Myopathology of Adult and Paediatric Mitochondrial Diseases
Abstract
:1. Introduction
2. Laboratory Investigations and the Rationale for Muscle Biopsy
3. Technical Considerations
4. Histochemical Assays for Detecting RC Defects
5. Canonical Pathological Features
5.1. Ragged Red Fibres (RRF)
5.2. COX-Negative Fibres
5.3. SDH Deficiency
6. Associated Pathological Features
7. Myopathology in Novel Mitochondrial Diseases
8. Vascular Pathology
9. Ultrastructure: Pathological Features and Role in Diagnostics
10. Secondary Mitochondrial Abnormalities
11. Myopathology of Paediatric mtD
12. Consensus Diagnostic Criteria
13. Recent Advances in Diagnostic and Research Tools: Immunoassays, Transcriptomics and Biomarkers
14. Conclusions
Acknowledgments
Conflicts of Interest
References
- Alston, C.L.; Rocha, M.C.; Lax, N.Z.; Turnbull, D.M.; Taylor, R.W. The genetics and pathology of mitochondrial disease. J. Pathol. 2017, 241, 236–250. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Calvo, S.E.; Clauser, K.R.; Mootha, V.K. MitoCarta2.0: An updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 2016, 44, D1251–D1257. [Google Scholar] [CrossRef] [PubMed]
- Lightowlers, R.N.; Taylor, R.W.; Turnbull, D.M. Mutations causing mitochondrial disease: What is new and what challenges remain? Science 2015, 349, 1494–1499. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, G.; Chinnery, P.F. Diagnosis and treatment of mitochondrial myopathies. Ann. Med. 2013, 45, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 1797, 113–128. [Google Scholar] [CrossRef] [PubMed]
- DiMauro, S.; Hirano, M. Mitochondrial encephalomyopathies: An update. Neuromuscul. Disord. 2005, 15, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.J.; Scaglia, F.; Graham, B.H.; Craigen, W.J. Current molecular diagnostic algorithm for mitochondrial disorders. Mol. Genet. Metab. 2010, 100, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Triepels, R.H.; van den Heuvel, L.P.; Loeffen, J.L.; Buskens, C.A.; Smeets, R.J.; Rubio Gozalbo, M.E.; Budde, S.M.; Mariman, E.C.; Wijburg, F.A.; Barth, P.G.; et al. Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Ann. Neurol. 1999, 45, 787–790. [Google Scholar] [CrossRef]
- Debray, F.G.; Mitchell, G.A.; Allard, P.; Robinson, B.H.; Hanley, J.A.; Lambert, M. Diagnostic accuracy of blood lactate-to-pyruvate molar ratio in the differential diagnosis of congenital lactic acidosis. Clin. Chem. 2007, 53, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J. Cerebrospinal-fluid lactate in adult mitochondriopathy with and without encephalopathy. Acta Med. Austriaca 2001, 28, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Haas, R.H.; Parikh, S.; Falk, M.J.; Saneto, R.P.; Wolf, N.I.; Darin, N.; Wong, L.J.; Cohen, B.H.; Naviaux, R.K.; Mitochondrial Medicine Society’s Committee on Diagnosis. The in-depth evaluation of suspected mitochondrial disease. Mol. Genet. Metab. 2008, 94, 16–37. [Google Scholar] [CrossRef] [PubMed]
- Haas, R.H.; Parikh, S.; Falk, M.J.; Saneto, R.P.; Wolf, N.I.; Darin, N.; Cohen, B.H. Mitochondrial disease: A practical approach for primary care physicians. Pediatrics 2007, 120, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Milone, M.; Wong, L.J. Diagnosis of mitochondrial myopathies. Mol. Genet. Metab. 2013, 110, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Gropman, A.L. Neuroimaging in mitochondrial disorders. Neurotherapeutics 2013, 10, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Dinopoulos, A.; Cecil, K.M.; Schapiro, M.B.; Papadimitriou, A.; Hadjigeorgiou, G.M.; Wong, B.; de Grauw, T.; Egelhoff, J.C. Brain MRI and proton MRS findings in infants and children with respiratory chain defects. Neuropediatrics 2005, 36, 290–301. [Google Scholar] [CrossRef] [PubMed]
- Saneto, R.P.; Friedman, S.D.; Shaw, D.W. Neuroimaging of mitochondrial disease. Mitochondrion 2008, 8, 396–413. [Google Scholar] [CrossRef] [PubMed]
- Brockmann, K.; Bjornstad, A.; Dechent, P.; Korenke, C.G.; Smeitink, J.; Trijbels, J.M.; Athanassopoulos, S.; Villagran, R.; Skjeldal, O.H.; Wilichowski, E.; et al. Succinate in dystrophic white matter: A proton magnetic resonance spectroscopy finding characteristic for complex II deficiency. Ann. Neurol. 2002, 52, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Simon, N.G.; Noto, Y.I.; Zaidman, C.M. Skeletal muscle imaging in neuromuscular disease. J. Clin. Neurosci. 2016, 33, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Delonlay, P.; Rötig, A.; Sarnat, H.B. Respiratory chain deficiencies. Handb. Clin. Neurol. 2013, 113, 1651–1666. [Google Scholar] [PubMed]
- Sarnat, H.B.; Marín-García, J. Pathology of mitochondrial encephalomyopathies. Can. J. Neurol. Sci. 2005, 32, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Bourgeois, J.M.; Tarnopolsky, M.A. Pathology of skeletal muscle in mitochondrial disorders. Mitochondrion 2004, 4, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Bernier, F.P.; Boneh, A.; Dennett, X.; Chow, C.W.; Cleary, M.A.; Thorburn, D.R. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology 2002, 59, 1406–1411. [Google Scholar] [CrossRef] [PubMed]
- Wolf, N.I.; Smeitink, J.A. Mitochondrial disorders: A proposal for consensus diagnostic criteria in infants and children. Neurology 2002, 59, 1402–1405. [Google Scholar] [CrossRef] [PubMed]
- Morava, E.; van den Heuvel, L.; Hol, F.; de Vries, M.C.; Hogeveen, M.; Rodenburg, R.J.; Smeitink, J.A. Mitochondrial disease criteria: Diagnostic applications in children. Neurology 2006, 67, 1823–1826. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.-J.C. Biochemical and Molecular Methods for the Study of Mitochondrial Disorders; Springer: New York, NY, USA, 2013; pp. 27–45. [Google Scholar]
