, 109, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Saugstad, O.D.; Aune, D. Optimal oxygenation of extremely low birth weight infants: A meta-analysis and systematic review of the oxygen saturation target studies. Neonatology 2014, 105, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Support Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Networl; Carlo, W.A.; Finer, N.N.; Walsh, M.C.; Rich, W.; Gantz, M.G.; Laptook, A.R.; Yoder, B.A.; Faix, R.G.; Das, A.; et al. Target ranges of oxygen saturation in extremely preterm infants. New Engl. J. Med. 2010, 362, 1959–1969. [Google Scholar] [PubMed]
- Schmidt, B.; Whyte, R.K.; Asztalos, E.V.; Moddemann, D.; Poets, C.; Rabi, Y.; Solimano, A.; Roberts, R.S. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: A randomized clinical trial. JAMA 2013, 309, 2111–2120. [Google Scholar] [CrossRef] [PubMed]
- Colditz, P.; Pritchard, M.; Gray, P.; Shearman, A.; Poulson, L. Oxygen saturation and outcomes in preterm infants. New Engl. J. Med. 2013, 368, 2094–2104. [Google Scholar]
- Stenson, B.; Brocklehurst, P.; Tarnow-Mordi, W. Increased 36-week survival with high oxygen saturation target in extremely preterm infants. New Engl. J. Med. 2011, 364, 1680–1682. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.J.; Polin, R.A. Oxygen targeting in extremely low birth weight infants. Pediatrics 2016, 2, e20161576. [Google Scholar] [CrossRef] [PubMed]
- Halliday, H.L. Early postnatal dexamethasone and cerebral palsy. Pediatrics 2002, 109, 1168–1169. [Google Scholar] [CrossRef] [PubMed]
- Halliday, H.L.; Ehrenkranz, R.A.; Doyle, L.W. Early (<8 days) postnatal corticosteroids for preventing chronic lung disease in preterm infants. Cochrane Database Syst. Rev. 2009. [Google Scholar] [CrossRef]
- Jarreau, P.H.; Fayon, M.; Baud, O.; Autret-Leca, E.; Danan, M.; de Verdelhan, A.; Castot, A. The use of postnatal corticosteroid therapy in premature infants to prevent or treat bronchopulmonary dysplasia: Current situation and recommendations. Arch. Pediatr. 2010, 17, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Yoder, B.A.; Harrison, M.; Clark, R.H. Time-related changes in steroid use and bronchopulmonary dysplasia in preterm infants. Pediatrics 2009, 124, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Fanaroff, A.A.; Stoll, B.J.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Stark, A.R.; Bauer, C.R.; Donovan, E.F.; Korones, S.B.; Laptook, A.R.; et al. Trends in neonatal morbidity and mortality for very low birthweight infants. Am. J. Obstet. Gynecol. 2007, 196, 147.e1–147.e8. [Google Scholar] [CrossRef] [PubMed]
- Baud, O.; Maury, L.; Lebail, F.; Ramful, D.; El Moussawi, F.; Nicaise, C.; Zupan-Simunek, V.; Coursol, A.; Beuchee, A.; Bolot, P.; et al. Effect of early low-dose hydrocortisone on survival without bronchopulmonary dysplasia in extremely preterm infants (premiloc): A double-blind, placebo-controlled, multicentre, randomised trial. Lancet 2016, 387, 1827–1836. [Google Scholar] [CrossRef]
- Clouse, B.J.; Jadcherla, S.R.; Slaughter, J.L. Systematic review of inhaled bronchodilator and corticosteroid therapies in infants with bronchopulmonary dysplasia: Implications and future directions. PLoS ONE 2016, 11, e0148188. [Google Scholar] [CrossRef] [PubMed]
- Onland, W.; Offringa, M.; van Kaam, A. Late (≥7 days) inhalation corticosteroids to reduce bronchopulmonary dysplasia in preterm infants. Cochrane Database Syst. Rev. 2012. [Google Scholar] [CrossRef]
