The Short and Long-Term Effects of Pregnancy on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis
Abstract
:1. Introduction
2. Multiple Sclerosis and EAE during Pregnancy
3. Post-Partum Relapses
4. Relapses with ART Pregnancies
5. Use of Immunomodulatory Medications in Pregnancy
6. Long Term Effects of Pregnancy on the Clinical Course of MS
7. Effects of Pregnancy on Risk of Developing MS
8. Conclusions
Funding
Conflicts of Interest
References
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Patsopoulos, N.A.; Barcellos, L.F.; Hintzen, R.Q.; Schaefer, C.; van Duijn, C.M.; Noble, J.A.; Raj, T.; Gourraud, P.A.; Stranger, B.E.; Oksenberg, J.; et al. Fine-mapping the genetic association of the major histocompatibility complex in multiple sclerosis: HLA and non-HLA effects. PLoS Genet. 2013, 9, e1003926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beecham, A.H.; Patsopoulos, N.A.; Xifara, D.K.; Davis, M.F.; Kemppinen, A.; Cotsapas, C.; Shah, T.S.; Spencer, C.; Booth, D.; Goris, A.; et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 2013, 45, 1353–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawcer, S.; Hellenthal, G.; Pirinen, M.; Spencer, C.C.; Patsopoulos, N.A.; Moutsianas, L.; Dilthey, A.; Su, Z.; Freeman, C.; Hunt, S.E.; et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011, 476, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohlfeld, R.; Dornmair, K.; Meinl, E.; Wekerle, H. The search for the target antigens of multiple sclerosis, part 1: Autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol. 2016, 15, 198–209. [Google Scholar] [CrossRef]
- Hohlfeld, R.; Dornmair, K.; Meinl, E.; Wekerle, H. The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol. 2016, 15, 317–331. [Google Scholar] [CrossRef]
- Khoury, S.J.; Guttmann, C.G.; Orav, E.; Kikinis, R.; Jolesz, F.A.; Weiner, H.L. Changes in activated t cells in the blood correlate with disease activity in multiple sclerosis. Arch. Neurol. 2000, 57, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Kaskow, B.J.; Baecher-Allan, C. Effector T Cells in Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Chu, F.; Shi, M.; Lang, Y.; Shen, D.; Jin, T.; Zhu, J.; Cui, L. Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives. Mediat. Inflamm. 2018, 2018, 8168717. [Google Scholar] [CrossRef] [PubMed]
- Disanto, G.; Zecca, C.; MacLachlan, S.; Sacco, R.; Handunnetthi, L.; Meier, U.C.; Simpson, A.; McDonald, L.; Rossi, A.; Benkert, P.; et al. Prodromal symptoms of multiple sclerosis in primary care. Ann. Neurol. 2018, 83, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Hogg, T.; Wijnands, J.M.A.; Kingwell, E.; Zhu, F.; Lu, X.; Evans, C.; Fisk, J.D.; Marrie, R.A.; Zhao, Y.; Tremlett, H. Mining healthcare data for markers of the multiple sclerosis prodrome. Mult. Scler. Relat. Disord. 2018, 25, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Wijnands, J.M.A.; Kingwell, E.; Zhu, F.; Zhao, Y.; Hogg, T.; Stadnyk, K.; Ekuma, O.; Lu, X.; Evans, C.; Fisk, J.D.; et al. Health-care use before a first demyelinating event suggestive of a multiple sclerosis prodrome: A matched cohort study. Lancet Neurol. 2017, 16, 445–451. [Google Scholar] [CrossRef]
- Kabat, E.A.; Wolf, A.; Bezer, A.E. The rapid production of acute disseminated encephalomyelitis in rhesus monkeys by injection of heterologous and homologous brain tissue with adjuvants. J. Exp. Med. 1947, 85, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Van der Star, B.J.; Vogel, D.Y.; Kipp, M.; Puentes, F.; Baker, D.; Amor, S. In vitro and in vivo models of multiple sclerosis. CNS Neurol. Disord. Drug Targets 2012, 11, 570–588. [Google Scholar] [CrossRef] [PubMed]