- Van den Heuvel, L.P.; Smeitink, J.A.; Rodenburg, R.J. Biochemical examination of fibroblasts in the diagnosis and research of oxidative phosphorylation (OXPHOS) defects. Mitochondrion 2004, 4, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, D.R.; Smeitink, J. Diagnosis of mitochondrial disorders: Clinical and biochemical approach. J. Inherit. Metab. Dis. 2001, 24, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Dimmock, D.; Tang, L.Y.; Schmitt, E.S.; Wong, L.J. Quantitative evaluation of the mitochondrial DNA depletion syndrome. Clin. Chem. 2010, 56, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- DiMauro, S. Mitochondrial diseases. Biochim. Biophys. Acta 2004, 1658, 80–88. [Google Scholar] [CrossRef] [PubMed]
- DiMauro, S.; Schon, E.A.; Carelli, V.; Hirano, M. The clinical maze of mitochondrial neurology. Nat. Rev. Neurol. 2013, 9, 429–444. [Google Scholar] [CrossRef] [PubMed]
- Carry, M.R.; Ringel, S.P. Structure and histochemistry of human extraocular muscle. Bull. Soc. Belge Ophtalmol. 1989, 237, 303–319. [Google Scholar] [PubMed]
- Yu-Wai-Man, P.; Lai-Cheong, J.; Borthwick, G.M.; He, L.; Taylor, G.A.; Greaves, L.C.; Taylor, R.W.; Griffiths, P.G.; Turnbull, D.M. Somatic mitochondrial DNA deletions accumulate to high levels in aging human extraocular muscles. Investig. Ophthalmol. Vis. Sci. 2010, 51, 3347–3353. [Google Scholar] [CrossRef] [PubMed]
- Marín-García, J.; Goldenthal, M.J.; Sarnat, H.B. Probing striated muscle mitochondrial phenotype in neuromuscular disorders. Pediatr. Neurol. 2003, 29, 26–33. [Google Scholar] [CrossRef]
- Bourgeron, T.; Chretien, D.; Rötig, A.; Munnich, A.; Rustin, P. Fate and expression of the deleted mitochondrial DNA differ between human heteroplasmic skin fibroblast and Epstein-Barr virus-transformed lymphocyte cultures. J. Biol. Chem. 1993, 268, 19369–19376. [Google Scholar] [PubMed]
- Dubowitz, V.; Sewry, C.A.; Oldfors, A.; Lane, R.J.M. Muscle Biopsy: A Practical Approach, 4th ed.; Saunders: Oxford, UK, 2013; p. 1. Available online: https://www.clinicalkey.com/dura/browse/bookChapter/3-s2.0-C2009063539X (accessed on 4 July 2017).
- Rotig, A. Genetic bases of mitochondrial respiratory chain disorders. Diabetes Metab. 2010, 36, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Smeitink, J.A.M.; Sengers, R.C.A.; Trijbels, J.M.F. Oxidative phosphorylation in Health and Disease; Landes Bioscience/Eurekah.com: Georgetown, TX, USA; Great Britain, UK, 2004. [Google Scholar]
- Blanco, C.E.; Sieck, G.C.; Edgerton, V.R. Quantitative histochemical determination of succinic dehydrogenase activity in skeletal muscle fibres. Histochem. J. 1988, 20, 230–243. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Lima, F. Cytochrome Oxidase in Neuronal Metabolism and Alzheimer’s Disease; Plenum Press: New York, NY, USA, 1998. [Google Scholar]
- Old, S.L.; Johnson, M.A. Methods of microphotometric assay of succinate dehydrogenase and cytochrome c oxidase activities for use on human skeletal muscle. Histochem. J. 1989, 21, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Seligman, A.M.; Karnovsky, M.J.; Wasserkrug, H.L.; Hanker, J.S. Nondroplet ultrastructural demonstration of cytochrome oxidase activity with a polymerizing osmiophilic reagent, diaminobenzidine (DAB). J. Cell Biol. 1968, 38, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, D.A.; Blakely, E.L.; Johnson, M.A.; Ince, P.G.; Borthwick, G.M.; Turnbull, D.M. Cytochrome c oxidase deficient cells accumulate in the hippocampus and choroid plexus with age. Neurobiol. Aging 2001, 22, 265–272. [Google Scholar] [CrossRef]
- Ross, J.M. Visualization of mitochondrial respiratory function using cytochrome c oxidase/succinate dehydrogenase (COX/SDH) double-labeling histochemistry. J. Vis. Exp. 2011, 57, e3266. [Google Scholar] [CrossRef] [PubMed]
- Larsson, N.G.; Oldfors, A. Mitochondrial myopathies. Acta Physiol. Scand. 2001, 171, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Filosto, M.; Tomelleri, G.; Tonin, P.; Scarpelli, M.; Vattemi, G.; Rizzuto, N.; Padovani, A.; Simonati, A. Neuropathology of mitochondrial diseases. Biosci. Rep. 2007, 27, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Siciliano, G.; Volpi, L.; Piazza, S.; Ricci, G.; Mancuso, M.; Murri, L. Functional diagnostics in mitochondrial diseases. Biosci. Rep. 2007, 27, 53–67. [Google Scholar] [CrossRef] [PubMed]
- Schon, E.A.; DiMauro, S.; Hirano, M. Human mitochondrial DNA: Roles of inherited and somatic mutations. Nat. Rev. Genet. 2012, 13, 878–890. [Google Scholar] [CrossRef] [PubMed]
- Shy, G.M.; Gonatas, N.K. Human myopathy with giant abnormal mitochondria. Science 1964, 145, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Shy, G.M.; Gonatas, N.K.; Perez, M. Two childhood myopathies with abnormal mitochondria. I. Megaconial myopathy. II. Pleoconial myopathy. Brain 1966, 89, 133–158. [Google Scholar] [CrossRef] [PubMed]
- Engel, W.K.; Cunningham, G.G. Rapid examination of muscle tissue. An improved trichrome method for fresh-frozen biopsy sections. Neurology 1963, 13, 919–923. [Google Scholar] [CrossRef] [PubMed]
- Rifai, Z.; Welle, S.; Kamp, C.; Thornton, C.A. Ragged red fibers in normal aging and inflammatory myopathy. Ann. Neurol. 1995, 37, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Nishigaki, Y.; Tadesse, S.; Bonilla, E.; Shungu, D.; Hersh, S.; Keats, B.J.; Berlin, C.I.; Goldberg, M.F.; Vockley, J.; DiMauro, S.; et al. A novel mitochondrial tRNA(Leu(UUR)) mutation in a patient with features of MERRF and Kearns-Sayre syndrome. Neuromuscul. Disord. 2003, 13, 334–340. [Google Scholar] [CrossRef]