- Yeh, T.F.; Chen, C.M.; Wu, S.Y.; Husan, Z.; Li, T.C.; Hsieh, W.S.; Tsai, C.H.; Lin, H.C. Intratracheal administration of budesonide/surfactant to prevent bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2016, 193, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, B.; Roberts, R.S.; Davis, P.; Doyle, L.W.; Barrington, K.J.; Ohlsson, A.; Solimano, A.; Tin, W. Caffeine therapy for apnea of prematurity. New Engl. J. Med. 2006, 354, 2112–2121. [Google Scholar] [CrossRef] [PubMed]
- Dobson, N.R.; Patel, R.M.; Smith, P.B.; Kuehn, D.R.; Clark, J.; Vyas-Read, S.; Herring, A.; Laughon, M.M.; Carlton, D.; Hunt, C.E. Trends in caffeine use and association between clinical outcomes and timing of therapy in very low birth weight infants. J. Pediatr. 2014, 164, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Taha, D.; Kirkby, S.; Nawab, U.; Dysart, K.C.; Genen, L.; Greenspan, J.S.; Aghai, Z.H. Early caffeine therapy for prevention of bronchopulmonary dysplasia in preterm infants. J. Matern. Fetal Neonatal Med. 2014, 27, 1698–1702. [Google Scholar] [CrossRef] [PubMed]
- Shenai, J.P.; Chytil, F.; Stahlman, M.T. Vitamin a status of neonates with bronchopulmonary dysplasia. Pediatr. Res. 1985, 19, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Zachman, R.D. Role of vitamin a in lung development. J. Nutr. 1995, 125, 1634S–1638S. [Google Scholar] [PubMed]
- Darlow, B.A.; Graham, P.J.; Rojas-Reyes, M.X. Vitamin a supplementation to prevent mortality and short- and long-term morbidity in very low birth weight infants. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef]
- Uberos, J.; Miras-Baldo, M.; Jerez-Calero, A.; Narbona-Lopez, E. Effectiveness of vitamin a in the prevention of complications of prematurity. Pediatr. Neonatol. 2014, 55, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Gortner, L.; NeoVitaA Trial investigators. Up-date on the NeoVitaA Trial: Obstacles, challenges, perspectives, and local experiences. Wien. Med. Wochenschr. 2016. [Google Scholar] [CrossRef] [PubMed]
- Mercier, J.C.; Hummler, H.; Durrmeyer, X.; Sanchez-Luna, M.; Carnielli, V.; Field, D.; Greenough, A.; Van Overmeire, B.; Jonsson, B.; Hallman, M.; et al. Inhaled nitric oxide for prevention of bronchopulmonary dysplasia in premature babies (euno): A randomised controlled trial. Lancet 2010, 376, 346–354. [Google Scholar] [CrossRef]
- Ballard, R.A.; Truog, W.E.; Cnaan, A.; Martin, R.J.; Ballard, P.L.; Merrill, J.D.; Walsh, M.C.; Durand, D.J.; Mayock, D.E.; Eichenwald, E.C.; et al. Inhaled nitric oxide in preterm infants undergoing mechanical ventilation. New Engl. J. Med. 2006, 355, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Gao, X.; Liu, C.; Chen, D.; Lin, X.; Xia, S.; Zhuang, D.; Yang, C.; Zhu, W.; Liu, L.; et al. Early inhaled nitric oxide in preterm infants <34 weeks with evolving bronchopulmonary dysplasia. J. Perinatol. 2016, 36, 883–889. [Google Scholar] [PubMed]
- Barrington, K.J.; Finer, N. Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst. Rev. 2010. [Google Scholar] [CrossRef]