- Gold, R.; Linington, C.; Lassmann, H. Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 Years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 2006, 129, 1953–1971. [Google Scholar] [CrossRef] [PubMed]
- Pender, M.P. The pathophysiology of myelin basic protein-induced acute experimental allergic encephalomyelitis in the Lewis rat. J. Neurol. Sci. 1988, 86, 277–289. [Google Scholar] [CrossRef] [Green Version]
- McCombe, P.A.; Harness, J.; Pender, M.P. Effects of cyclosporin A treatment on clinical course and inflammatory cell apoptosis in experimental autoimmune encephalomyelitis induced in Lewis rats by inoculation with myelin basic protein. J. Neuroimmunol. 1999, 97, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Greer, J.M.; Sobel, R.A.; Sette, A.; Southwood, S.; Lees, M.B.; Kuchroo, V.K. Immunogenic and encephalitogenic epitope clusters of myelin proteolipid protein. J. Immunol. 1996, 156, 371–379. [Google Scholar] [PubMed]
- Chalk, J.B.; McCombe, P.A.; Smith, R.; Pender, M.P. Clinical and histological findings in proteolipid-protein- induced experimental autoimmune encephalomyelitis (EAE) in the Lewis rat. Distribution of demyelination differs from that in EAE induced by other antigens. J. Neurol. Sci. 1994, 123, 154–161. [Google Scholar] [CrossRef]
- Chalk, J.B.; McCombe, P.A.; Pender, M.P. Conduction abnormailites are restricted to the central nervous system in experimental autoimmune encephalomyelitis induced by inoculation with proteolipid protein but not myelin basic protein. Brain 1994, 117, 975–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, E.; Wang, B.W.; Guimond, C.; Synnes, A.; Sadovnick, D.; Tremlett, H. Disease-modifying drugs for multiple sclerosis in pregnancy: A systematic review. Neurology 2012, 79, 1130–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuchroo, V.K.; Sobel, R.A.; Yamamura, T.; Greenfield, E.; Dorf, M.E.; Lees, M.B. Induction of experimental allergic encephalomyelitis by myelin proteolipid-protein-specific T cell clones and synthetic peptides. Pathobiology 1991, 59, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Greer, J.M.; Kuchroo, V.K.; Sobel, R.A.; Lees, M.B. Identification and characterization of a second encephalitogenic determinant of myelin proteolipid protein (residues 178–191) for SJL mice. J. Immunol. 1992, 149, 783–788. [Google Scholar] [PubMed]
- Schluesener, H.J.; Sobel, R.A.; Linington, C.; Weiner, H.L. A monoclonal antibody against a myelin oligodendrocyte glycoprotein induces relapses and demyelination in central nervous system autoimmune disease. J. Immunol. 1987, 139, 4016–4021. [Google Scholar] [PubMed]
- Kibler, R.F.; Fritz, R.B.; Chou, F.; Jen Chou, C.H.; Peacocke, N.Y.; Brown, N.M.; McFarlin, D.E. Immune response of Lewis rats to peptide C1 (residues 68–88) of guinea pig and rat myelin basic proteins. J. Exp. Med. 1977, 146, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Granger, J.P. Maternal and fetal adaptations during pregnancy: Lessons in regulatory and integrative physiology. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R1289–R1292. [Google Scholar] [CrossRef] [PubMed]