- Larsson, N.G.; Wang, J.; Wilhelmsson, H.; Oldfors, A.; Rustin, P.; Lewandoski, M.; Barsh, G.S.; Clayton, D.A. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 1998, 18, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Quinzii, C.M.; DiMauro, S.; Hirano, M. Human coenzyme Q10 deficiency. Neurochem. Res. 2007, 32, 723–727. [Google Scholar] [CrossRef] [PubMed]
- El-Hattab, A.W.; Scaglia, F. Mitochondrial DNA depletion syndromes: Review and updates of genetic basis, manifestations, and therapeutic options. Neurotherapeutics 2013, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Matsuoka, T.; Goto, Y.; Nonaka, I. Cytochrome c oxidase activity is deficient in blood vessels of patients with myoclonus epilepsy with ragged-red fibers. Acta Neuropathol. 1993, 85, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Naini, A.; Kaufmann, P.; Shanske, S.; Engelstad, K.; De Vivo, D.C.; Schon, E.A. Hypocitrullinemia in patients with MELAS: An insight into the “MELAS paradox”. J. Neurol. Sci. 2005, 229–230, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, M.; Filosto, M.; Bonilla, E.; Hirano, M.; Shanske, S.; Vu, T.H.; DiMauro, S. Mitochondrial myopathy of childhood associated with mitochondrial DNA depletion and a homozygous mutation (T77M) in the TK2 gene. Arch. Neurol. 2003, 60, 1007–1009. [Google Scholar] [CrossRef] [PubMed]
- Elson, J.L.; Samuels, D.C.; Johnson, M.A.; Turnbull, D.M.; Chinnery, P.F. The length of cytochrome c oxidase-negative segments in muscle fibres in patients with mtDNA myopathy. Neuromuscul. Disord. 2002, 12, 858–864. [Google Scholar] [CrossRef]
- Sciacco, M.; Bonilla, E.; Schon, E.A.; DiMauro, S.; Moraes, C.T. Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum. Mol. Genet. 1994, 3, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Schon, E.A.; Bonilla, E.; DiMauro, S. Mitochondrial DNA mutations and pathogenesis. J. Bioenerg. Biomembr. 1997, 29, 131–149. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.A.; Bindoff, L.A.; Turnbull, D.M. Cytochrome c oxidase activity in single muscle fibers: Assay techniques and diagnostic applications. Ann. Neurol. 1993, 33, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, M.; Miyatake, T.; Attardi, G. Heteroplasmic mitochondrial tRNA(Lys) mutation and its complementation in MERRF patient-derived mitochondrial transformants. Muscle Nerve 1995, 3, S95–S101. [Google Scholar] [CrossRef] [PubMed]
- Müller-Höcker, J.; Seibel, P.; Schneiderbanger, K.; Kadenbach, B. Different in situ hybridization patterns of mitochondrial DNA in cytochrome c oxidase-deficient extraocular muscle fibres in the elderly. Virchows Arch. A 1993, 422, 7–15. [Google Scholar] [CrossRef]
- Taylor, R.W.; Schaefer, A.M.; Barron, M.J.; McFarland, R.; Turnbull, D.M. The diagnosis of mitochondrial muscle disease. Neuromuscul. Disord. 2004, 14, 237–245. [Google Scholar] [CrossRef] [PubMed]
- DiMauro, S.; Nicholson, J.F.; Hays, A.P.; Eastwood, A.B.; Papadimitriou, A.; Koenigsberger, R.; DeVivo, D.C. Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase deficiency. Ann. Neurol. 1983, 14, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Horvath, R.; Kemp, J.P.; Tuppen, H.A.; Hudson, G.; Oldfors, A.; Marie, S.K.; Moslemi, A.R.; Servidei, S.; Holme, E.; Shanske, S.; et al. Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain 2009, 132, 3165–3174. [Google Scholar] [CrossRef] [PubMed]
- Boczonadi, V.; Bansagi, B.; Horvath, R. Reversible infantile mitochondrial diseases. J. Inherit. Metab. Dis. 2015, 38, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Bresolin, N.; Zeviani, M.; Bonilla, E.; Miller, R.H.; Leech, R.W.; Shanske, S.; Nakagawa, M.; DiMauro, S. Fatal infantile cytochrome C oxidase deficiency: Decrease of immunologically detectable enzyme in muscle. Neurology 1985, 35, 802–812. [Google Scholar] [CrossRef] [PubMed]
- DiMauro, S.; Lombes, A.; Nakase, H.; Mita, S.; Fabrizi, G.M.; Tritschler, H.J.; Bonilla, E.; Miranda, A.F.; De Vivo, D.C.; Schon, E.A. Cytochrome c oxidase deficiency. Pediatr. Res. 1990, 28, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, L.C.; Sue, C.M.; Davidson, M.M.; Tanji, K.; Nishino, I.; Sadlock, J.E.; Krishna, S.; Walker, W.; Selby, J.; Glerum, D.M.; et al. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat. Genet. 1999, 23, 333–337. [Google Scholar] [PubMed]
- Alfadhel, M.; Lillquist, Y.P.; Waters, P.J.; Sinclair, G.; Struys, E.; McFadden, D.; Hendson, G.; Hyams, L.; Shoffner, J.; Vallance, H.D. Infantile cardioencephalopathy due to a COX15 gene defect: Report and review. Am. J. Med. Genet. A 2011, 155, 840–844. [Google Scholar] [CrossRef] [PubMed]
- Huigsloot, M.; Nijtmans, L.G.; Szklarczyk, R.; Baars, M.J.; van den Brand, M.A.; Hendriksfranssen, M.G.; van den Heuvel, L.P.; Smeitink, J.A.; Huynen, M.A.; Rodenburg, R.J. A mutation in C2orf64 causes impaired cytochrome c oxidase assembly and mitochondrial cardiomyopathy. Am. J. Hum. Genet. 2011, 88, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Trivedi, P.P.; Timbalia, S.A.; Griffin, A.T.; Rahn, J.J.; Chan, S.S.; Gohil, V.M. Copper supplementation restores cytochrome c oxidase assembly defect in a mitochondrial disease model of COA6 deficiency. Hum. Mol. Genet. 2014, 23, 3596–3606. [Google Scholar] [CrossRef] [PubMed]
- Kornblum, C.; Nicholls, T.J.; Haack, T.B.; Schöler, S.; Peeva, V.; Danhauser, K.; Hallmann, K.; Zsurka, G.; Rorbach, J.; Iuso, A.; et al. Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat. Genet. 2013, 45, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Ronchi, D.; Garone, C.; Bordoni, A.; Gutierrez Rios, P.; Calvo, S.E.; Ripolone, M.; Ranieri, M.; Rizzuti, M.; Villa, L.; Magri, F.; et al. Next-generation sequencing reveals DGUOK mutations in adult patients with mitochondrial DNA multiple deletions. Brain 2012, 135, 3404–3415. [Google Scholar] [CrossRef] [PubMed]