- Askie, L.M.; Ballard, R.A.; Cutter, G.R.; Dani, C.; Elbourne, D.; Field, D.; Hascoet, J.M.; Hibbs, A.M.; Kinsella, J.P.; Mercier, J.C.; et al. Inhaled nitric oxide in preterm infants: An individual-patient data meta-analysis of randomized trials. Pediatrics 2011, 128, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Cole, F.S.; Alleyne, C.; Barks, J.D.; Boyle, R.J.; Carroll, J.L.; Dokken, D.; Edwards, W.H.; Georgieff, M.; Gregory, K.; Johnston, M.V.; et al. NIH consensus development conference: Inhaled nitric oxide therapy for premature infants. NIH Consens. State Sci. Statements 2010, 27, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Sokol, G.M.; Konduri, G.G.; Van Meurs, K.P. Inhaled nitric oxide therapy for pulmonary disorders of the term and preterm infant. Semin. Perinatol. 2016, 40, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Ellsworth, M.A.; Harris, M.N.; Carey, W.A.; Spitzer, A.R.; Clark, R.H. Off-label use of inhaled nitric oxide after release of nih consensus statement. Pediatrics 2015, 135, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Carey, W.A.; Ellsworth, M.A.; Harris, M.N. Inhaled nitric oxide use in the neonatal intensive care unit: Rising costs and the need for a new research paradigm. JAMA Pediatr. 2016, 170, 639–640. [Google Scholar] [CrossRef] [PubMed]
- Ball, M.K.; Steinhorn, R.H. Inhaled nitric oxide for preterm infants: A marksman’s approach. J. Pediatr. 2012, 161, 379–380. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, B.M.; Feinstein, N.F.; Alpert-Gillis, L.; Fairbanks, E.; Crean, H.F.; Sinkin, R.A.; Stone, P.W.; Small, L.; Tu, X.; Gross, S.J. Reducing premature infants’ length of stay and improving parents’ mental health outcomes with the creating opportunities for parent empowerment (cope) neonatal intensive care unit program: A randomized, controlled trial. Pediatrics 2006, 118, e1414–e1427. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.C.; Zupancic, J.A.; McCormick, M.C.; Croen, L.A.; Greene, J.; Escobar, G.J.; Richardson, D.K. Rehospitalization in the first year of life among infants with bronchopulmonary dysplasia. J. Pediatr. 2004, 144, 799–803. [Google Scholar] [PubMed]
- Kugelman, A.; Reichman, B.; Chistyakov, I.; Boyko, V.; Levitski, O.; Lerner-Geva, L.; Riskin, A.; Bader, D. Postdischarge infant mortality among very low birth weight infants: A population-based study. Pediatrics 2007, 120, e788–e794. [Google Scholar] [CrossRef] [PubMed]
- Cristea, A.I.; Carroll, A.E.; Davis, S.D.; Swigonski, N.L.; Ackerman, V.L. Outcomes of children with severe bronchopulmonary dysplasia who were ventilator dependent at home. Pediatrics 2013, 132, e727–e734. [Google Scholar] [CrossRef] [PubMed]
- Walsh, M.C.; Morris, B.H.; Wrage, L.A.; Vohr, B.R.; Poole, W.K.; Tyson, J.E.; Wright, L.L.; Ehrenkranz, R.A.; Stoll, B.J.; Fanaroff, A.A.; et al. Extremely low birthweight neonates with protracted ventilation: Mortality and 18-month neurodevelopmental outcomes. J. Pediatr. 2005, 146, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Werthammer, J.; Brown, E.R.; Neff, R.K.; Taeusch, H.W. Sudden infant death syndrome in infants with bronchopulmonary dysplasia. Pediatrics 1982, 69, 301–304. [Google Scholar] [PubMed]
- Kotecha, S.J.; Edwards, M.O.; Watkins, W.J.; Henderson, A.J.; Paranjothy, S.; Dunstan, F.D.; Kotecha, S. Effect of preterm birth on later FEV1: A systematic review and meta-analysis. Thorax 2013, 68, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Vom Hove, M.; Prenzel, F.; Uhlig, H.H.; Robel-Tillig, E. Pulmonary outcome in former preterm, very low birth weight children with bronchopulmonary dysplasia: A case-control follow-up at school age. J. Pediatr. 