- Lain, K.Y.; Catalano, P.M. Metabolic changes in pregnancy. Clin. Obstet. Gynecol. 2007, 50, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Forsum, E.; Lof, M. Energy metabolism during human pregnancy. Annu. Rev. Nutr. 2007, 27, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.K.; Tan, E.L. Alterations in physiology and anatomy during pregnancy. Best. Pract. Res. Clin. Obstet. Gynaecol. 2013, 27, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Brunton, P.J.; Russell, J.A. Endocrine induced changes in brain function during pregnancy. Brain Res. 2010, 1364, 198–215. [Google Scholar] [CrossRef] [PubMed]
- Molvarec, A.; Szarka, A.; Walentin, S.; Beko, G.; Karadi, I.; Prohaszka, Z.; Rigo, J., Jr. Serum leptin levels in relation to circulating cytokines, chemokines, adhesion molecules and angiogenic factors in normal pregnancy and preeclampsia. Reprod. Biol. Endocrinol. 2011, 9, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauszus, F.F.; Klebe, J.G.; Bek, T.; Flyvbjerg, A. Increased serum IGF-I during pregnancy is associated with progression of diabetic retinopathy. Diabetes 2003, 52, 852–856. [Google Scholar] [CrossRef] [PubMed]
- Uvnas-Moberg, K.; Widstrom, A.M.; Werner, S.; Matthiesen, A.S.; Winberg, J. Oxytocin and prolactin levels in breast-feeding women. Correlation with milk yield and duration of breast-feeding. Acta Obstet. Gynecol. Scand. 1990, 69, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Ysrraelit, M.C.; Correale, J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology 2018. [Google Scholar] [CrossRef] [PubMed]
- Tiwari-Woodruff, S.; Voskuhl, R.R. Neuroprotective and anti-inflammatory effects of estrogen receptor ligand treatment in mice. J. Neurol. Sci. 2009, 286, 81–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalaj, A.J.; Hasselmann, J.; Augello, C.; Moore, S.; Tiwari-Woodruff, S.K. Nudging oligodendrocyte intrinsic signaling to remyelinate and repair: Estrogen receptor ligand effects. J. Steroid Biochem. Mol. Boil. 2016, 160, 43–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, N.M.; Imami, N.; Johnson, M.R. Progesterone Modulation of Pregnancy-Related Immune Responses. Front. Immunol. 2018, 9, 1293. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Frechou, M.; Schumacher, M.; Guennoun, R. Cerebroprotection by progesterone following ischemic stroke: Multiple effects and role of the neural progesterone receptors. J. Steroid Biochem. Mol. Boil. 2018. [Google Scholar] [CrossRef] [PubMed]
- Borba, V.V.; Zandman-Goddard, G.; Shoenfeld, Y. Prolactin and Autoimmunity. Front. Immunol. 2018, 9, 73. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Reyes, E.A.; Limon-Morales, O.; Rivero-Segura, N.A.; Camacho-Arroyo, I.; Cerbon, M. Prolactin function and putative expression in the brain. Endocrine 2017, 57, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, P.; Wang, S.C.; Wang, Y.F. Approaches Mediating Oxytocin Regulation of the Immune System. Front. Immunol. 2016, 7, 693. [Google Scholar] [CrossRef] [PubMed]
- Zinni, M.; Colella, M.; Batista Novais, A.R.; Baud, O.; Mairesse, J. Modulating the Oxytocin System During the Perinatal Period: A New Strategy for Neuroprotection of the Immature Brain? Front. Neurol. 2018, 9, 229. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Suano, A.; Hamilton, A.B.; Betz, A.G. Gimme shelter: The immune system during pregnancy. Immunol. Rev. 2011, 241, 20–38. [Google Scholar] [CrossRef] [PubMed]