- Sue, C.M.; Karadimas, C.; Checcarelli, N.; Tanji, K.; Papadopoulou, L.C.; Pallotti, F.; Guo, F.L.; Shanske, S.; Hirano, M.; De Vivo, D.C.; et al. Differential features of patients with mutations in two COX assembly genes, SURF-1 and SCO2. Ann. Neurol. 2000, 47, 589–595. [Google Scholar] [CrossRef]
- Zhu, Z.; Yao, J.; Johns, T.; Fu, K.; De Bie, I.; Macmillan, C.; Cuthbert, A.P.; Newbold, R.F.; Wang, J.; Chevrette, M.; et al. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat. Genet. 1998, 20, 337–343. [Google Scholar] [PubMed]
- Teraoka, M.; Yokoyama, Y.; Ninomiya, S.; Inoue, C.; Yamashita, S.; Seino, Y. Two novel mutations of SURF1 in Leigh syndrome with cytochrome c oxidase deficiency. Hum. Genet. 1999, 105, 560–563. [Google Scholar] [CrossRef] [PubMed]
- Müller-Höcker, J.; Johannes, A.; Droste, M.; Kadenbach, B.; Pongratz, D.; Hübner, G. Fatal mitochondrial cardiomyopathy in Kearns-Sayre syndrome with deficiency of cytochrome-c-oxidase in cardiac and skeletal muscle. An enzymehistochemical—Ultra-immunocytochemical—Fine structural study in longterm frozen autopsy tissue. Virchows Arch. B 1986, 52, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Moslemi, A.R.; Selimovic, N.; Bergh, C.H.; Oldfors, A. Fatal dilated cardiomyopathy associated with a mitochondrial DNA deletion. Cardiology 2000, 94, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Tulinius, M.H.; Oldfors, A.; Holme, E.; Larsson, N.G.; Houshmand, M.; Fahleson, P.; Sigström, L.; Kristiansson, B. Atypical presentation of multisystem disorders in two girls with mitochondrial DNA deletions. Eur. J. Pediatr. 1995, 154, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Sparaco, M.; Schon, E.A.; DiMauro, S.; Bonilla, E. Myoclonic epilepsy with ragged-red fibers (MERRF): An immunohistochemical study of the brain. Brain Pathol. 1995, 5, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.; Wilson, J.N.; Taylor, L.; Brierley, E.; Johnson, M.A.; Turnbull, D.M.; Bindoff, L.A. A new mtDNA mutation showing accumulation with time and restriction to skeletal muscle. Am. J. Hum. Genet. 1997, 60, 373–380. [Google Scholar] [PubMed]
- Chinnery, P.F.; Howel, D.; Turnbull, D.M.; Johnson, M.A. Clinical progression of mitochondrial myopathy is associated with the random accumulation of cytochrome c oxidase negative skeletal muscle fibres. J. Neurol. Sci. 2003, 211, 63–66. [Google Scholar] [CrossRef]
- Chinnery, P.F.; Samuels, D.C. Relaxed replication of mtDNA: A model with implications for the expression of disease. Am. J. Hum. Genet. 1999, 64, 1158–1165. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Nonaka, I. Skeletal muscle pathology in chronic progressive external ophthalmoplegia with ragged-red fibers. Acta Neuropathol. 1988, 76, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, T.; Goto, Y.; Yoneda, M.; Nonaka, I. Muscle histopathology in myoclonus epilepsy with ragged-red fibers (MERRF). J. Neurol. Sci. 1991, 106, 193–198. [Google Scholar] [CrossRef]
- Bogenhagen, D.; Clayton, D.A. Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell 1977, 11, 719–727. [Google Scholar] [CrossRef]
- Murphy, J.L.; Blakely, E.L.; Schaefer, A.M.; He, L.; Wyrick, P.; Haller, R.G.; Taylor, R.W.; Turnbull, D.M.; Taivassalo, T. Resistance training in patients with single, large-scale deletions of mitochondrial DNA. Brain 2008, 131, 2832–2840. [Google Scholar] [CrossRef] [PubMed]
- Durham, S.E.; Bonilla, E.; Samuels, D.C.; DiMauro, S.; Chinnery, P.F. Mitochondrial DNA copy number threshold in mtDNA depletion myopathy. Neurology 2005, 65, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.L.; Ratnaike, T.E.; Shang, E.; Falkous, G.; Blakely, E.L.; Alston, C.L.; Taivassalo, T.; Haller, R.G.; Taylor, R.W.; Turnbull, D.M. Cytochrome c oxidase-intermediate fibres: Importance in understanding the pathogenesis and treatment of mitochondrial myopathy. Neuromuscul. Disord. 2012, 22, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.O.; Hwang, J.H.; Cho, E.M.; Jeong, E.H.; Hyun, Y.S.; Jeon, H.J.; Seong, K.M.; Cho, N.S.; Chung, K.W. Mutational analysis of whole mitochondrial DNA in patients with MELAS and MERRF diseases. Exp. Mol. Med. 2010, 42, 446–455. [Google Scholar] [CrossRef] [PubMed]
- De Vivo, D.C. The expanding clinical spectrum of mitochondrial diseases. Brain Dev. 1993, 15, 1–22. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A.; Baker, S.K.; Myint, T.; Maxner, C.E.; Robitaille, J.; Robinson, B.H. Clinical variability in maternally inherited leber hereditary optic neuropathy with the G14459A mutation. Am. J. Med. Genet. A 2004, 124, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Zierz, C.M.; Joshi, P.R.; Zierz, S. Frequencies of myohistological mitochondrial changes in patients with mitochondrial DNA deletions and the common m.3243A > G point mutation. Neuropathology 2015, 35, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Goto, Y.; Koga, Y.; Horai, S.; Nonaka, I. Chronic progressive external ophthalmoplegia: A correlative study of mitochondrial DNA deletions and their phenotypic expression in muscle biopsies. J. Neurol. Sci. 1990, 100, 63–69. [Google Scholar] [CrossRef]
- Fu, K.; Hartlen, R.; Johns, T.; Genge, A.; Karpati, G.; Shoubridge, E.A. A novel heteroplasmic tRNAleu(CUN) mtDNA point mutation in a sporadic patient with mitochondrial encephalomyopathy segregates rapidly in skeletal muscle and suggests an approach to therapy. Hum. Mol. Genet. 1996, 5, 1835–1840. [Google Scholar] [CrossRef] [PubMed]