2014, 164, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Landry, J.S.; Chan, T.; Lands, L.; Menzies, D. Long-term impact of bronchopulmonary dysplasia on pulmonary function. Can. Respir. J. 2011, 18, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.W.; Faber, B.; Callanan, C.; Freezer, N.; Ford, G.W.; Davis, N.M. Bronchopulmonary dysplasia in very low birth weight subjects and lung function in late adolescence. Pediatrics 2006, 118, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Solis, M.; Perez-Fernandez, V.; Bosch-Gimenez, V.; Quesada, J.J.; Garcia-Marcos, L. Lung function gain in preterm infants with and without bronchopulmonary dysplasia. Pediatr. Pulmonol. 2016, 51, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Filippone, M.; Sartor, M.; Zacchello, F.; Baraldi, E. Flow limitation in infants with bronchopulmonary dysplasia and respiratory function at school age. Lancet 2003, 361, 753–754. [Google Scholar] [CrossRef]
- Tepper, R.S.; Morgan, W.J.; Cota, K.; Taussig, L.M. Expiratory flow limitation in infants with bronchopulmonary dysplasia. J. Pediatr. 1986, 109, 1040–1046. [Google Scholar] [CrossRef]
- O'Reilly, M.; Sozo, F.; Harding, R. Impact of preterm birth and bronchopulmonary dysplasia on the developing lung: Long-term consequences for respiratory health. Clin. Exp. Pharmacol. Physiol. 2013, 40, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Aquino, S.L.; Schechter, M.S.; Chiles, C.; Ablin, D.S.; Chipps, B.; Webb, W.R. High-resolution inspiratory and expiratory ct in older children and adults with bronchopulmonary dysplasia. AJR. Am. J. Roentgenol. 1999, 173, 963–967. [Google Scholar] [CrossRef] [PubMed]
- Sozo, F.; Horvat, J.C.; Essilfie, A.T.; O’Reilly, M.; Hansbro, P.M.; Harding, R. Altered lung function at mid-adulthood in mice following neonatal exposure to hyperoxia. Respir. Physiol. Neurobiol. 2015, 218, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Collaco, J.M.; Aherrera, A.D.; Ryan, T.; McGrath-Morrow, S.A. Secondhand smoke exposure in preterm infants with bronchopulmonary dysplasia. Pediatr. Pulmonol. 2014, 49, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.W.; Olinsky, A.; Faber, B.; Callanan, C. Adverse effects of smoking on respiratory function in young adults born weighing less than 1000 grams. Pediatrics 2003, 112, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Strunk, T.; Currie, A.; Richmond, P.; Simmer, K.; Burgner, D. Innate immunity in human newborn infants: Prematurity means more than immaturity. J. Matern. Fetal Neonatal Med. 2011, 24, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Domm, W.; Misra, R.S.; O’Reilly, M.A. Affect of early life oxygen exposure on proper lung development and response to respiratory viral infections. Front. Med. 2015. [Google Scholar] [CrossRef] [PubMed]
- O'Reilly, M.A.; Marr, S.H.; Yee, M.; McGrath-Morrow, S.A.; Lawrence, B.P. Neonatal hyperoxia enhances the inflammatory response in adult mice infected with influenza a virus. Am. J. Respir. Crit. Care Med. 2008, 177, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Powers, C.J.; Levitt, M.A.; Tantoco, J.; Rossman, J.; Sarpel, U.; Brisseau, G.; Caty, M.G.; Glick, P.L. The respiratory advantage of laparoscopic nissen fundoplication. J. Pediatr. Surg. 2003, 38, 886–891. [Google Scholar] [CrossRef]
- Demirel, G.; Yilmaz, Y.; Uras, N.; Erdeve, O.; Ulu, H.O.; Oguz, S.S.; Dilmen, U. Dramatical recovery of a mechanical ventilatory dependent extremely low birth weight premature infant after nissen fundoplication. J. Trop. Pediatr. 2011, 57, 484–486. [Google Scholar] [CrossRef] [PubMed]