- Veenstra van Nieuwenhoven, A.L.; Heineman, M.J.; Faas, M.M. The immunology of successful pregnancy. Hum. Reprod. Update 2003, 9, 347–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yip, L.; McCluskey, J.; Sinclair, R. Immunological aspects of pregnancy. Clin. Dermatol. 2006, 24, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Mor, G.; Cardenas, I. The immune system in pregnancy: A unique complexity. Am. J. Reprod. Immunol. (NY 1989) 2010, 63, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Racicot, K.; Kwon, J.Y.; Aldo, P.; Silasi, M.; Mor, G. Understanding the complexity of the immune system during pregnancy. Am. J. Reprod. Immunol. (NY 1989) 2014, 72, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Polese, B.; Gridelet, V.; Araklioti, E.; Martens, H.; Perrier d’Hauterive, S.; Geenen, V. The Endocrine Milieu and CD4 T-Lymphocyte Polarization during Pregnancy. Front. Endocrinol. 2014, 5, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumacher, A.; Costa, S.D.; Zenclussen, A.C. Endocrine factors modulating immune responses in pregnancy. Front. Immunol. 2014, 5, 196. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.P.; Klein, S.L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav. 2012, 62, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doria, A.; Iaccarino, L.; Arienti, S.; Ghirardello, A.; Zampieri, S.; Rampudda, M.E.; Cutolo, M.; Tincani, A.; Todesco, S. Th2 immune deviation induced by pregnancy: The two faces of autoimmune rheumatic diseases. Reprod. Toxicol. 2006, 22, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Nakashima, A.; Shima, T.; Ito, M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol. 2010, 63, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Somerset, D.A.; Zheng, Y.; Kilby, M.D.; Sansom, D.M.; Drayson, M.T. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 2004, 112, 38–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Ramon, S.; Navarro, A.J.; Aristimuno, C.; Rodriguez-Mahou, M.; Bellon, J.M.; Fernandez-Cruz, E.; De, A.C. Pregnancy-induced expansion of regulatory T-lymphocytes may mediate protection to multiple sclerosis activity. Immunol. Lett. 2005, 96, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Polanczyk, M.J.; Hopke, C.; Huan, J.; Vandenbark, A.A.; Offner, H. Enhanced FoxP3 expression and Treg cell function in pregnant and estrogen-treated mice. J. Neuroimmunol. 2005, 170, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Tai, P.; Wang, J.; Jin, H.; Song, X.; Yan, J.; Kang, Y.; Zhao, L.; An, X.; Du, X.; Chen, X.; et al. Induction of regulatory T cells by physiological level estrogen. J. Cell. Physiol. 2008, 214, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, D.J.; Theiler, R.N.; Rasmussen, S.A. Emerging infections and pregnancy. Emerg. Infect. Dis. 2006, 12, 1638–1643. [Google Scholar] [CrossRef] [PubMed]
- Fettke, F.; Schumacher, A.; Canellada, A.; Toledo, N.; Bekeredjian-Ding, I.; Bondt, A.; Wuhrer, M.; Costa, S.D.; Zenclussen, A.C. Maternal and Fetal Mechanisms of B Cell Regulation during Pregnancy: Human Chorionic Gonadotropin Stimulates B Cells to Produce IL-10 While Alpha-Fetoprotein Drives Them into Apoptosis. Front. Immunol. 2016, 7, 495. [Google Scholar] [CrossRef] [PubMed]
- Birk, K.; Ford, C.; Smeltzer, S.; Ryan, D.; Miller, R.; Rudick, R.A. The clinical course of multiple sclerosis during pregnancy and the puerperium. Arch. Neurol. 1990, 47, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Tillman, A.J. The effect of pregnancy on multiple sclerosis and its management. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 1950, 28, 548–582. [Google Scholar] [PubMed]
- Peckham, C.H. Multiple sclerosis complicating pregnancy. N. Y. State Med. J. 1945, 45, 618–622. [Google Scholar]
- Birner, I.M. Pregnancy and multiple sclerosis: Case report. N. Y. State J. Med. 1945, 45, 634–635. [Google Scholar]