- Moraes, C.T.; DiMauro, S.; Zeviani, M.; Lombes, A.; Shanske, S.; Miranda, A.F.; Nakase, H.; Bonilla, E.; Werneck, L.C.; Servidei, S. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N. Engl. J. Med. 1989, 320, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, A.S.; Bayley, J.P. The role of complex II in disease. Biochim. Biophys. Acta 2013, 1827, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Alston, C.L.; Davison, J.E.; Meloni, F.; van der Westhuizen, F.H.; He, L.; Hornig-Do, H.T.; Peet, A.C.; Gissen, P.; Goffrini, P.; Ferrero, I.; et al. Recessive germline SDHA and SDHB mutations causing leukodystrophy and isolated mitochondrial complex II deficiency. J. Med. Genet. 2012, 49, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.B.; Nuoffer, J.M.; Hahn, D.; Prokisch, H.; Haberberger, B.; Gautschi, M.; Häberli, A.; Gallati, S.; Schaller, A. Mutations in SDHD lead to autosomal recessive encephalomyopathy and isolated mitochondrial complex II deficiency. J. Med. Genet. 2014, 51, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, D.; Goffrini, P.; Uziel, G.; Horvath, R.; Klopstock, T.; Lochmüller, H.; D’Adamo, P.; Gasparini, P.; Strom, T.M.; Prokisch, H.; et al. SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat. Genet. 2009, 41, 654–656. [Google Scholar] [CrossRef] [PubMed]
- Birch-Machin, M.A.; Taylor, R.W.; Cochran, B.; Ackrell, B.A.; Turnbull, D.M. Late-onset optic atrophy, ataxia, and myopathy associated with a mutation of a complex II gene. Ann. Neurol. 2000, 48, 330–335. [Google Scholar] [CrossRef]
- Vladutiu, G.D.; Heffner, R.R. Succinate dehydrogenase deficiency. Arch. Pathol. Lab. Med. 2000, 124, 1755–1758. [Google Scholar] [PubMed]
- Haller, R.G.; Henriksson, K.G.; Jorfeldt, L.; Hultman, E.; Wibom, R.; Sahlin, K.; Areskog, N.H.; Gunder, M.; Ayyad, K.; Blomqvist, C.G. Deficiency of skeletal muscle succinate dehydrogenase and aconitase. Pathophysiology of exercise in a novel human muscle oxidative defect. J. Clin. Investig. 1991, 88, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Sanaker, P.S.; Toompuu, M.; Hogan, V.E.; He, L.; Tzoulis, C.; Chrzanowska-Lightowlers, Z.M.; Taylor, R.W.; Bindoff, L.A. Differences in RNA processing underlie the tissue specific phenotype of ISCU myopathy. Biochim. Biophys. Acta 2010, 1802, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Nance, J.R.; Mammen, A.L. Diagnostic evaluation of rhabdomyolysis. Muscle Nerve 2015, 51, 793–810. [Google Scholar] [CrossRef] [PubMed]
- Ogasahara, S.; Engel, A.G.; Frens, D.; Mack, D. Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc. Natl. Acad. Sci. USA 1989, 86, 2379–2382. [Google Scholar] [CrossRef] [PubMed]
- Sobreira, C.; Hirano, M.; Shanske, S.; Keller, R.K.; Haller, R.G.; Davidson, E.; Santorelli, F.M.; Miranda, A.F.; Bonilla, E.; Mojon, D.S.; et al. Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology 1997, 48, 1238–1243. [Google Scholar] [CrossRef] [PubMed]
- Di Giovanni, S.; Mirabella, M.; Spinazzola, A.; Crociani, P.; Silvestri, G.; Broccolini, A.; Tonali, P.; Di Mauro, S.; Servidei, S. Coenzyme Q10 reverses pathological phenotype and reduces apoptosis in familial CoQ10 deficiency. Neurology 2001, 57, 515–518. [Google Scholar] [CrossRef] [PubMed]
- McFarland, R.; Taylor, R.W.; Chinnery, P.F.; Howell, N.; Turnbull, D.M. A novel sporadic mutation in cytochrome c oxidase subunit II as a cause of rhabdomyolysis. Neuromuscul. Disord. 2004, 14, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Marotta, R.; Chin, J.; Kirby, D.M.; Chiotis, M.; Cook, M.; Collins, S.J. Novel single base pair COX III subunit deletion of mitochondrial DNA associated with rhabdomyolysis. J. Clin. Neurosci. 2011, 18, 290–292. [Google Scholar] [CrossRef] [PubMed]
- Keightley, J.A.; Hoffbuhr, K.C.; Burton, M.D.; Salas, V.M.; Johnston, W.S.; Penn, A.M.; Buist, N.R.; Kennaway, N.G. A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat. Genet. 1996, 12, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Andreu, A.L.; Hanna, M.G.; Reichmann, H.; Bruno, C.; Penn, A.S.; Tanji, K.; Pallotti, F.; Iwata, S.; Bonilla, E.; Lach, B.; et al. Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N. Engl. J. Med. 1999, 341, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Karadimas, C.L.; Greenstein, P.; Sue, C.M.; Joseph, J.T.; Tanji, K.; Haller, R.G.; Taivassalo, T.; Davidson, M.M.; Shanske, S.; Bonilla, E.; et al. Recurrent myoglobinuria due to a nonsense mutation in the COX I gene of mitochondrial DNA. Neurology 2000, 55, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Emmanuele, V.; Sotiriou, E.; Shirazi, M.; Tanji, K.; Haller, R.G.; Heinicke, K.; Bosch, P.E.; Hirano, M.; DiMauro, S. Recurrent myoglobinuria in a sporadic patient with a novel mitochondrial DNA tRNA(Ile) mutation. J. Neurol. Sci. 2011, 303, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Blum, S.; Robertson, T.; Klingberg, S.; Henderson, R.D.; McCombe, P. Atypical clinical presentations of the A3243G mutation, usually associated with MELAS. Intern. Med. J. 2011, 41, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Vissing, C.R.; Duno, M.; Olesen, J.H.; Rafiq, J.; Risom, L.; Christensen, E.; Wibrand, F.; Vissing, J. Recurrent myoglobinuria and deranged acylcarnitines due to a mutation in the mtDNA MT-CO2 gene. Neurology 2013, 80, 1908–1910. [Google Scholar] [CrossRef] [PubMed]
- Béhin, A.; Jardel, C.; Claeys, K.G.; Fagart, J.; Louha, M.; Romero, N.B.; Laforêt, P.; Eymard, B.; Lombès, A. Adult cases of mitochondrial DNA depletion due to TK2 defect: An expanding spectrum. Neurology 2012, 78, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Paradas, C.; Gutiérrez Ríos, P.; Rivas, E.; Carbonell, P.; Hirano, M.; DiMauro, S. TK2 mutation presenting as indolent myopathy. Neurology 2013, 80, 504–506. [Google Scholar] [CrossRef] [PubMed]
- Tulinius, M.; Oldfors, A. Neonatal muscular manifestations in mitochondrial disorders. Semin. Fetal Neonatal Med. 2011, 16, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Kollberg, G.; Darin, N.; Benan, K.; Moslemi, A.R.; Lindal, S.; Tulinius, M.; Oldfors, A.; Holme, E. A novel homozygous RRM2B missense mutation in association with severe mtDNA depletion. Neuromuscul. Disord. 2009, 19, 147–150. [Google Scholar] [CrossRef] [PubMed]