- Gien, J.; Kinsella, J.; Thrasher, J.; Grenolds, A.; Abman, S.H.; Baker, C.D. Retrospective analysis of an interdisciplinary ventilator care program intervention on survival of infants with ventilator-dependent bronchopulmonary dysplasia. Am. J. Perinatol. 2016. [Google Scholar] [CrossRef]
- Fawke, J.; Lum, S.; Kirkby, J.; Hennessy, E.; Marlow, N.; Rowell, V.; Thomas, S.; Stocks, J. Lung function and respiratory symptoms at 11 years in children born extremely preterm: The epicure study. Am. J. Respir. Crit. Care Med. 2010, 182, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Powell, T.; Watkins, W.J.; Drayton, M.; Williams, E.M.; Kotecha, S. Exercise-induced bronchoconstriction in school-aged children who had chronic lung disease in infancy. J. Pediatr. 2013, 162, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Allen, J.; Zwerdling, R.; Ehrenkranz, R.; Gaultier, C.; Geggel, R.; Greenough, A.; Kleinman, R.; Klijanowicz, A.; Martinez, F.; Ozdemir, A.; et al. Statement on the care of the child with chronic lung disease of infancy and childhood. Am. J. Respir. Crit. Care Med. 2003, 168, 356–396. [Google Scholar] [PubMed]
- Yuksel, B.; Greenough, A. Randomised trial of inhaled steroids in preterm infants with respiratory symptoms at follow up. Thorax 1992, 47, 910–913. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.H.; Teague, W.G. Reduced gas transfer at rest and during exercise in school-age survivors of bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 1998, 157, 1406–1412. [Google Scholar] [CrossRef] [PubMed]
- Kriemler, S.; Keller, H.; Saigal, S.; Bar-Or, O. Aerobic and lung performance in premature children with and without chronic lung disease of prematurity. Clin. J. Sport Med. 2005, 15, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Karila, C.; Saulnier, J.P.; Elie, C.; Taupin, P.; Scheinmann, P.; Le Bourgeois, M.; Waernessycle, S.; de Blic, J. Exercise alveolar hypoventilation in long-term survivors of bronchopulmonary dysplasia. Rev. Mal. Respir. 2008, 25, 303–312. [Google Scholar] [CrossRef]
- Bates, M.L.; Pillers, D.A.; Palta, M.; Farrell, E.T.; Eldridge, M.W. Ventilatory control in infants, children, and adults with bronchopulmonary dysplasia. Respir. Physiol. Neurobiol. 2013, 189, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Bates, M.L.; Farrell, E.T.; Eldridge, M.W. Abnormal ventilatory responses in adults born prematurely. New Engl. J. Med. 2014, 370, 584–585. [Google Scholar] [CrossRef] [PubMed]
- Bhat, R.; Salas, A.A.; Foster, C.; Carlo, W.A.; Ambalavanan, N. Prospective analysis of pulmonary hypertension in extremely low birth weight infants. Pediatrics 2012, 129, e682–e689. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.W.; Kim, H.S.; An, H.S.; Kwon, B.S.; Kim, G.B.; Shin, S.H.; Kim, E.K.; Bae, E.J.; Noh, C.I.; Choi, J.H. Long-term outcomes of pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Neonatology 2016, 110, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Goss, K.N.; Cucci, A.R.; Fisher, A.J.; Albrecht, M.; Frump, A.; Tursunova, R.; Gao, Y.; Brown, M.B.; Petrache, I.; Tepper, R.S.; et al. Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure. Am. J. physiol. Lung Cell. Mol. Physiol. 2015, 308, L797–L806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruno, C.J.; Meerkov, M.; Capone, C.; Vega, M.; Sutton, N.; Kim, M.; Wang, D.; Fuloria, M. Crib scores as a tool for assessing risk for the development of pulmonary hypertension in extremely preterm infants with bronchopulmonary dysplasia. Am. J. Perinatol. 2015, 32, 1031–1037. [Google Scholar] [PubMed]