- Douglass, L.H.; Jorgensen, C.L. Pregnancy and n multiple sclerosis. Am. J. Obstet. Gynecol. 1948, 55, 332–336. [Google Scholar] [CrossRef]
- Denny-Brown, D. Multiple sclerosis: The clinical problem. Am. J. Med. 1952, 12, 501–509. [Google Scholar] [CrossRef]
- McCombe, P.A.; Greer, J.M. Female reproductive issues in multiple sclerosis. Mult. Scler. 2012, 19, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Tsui, A.; Lee, M.A. Multiple sclerosis and pregnancy. Curr. Opin. Obstet. Gynecol. 2011, 23, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Langer-Gould, A.; Beaber, B.E. Effects of pregnancy and breastfeeding on the multiple sclerosis disease course. Clin. Immunol. 2013, 149, 244–250. [Google Scholar] [CrossRef] [PubMed]
- D’Hooghe, M.B.; D’Hooghe, T.; De, K.J. Female gender and reproductive factors affecting risk, relapses and progression in multiple sclerosis. Gynecol. Obstet. Investig. 2013, 75, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Coyle, P.K. Management of women with multiple sclerosis through pregnancy and after childbirth. Ther. Adv. Neurol. Disord. 2016, 9, 198–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, E.; Wang, B.W.; Guimond, C.; Synnes, A.; Sadovnick, A.D.; Dahlgren, L.; Traboulsee, A.; Tremlett, H. Safety of disease-modifying drugs for multiple sclerosis in pregnancy: Current challenges and future considerations for effective pharmacovigilance. Expert. Rev. Neurother. 2013, 13, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Confavreux, C.; Hutchinson, M.; Hours, M.M.; Cortinovis-Tourniaire, P.; Moreau, T. Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in Multiple Sclerosis Group. N. Engl. J. Med. 1998, 339, 285–291. [Google Scholar] [CrossRef] [PubMed]
- De Las Heras, V.; De Andres, C.; Tellez, N.; Tintore, M. Pregnancy in multiple sclerosis patients treated with immunomodulators prior to or during part of the pregnancy: A descriptive study in the Spanish population. Mult. Scler. 2007, 13, 981–984. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, L.N.; Klajn, D.; Acion, L.; Caceres, F.; Calle, A.; Carra, A.; Cristiano, E.; Deri, N.; Garcea, O.; Jaureguiberry, A.; et al. Epidemiological characteristics of pregnancy, delivery, and birth outcome in women with multiple sclerosis in Argentina (EMEMAR study). Mult. Scler. 2009, 15, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Finkelsztejn, A.; Fragoso, Y.D.; Ferreira, M.L.; Lana-Peixoto, M.A.; ves-Leon, S.V.; Gomes, S.; Damasceno, B.P.; Mendes, M.F.; Salgado, P.R.; Correa, E.C.; et al. The Brazilian database on pregnancy in multiple sclerosis. Clin. Neurol. Neurosurg. 2010, 113, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Jesus-Ribeiro, J.; Correia, I.; Martins, A.I.; Fonseca, M.; Marques, I.; Batista, S.; Nunes, C.; Macario, C.; Almeida, M.C.; Sousa, L. Pregnancy in Multiple Sclerosis: A Portuguese cohort study. Mult. Scler. Relat. Disord. 2017, 17, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Houtchens, M.K.; Edwards, N.C.; Phillips, A.L. Relapses and disease-modifying drug treatment in pregnancy and live birth in US women with MS. Neurology 2018. [Google Scholar] [CrossRef] [PubMed]
- Fares, J.; Nassar, A.H.; Gebeily, S.; Kobeissy, F.; Fares, Y. Pregnancy outcomes in Lebanese women with multiple sclerosis (the LeMS study): A prospective multicentre study. BMJ Open 2016, 6, e011210. [Google Scholar] [CrossRef] [PubMed]