- Morava, E.; Steuerwald, U.; Carrozzo, R.; Kluijtmans, L.A.; Joensen, F.; Santer, R.; Dionisi-Vici, C.; Wevers, R.A. Dystonia and deafness due to SUCLA2 defect; Clinical course and biochemical markers in 16 children. Mitochondrion 2009, 9, 438–442. [Google Scholar] [CrossRef] [PubMed]
- Köller, H.; Stoll, G.; Neuen-Jacob, E. Postpartum manifestation of a necrotising lipid storage myopathy associated with muscle carnitine deficiency. J. Neurol. Neurosurg. Psychiatry 1998, 64, 407–408. [Google Scholar] [CrossRef] [PubMed]
- Laforêt, P.; Vianey-Saban, C. Disorders of muscle lipid metabolism: Diagnostic and therapeutic challenges. Neuromuscul. Disord. 2010, 20, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Mitsuhashi, S.; Nishino, I. Megaconial congenital muscular dystrophy due to loss-of-function mutations in choline kinase β. Curr. Opin. Neurol. 2013, 26, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez Ríos, P.; Kalra, A.A.; Wilson, J.D.; Tanji, K.; Akman, H.O.; Area Gómez, E.; Schon, E.A.; DiMauro, S. Congenital megaconial myopathy due to a novel defect in the choline kinase Beta gene. Arch. Neurol. 2012, 69, 657–661. [Google Scholar] [PubMed]
- Schon, E.A.; Area-Gomez, E. Mitochondria-associated ER membranes in Alzheimer disease. Mol. Cell Neurosci. 2013, 55, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Logan, C.V.; Szabadkai, G.; Sharpe, J.A.; Parry, D.A.; Torelli, S.; Childs, A.M.; Kriek, M.; Phadke, R.; Johnson, C.A.; Roberts, N.Y.; et al. Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat. Genet. 2014, 46, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Gal, A.; Balicza, P.; Weaver, D.; Naghdi, S.; Joseph, S.K.; Várnai, P.; Gyuris, T.; Horváth, A.; Nagy, L.; Seifert, E.L.; et al. MSTO1 is a cytoplasmic pro-mitochondrial fusion protein, whose mutation induces myopathy and ataxia in humans. EMBO Mol. Med. 2017. [Google Scholar] [CrossRef] [PubMed]
- Nasca, A.; Scotton, C.; Zaharieva, I.; Neri, M.; Selvatici, R.; Magnusson, O.T.; Gal, A.; Weaver, D.; Rossi, R.; Armaroli, A.; et al. Recessive mutations in MSTO1 cause mitochondrial dynamics impairment, leading to myopathy and ataxia. Hum. Mutat. 2017. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Zarrouk-Mahjoub, S. Mitochondrial vasculopathy. World J. Cardiol. 2016, 8, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Tay, S.H.; Nordli, D.R.; Bonilla, E.; Null, E.; Monaco, S.; Hirano, M.; DiMauro, S. Aortic rupture in mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes. Arch. Neurol. 2006, 63, 281–283. [Google Scholar] [CrossRef] [PubMed]
- Coquet, M.; Fontan, D.; Vital, C.; Tudesq, N.; Baronnet, R. Muscle and brain biopsy in a case of mitochondrial encephalomyopathy. Demonstration of a mitochondrial vasculopathy. Ann. Pathol. 1990, 10, 181–186. [Google Scholar] [PubMed]
- Kaufmann, P.; Engelstad, K.; Wei, Y.; Kulikova, R.; Oskoui, M.; Sproule, D.M.; Battista, V.; Koenigsberger, D.Y.; Pascual, J.M.; Shanske, S.; et al. Natural history of MELAS associated with mitochondrial DNA m.3243A > G genotype. Neurology 2011, 77, 1965–1971. [Google Scholar] [CrossRef] [PubMed]
- Lax, N.Z.; Pienaar, I.S.; Reeve, A.K.; Hepplewhite, P.D.; Jaros, E.; Taylor, R.W.; Kalaria, R.N.; Turnbull, D.M. Microangiopathy in the cerebellum of patients with mitochondrial DNA disease. Brain 2012, 135, 1736–1750. [Google Scholar] [CrossRef] [PubMed]
- Shiva, S.; Brookes, P.S.; Patel, R.P.; Anderson, P.G.; Darley-Usmar, V.M. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 2001, 98, 7212–7217. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.; Darley-Usmar, V.; Wilson, M.T. Inhibition of cytochrome c oxidase in turnover by nitric oxide: Mechanism and implications for control of respiration. Biochem. J. 1995, 312, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Taivassalo, T.; Ayyad, K.; Haller, R.G. Increased capillaries in mitochondrial myopathy: Implications for the regulation of oxygen delivery. Brain 2012, 135, 53–61. [Google Scholar] [CrossRef] [PubMed]
- DiMauro, S.; Schon, E.A. Mitochondrial disorders in the nervous system. Ann. Rev. Neurosci. 2008, 31, 91–123. [Google Scholar] [CrossRef] [PubMed]
- Vogel, H. Mitochondrial myopathies and the role of the pathologist in the molecular era. J. Neuropathol. Exp. Neurol. 2001, 60, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Gilkerson, R.W.; Margineantu, D.H.; Capaldi, R.A.; Selker, J.M. Mitochondrial DNA depletion causes morphological changes in the mitochondrial reticulum of cultured human cells. FEBS Lett. 2000, 474, 1–4. [Google Scholar] [CrossRef]
- Sarnat, H.B.; Flores-Sarnat, L.; Casey, R.; Scott, P.; Khan, A. Endothelial ultrastructural alterations of intramuscular capillaries in infantile mitochondrial cytopathies: “Mitochondrial angiopathy”. Neuropathology 2012, 32, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.E.; Ng, Y.S.; White, K.; Davey, T.; Mannella, C.; Falkous, G.; Feeney, C.; Schaefer, A.M.; McFarland, R.; Gorman, G.S.; et al. The Spectrum of mitochondrial ultrastructural defects in mitochondrial myopathy. Sci. Rep. 2016, 6, 30610. [Google Scholar] [CrossRef] [PubMed]
- Cotta, A.; Carvalho, E.; da-Cunha-Júnior, A.L.; Paim, J.F.; Navarro, M.M.; Valicek, J.; Menezes, M.M.; Nunes, S.V.; Xavier Neto, R.; Takata, R.I.; et al. Common recessive limb girdle muscular dystrophies differential diagnosis: Why and how? Arq. Neuropsiquiatr. 2014, 72, 721–734. [Google Scholar] [CrossRef] [PubMed]