- Yallapragada, S.G.; Mestan, K.K.; Palac, H.; Porta, N.; Gotteiner, N.; Hamvas, A.; Grobman, W.; Ernst, L.M. Placental villous vascularity is decreased in premature infants with bronchopulmonary dysplasia-associated pulmonary hypertension. Pediatr. Dev. Pathol. 2016, 19, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Kulik, T.J.; Rhein, L.M.; Mullen, M.P. Pulmonary arterial hypertension in infants with chronic lung disease: Will we ever understand it? J. Pediatr. 2010, 157, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Krishnamurthy, M.B.; O’Heney, J.L.; Paul, E.; Sehgal, A. Sildenafil therapy in bronchopulmonary dysplasia-associated pulmonary hypertension: A retrospective study of efficacy and safety. Eur. J. Pediatr. 2015, 174, 1109–1115. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, J.; Zhao, L.; Wang, Y.; Liu, J.; Shi, L.; Xu, M.; Wang, C. Sildenafil inhibits human pulmonary artery smooth muscle cell proliferation by decreasing capacitative Ca2+ entry. J. Pharmacol. Sci. 2008, 108, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Backes, C.H.; Reagan, P.B.; Smith, C.V.; Jadcherla, S.R.; Slaughter, J.L. Sildenafil treatment of infants with bronchopulmonary dysplasia-associated pulmonary hypertension. Hosp. Pediatr. 2016, 6, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Meau-Petit, V.; Thouvenin, G.; Guillemot-Lambert, N.; Champion, V.; Tillous-Borde, I.; Flamein, F.; de Saint Blanquat, L.; Essouri, S.; Guilbert, J.; Nathan, N.; et al. Bronchopulmonary dysplasia-associated pulmonary arterial hypertension of very preterm infants. Arch. Pediatr. 2013, 20, 44–53. [Google Scholar] [CrossRef] [PubMed]
Gestational Age | <32 wk | ≥32 wk |
---|---|---|
Time point of assessment | 36 wk PMA or discharge to home, whichever comes first | >28 d but <56 d postnatal age or discharge to home, whichever comes first |
Treatment with oxygen > 21% for at least 28 d plus | ||
Mild BPD | Breathing room air at 36 wk PMA or discharge, whichever comes first | Breathing room air by 56 d postnatal age or discharge, whichever comes first |
Moderate BPD | Need * for <30% oxygen at 36 wk PMA or discharge, whichever comes first | Need * for <30% oxygen at 56 d postnatal age or discharge, whichever comes first |
Severe BPD | Need * for ≥30% oxygen and/or positive pressure, (PPV or NCPAP) at 36 wk PMA or discharge, whichever comes first | Need * for ≥30% oxygen and/or positive pressure (PPV or NCPAP) at 56 d postnatal age or discharge, whichever comes first |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davidson, L.M.; Berkelhamer, S.K. Bronchopulmonary Dysplasia: Chronic Lung Disease of Infancy and Long-Term Pulmonary Outcomes. J. Clin. Med. 2017, 6, 4. https://doi.org/10.3390/jcm6010004
Davidson LM, Berkelhamer SK. Bronchopulmonary Dysplasia: Chronic Lung Disease of Infancy and Long-Term Pulmonary Outcomes. Journal of Clinical Medicine. 2017; 6(1):4. https://doi.org/10.3390/jcm6010004
Chicago/Turabian StyleDavidson, Lauren M., and Sara K. Berkelhamer. 2017. "Bronchopulmonary Dysplasia: Chronic Lung Disease of Infancy and Long-Term Pulmonary Outcomes" Journal of Clinical Medicine 6, no. 1: 4. https://doi.org/10.3390/jcm6010004
APA StyleDavidson, L. M., & Berkelhamer, S. K. (2017). Bronchopulmonary Dysplasia: Chronic Lung Disease of Infancy and Long-Term Pulmonary Outcomes. Journal of Clinical Medicine, 6(1), 4. https://doi.org/10.3390/jcm6010004