- Sacconi, S.; Salviati, L.; Bourget, I.; Figarella, D.; Péréon, Y.; Lemmers, R.; van der Maarel, S.; Desnuelle, C. Diagnostic challenges in facioscapulohumeral muscular dystrophy. Neurology 2006, 67, 1464–1466. [Google Scholar] [CrossRef] [PubMed]
- Machado, P.M.; Dimachkie, M.M.; Barohn, R.J. Sporadic inclusion body myositis: New insights and potential therapy. Curr. Opin. Neurol. 2014, 27, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Rygiel, K.A.; Miller, J.; Grady, J.P.; Rocha, M.C.; Taylor, R.W.; Turnbull, D.M. Mitochondrial and inflammatory changes in sporadic inclusion body myositis. Neuropathol. Appl. Neurobiol. 2015, 41, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Alhatou, M.I.; Sladky, J.T.; Bagasra, O.; Glass, J.D. Mitochondrial abnormalities in dermatomyositis: Characteristic pattern of neuropathology. J. Mol. Histol. 2004, 35, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Mastaglia, F.L.; Needham, M. Update on toxic myopathies. Curr. Neurol. NeuroSci. Rep. 2012, 12, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Baumer, A.; Maxwell, R.J.; Linnane, A.W.; Nagley, P. Multiple mitochondrial DNA deletions in an elderly human individual. FEBS Lett. 1992, 297, 34–38. [Google Scholar] [CrossRef]
- Münscher, C.; Rieger, T.; Müller-Höcker, J.; Kadenbach, B. The point mutation of mitochondrial DNA characteristic for MERRF disease is found also in healthy people of different ages. FEBS Lett. 1993, 317, 27–30. [Google Scholar] [CrossRef]
- Müller-Höcker, J.; Schneiderbanger, K.; Stefani, F.H.; Kadenbach, B. Progressive loss of cytochrome c oxidase in the human extraocular muscles in ageing—A cytochemical-immunohistochemical study. Mutat. Res. 1992, 275, 115–124. [Google Scholar] [CrossRef]
- Cao, Z.; Wanagat, J.; McKiernan, S.H.; Aiken, J.M. Mitochondrial DNA deletion mutations are concomitant with ragged red regions of individual, aged muscle fibers: Analysis by laser-capture microdissection. Nucleic Acids Res. 2001, 29, 4502–4508. [Google Scholar] [CrossRef] [PubMed]
- Johnston, W.; Karpati, G.; Carpenter, S.; Arnold, D.; Shoubridge, E.A. Late-onset mitochondrial myopathy. Ann. Neurol. 1995, 37, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, A.; Ortez, C.; Jou, C.; O’Callaghan, M.; Ramos, F.; Garcia-Cazorla, A. Neuromuscular manifestations in mitochondrial diseases in children. Semin. Pediatr. Neurol. 2016, 23, 290–305. [Google Scholar] [CrossRef] [PubMed]
- Koenig, M.K. Presentation and diagnosis of mitochondrial disorders in children. Pediatr. Neurol. 2008, 38, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, A.C.; Bhatia, P.; Vento, J.M. Mitochondrial disease in childhood: Nuclear encoded. Neurotherapeutics 2013, 10, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Lamont, P.J.; Surtees, R.; Woodward, C.E.; Leonard, J.V.; Wood, N.W.; Harding, A.E. Clinical and laboratory findings in referrals for mitochondrial DNA analysis. Arch. Dis. Child. 1998, 79, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Koga, Y.; Ohtaki, E.; Nonaka, I. Focal cytochrome c oxidase deficiency in various neuromuscular diseases. J. Neurol. Sci. 1989, 91, 207–213. [Google Scholar] [CrossRef]
- Gire, C.; Girard, N.; Nicaise, C.; Einaudi, M.A.; Montfort, M.F.; Dejode, J.M. Clinical features and neuroradiological findings of mitochondrial pathology in six neonates. Child's Nerv Syst. 2002, 18, 621–628. [Google Scholar]
- Scaglia, F.; Towbin, J.A.; Craigen, W.J.; Belmont, J.W.; Smith, E.O.; Neish, S.R.; Ware, S.M.; Hunter, J.V.; Fernbach, S.D.; Vladutiu, G.D.; et al. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 2004, 114, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Miles, L.; Wong, B.L.; Dinopoulos, A.; Morehart, P.J.; Hofmann, I.A.; Bove, K.E. Investigation of children for mitochondriopathy confirms need for strict patient selection, improved morphological criteria, and better laboratory methods. Hum. Pathol. 2006, 37, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Miles, L.; Miles, M.V.; Horn, P.S.; Degrauw, T.J.; Wong, B.L.; Bove, K.E. Importance of muscle light microscopic mitochondrial subsarcolemmal aggregates in the diagnosis of respiratory chain deficiency. Hum. Pathol. 2012, 43, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S.; Bala, K.; Thakur, R.; Suri, V. Mitochondrial encephalomyopathies: Advances in understanding. Med. Sci. Monit. 2005, 11, RA238–RA246. [Google Scholar] [PubMed]
- McFarland, R.; Turnbull, D.M. Batteries not included: Diagnosis and management of mitochondrial disease. J. Intern. Med. 2009, 265, 210–228. [Google Scholar] [CrossRef] [PubMed]
- Walker, U.A.; Collins, S.; Byrne, E. Respiratory chain encephalomyopathies: A diagnostic classification. Eur. Neurol. 1996, 36, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Byrne, E.; Dennett, X. Respiratory chain failure in adult muscle fibres: Relationship with ageing and possible implications for the neuronal pool. Mutat. Res. 1992, 275, 125–131. [Google Scholar] [CrossRef]
- Müller-Höcker, J. Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of man without muscular disease: An age-related alteration. J. Neurol. Sci. 1990, 100, 14–21. [Google Scholar] [CrossRef]
- Sleigh, K.; Ball, S.; Hilton, D.A. Quantification of changes in muscle from individuals with and without mitochondrial disease. Muscle Nerve 2011, 43, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Patterson, K. Mitochondrial muscle pathology. Pediatr. Dev. Pathol. 2004, 7, 629–632. [Google Scholar] [CrossRef] [PubMed]
- De Meirleir, L.; Seneca, S.; Lissens, W.; De Clercq, I.; Eyskens, F.; Gerlo, E.; Smet, J.; Van Coster, R. Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12. J. Med. Genet. 2004, 41, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Van Coster, R.; Seneca, S.; Smet, J.; Van Hecke, R.; Gerlo, E.; Devreese, B.; Van Beeumen, J.; Leroy, J.G.; De Meirleir, L.; Lissens, W. Homozygous Gly555Glu mutation in the nuclear-encoded 70 kDa flavoprotein gene causes instability of the respiratory chain complex II. Am. J. Med. Genet. A 2003, 120, 13–18. [Google Scholar] [CrossRef] [PubMed]
- De Meirleir, L.; Seneca, S.; Damis, E.; Sepulchre, B.; Hoorens, A.; Gerlo, E.; García Silva, M.T.; Hernandez, E.M.; Lissens, W.; Van Coster, R. Clinical and diagnostic characteristics of complex III deficiency due to mutations in the BCS1L gene. Am. J. Med. Genet. A 2003, 121, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Antonicka, H.; Ogilvie, I.; Taivassalo, T.; Anitori, R.P.; Haller, R.G.; Vissing, J.; Kennaway, N.G.; Shoubridge, E.A. Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency. J. Biol. Chem. 2003, 278, 43081–43088. [Google Scholar] [CrossRef] [PubMed]
- Tiranti, V.; Galimberti, C.; Nijtmans, L.; Bovolenta, S.; Perini, M.P.; Zeviani, M. Characterization of SURF-1 expression and Surf-1p function in normal and disease conditions. Hum. Mol. Genet. 1999, 8, 2533–2540. [Google Scholar] [CrossRef] [PubMed]
- De Paepe, B.; Smet, J.; Leroy, J.G.; Seneca, S.; George, E.; Matthys, D.; van Maldergem, L.; Scalais, E.; Lissens, W.; de Meirleir, L.; et al. Diagnostic value of immunostaining in cultured skin fibroblasts from patients with oxidative phosphorylation defects. Pediatr. Res. 2006, 59, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Lake, B.D.; Taanman, J.W.; Hanna, M.G.; Cooper, J.M.; Schapira, A.H.; Leonard, J.V. Cytochrome oxidase immunohistochemistry: Clues for genetic mechanisms. Brain 2000, 123, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Hanson, B.J.; Capaldi, R.A.; Marusich, M.F.; Sherwood, S.W. An immunocytochemical approach to detection of mitochondrial disorders. J. Histochem. Cytochem. 2002, 50, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Willis, J.H.; Capaldi, R.A.; Huigsloot, M.; Rodenburg, R.J.; Smeitink, J.; Marusich, M.F. Isolated deficiencies of OXPHOS complexes I and IV are identified accurately and quickly by simple enzyme activity immunocapture assays. Biochim. Biophys. Acta 2009, 1787, 533–538. [Google Scholar] [CrossRef] [PubMed]
- Tanji, K.; Bonilla, E. Light microscopic methods to visualize mitochondria on tissue sections. Methods 2008, 46, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Boczonadi, V.; Giunta, M.; Lane, M.; Tulinius, M.; Schara, U.; Horvath, R. Investigating the role of the physiological isoform switch of cytochrome c oxidase subunits in reversible mitochondrial disease. Int. J. Biochem. Cell Biol. 2015, 63, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.C.; Grady, J.P.; Grünewald, A.; Vincent, A.; Dobson, P.F.; Taylor, R.W.; Turnbull, D.M.; Rygiel, K.A. A novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: Understanding mechanisms and improving diagnosis. Sci. Rep. 2015, 5, 15037. [Google Scholar] [CrossRef] [PubMed]
- Suomalainen, A.; Elo, J.M.; Pietiläinen, K.H.; Hakonen, A.H.; Sevastianova, K.; Korpela, M.; Isohanni, P.; Marjavaara, S.K.; Tyni, T.; Kiuru-Enari, S.; et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: A diagnostic study. Lancet Neurol. 2011, 10, 806–818. [Google Scholar] [CrossRef]
- Tyynismaa, H.; Carroll, C.J.; Raimundo, N.; Ahola-Erkkilä, S.; Wenz, T.; Ruhanen, H.; Guse, K.; Hemminki, A.; Peltola-Mjøsund, K.E.; Tulkki, V.; et al. Mitochondrial myopathy induces a starvation-like response. Hum. Mol. Genet. 2010, 19, 3948–3958. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Jeong, Y.T.; Oh, H.; Kim, S.H.; Cho, J.M.; Kim, Y.N.; Kim, S.S.; Kim, D.H.; Hur, K.Y.; Kim, H.K.; et al. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 2013, 19, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Zheng, J.; Lv, J.; Xu, J.; Ji, X.; Luo, Y.B.; Li, W.; Zhao, Y.; Yan, C. Skeletal muscle increases FGF21 expression in mitochondrial disorders to compensate for energy metabolic insufficiency by activating the mTOR-YY1-PGC1alpha pathway. Free Radic. Biol. Med. 2015, 84, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Kalko, S.G.; Paco, S.; Jou, C.; Rodríguez, M.A.; Meznaric, M.; Rogac, M.; Jekovec-Vrhovsek, M.; Sciacco, M.; Moggio, M.; Fagiolari, G.; et al. Transcriptomic profiling of TK2 deficient human skeletal muscle suggests a role for the p53 signalling pathway and identifies growth and differentiation factor-15 as a potential novel biomarker for mitochondrial myopathies. BMC Genom. 2014, 15, 91. [Google Scholar] [CrossRef] [PubMed]
- Yatsuga, S.; Fujita, Y.; Ishii, A.; Fukumoto, Y.; Arahata, H.; Kakuma, T.; Kojima, T.; Ito, M.; Tanaka, M.; Saiki, R.; et al. Growth differentiation factor 15 as a useful biomarker for mitochondrial disorders. Ann. Neurol. 2015, 78, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Montero, R.; Yubero, D.; Villarroya, J.; Henares, D.; Jou, C.; Rodriguez, M.A.; Ramos, F.; Nascimento, A.; Ortez, C.I.; Campistol, J.; et al. GDF-15 Is elevated in children with mitochondrial diseases and Is induced by mitochondrial dysfunction. PLoS ONE 2016, 11, e0148709. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phadke, R. Myopathology of Adult and Paediatric Mitochondrial Diseases. J. Clin. Med. 2017, 6, 64. https://doi.org/10.3390/jcm6070064
Phadke R. Myopathology of Adult and Paediatric Mitochondrial Diseases. Journal of Clinical Medicine. 2017; 6(7):64. https://doi.org/10.3390/jcm6070064
Chicago/Turabian StylePhadke, Rahul. 2017. "Myopathology of Adult and Paediatric Mitochondrial Diseases" Journal of Clinical Medicine 6, no. 7: 64. https://doi.org/10.3390/jcm6070064
APA StylePhadke, R. (2017). Myopathology of Adult and Paediatric Mitochondrial Diseases. Journal of Clinical Medicine, 6(7), 64. https://doi.org/10.3390/jcm6070064