- Finkelsztejn, A.; Brooks, J.; Paschoal, F., Jr.; Fragoso, Y. What can we really tell women with multiple sclerosis regarding pregnancy? A systematic review and meta-analysis of the literature. BJOG 2011, 118, 790–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alroughani, R.; Alowayesh, M.S.; Ahmed, S.F.; Behbehani, R.; Al-Hashel, J. Relapse occurrence in women with multiple sclerosis during pregnancy in the new treatment era. Neurology 2018, 90, e840–e846. [Google Scholar] [CrossRef] [PubMed]
- Novi, G.; Ghezzi, A.; Pizzorno, M.; Lapucci, C.; Bandini, F.; Annovazzi, P.; Mancardi, G.L.; Uccelli, A. Dramatic rebounds of MS during pregnancy following fingolimod withdrawal. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e377. [Google Scholar] [CrossRef] [PubMed]
- De Giglio, L.; Gasperini, C.; Tortorella, C.; Trojano, M.; Pozzilli, C. Natalizumab discontinuation and disease restart in pregnancy: A case series. Acta Neurol. Scand. 2015, 131, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Verhaeghe, A.; Deryck, O.M.; Vanopdenbosch, L.J. Pseudotumoral rebound of multiple sclerosis in a pregnant patient after stopping natalizumab. Mult. Scler. Relat. Disord. 2014, 3, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, V.; Colombo, B.; Dalla Costa, G.; Dalla Libera, D.; Moiola, L.; Falini, A.; Comi, G.; Filippi, M. Recurrent disease-activity rebound in a patient with multiple sclerosis after natalizumab discontinuations for pregnancy planning. Mult. Scler. 2016, 22, 1506–1508. [Google Scholar] [CrossRef] [PubMed]
- Portaccio, E.; Moiola, L.; Martinelli, V.; Annovazzi, P.; Ghezzi, A.; Zaffaroni, M.; Lanzillo, R.; Brescia Morra, V.; Rinaldi, F.; Gallo, P.; et al. Pregnancy decision-making in women with multiple sclerosis treated with natalizumab: II: Maternal risks. Neurology 2018, 90, e832–e839. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, W.; Arias, M.; Stroud, N.; Stek, A.; McCarthy, K.A.; Correale, J. Preliminary studies of cytokine secretion patterns associated with pregnancy in MS patients. J. Neurol. Sci. 2004, 224, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Langer-Gould, A.; Gupta, R.; Huang, S.; Hagan, A.; Atkuri, K.; Leimpeter, A.D.; Albers, K.B.; Greenwood, E.; Van Den Eeden, S.K.; Steinman, L.; et al. Interferon-gamma-producing T cells, pregnancy, and postpartum relapses of multiple sclerosis. Arch. Neurol. 2010, 67, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Airas, L.; Saraste, M.; Rinta, S.; Elovaara, I.; Huang, Y.H.; Wiendl, H. Immunoregulatory factors in multiple sclerosis patients during and after pregnancy: Relevance of natural killer cells. Clin. Exp. Immunol. 2008, 151, 235–243. [Google Scholar] [CrossRef] [PubMed]
- De Andrés, C.; Fernández-Paredes, L.; Tejera-Alhambra, M.; Alonso, B.; Ramos-Medina, R.; Sánchez-Ramón, S. Activation of Blood CD3+CD56+CD8+ T Cells during Pregnancy and Multiple Sclerosis. Front. Immunol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Gilli, F.; Lindberg, R.L.; Valentino, P.; Marnetto, F.; Malucchi, S.; Sala, A.; Capobianco, M.; di, S.A.; Sperli, F.; Kappos, L.; et al. Learning from nature: Pregnancy changes the expression of inflammation-related genes in patients with multiple sclerosis. PLoS ONE 2010, 5, e8962. [Google Scholar] [CrossRef] [PubMed]
- McCombe, P.A.; Fordyce, B.W.; de Jersey, J.; Yoong, G.; Pender, M.P. Expression of CD45RC and Ia antigen in the spinal cord in acute experimental allergic encephalomyelitis: An immunocytochemical and flow cytometric study. J. Neurol. Sci. 1992, 113, 177–186. [Google Scholar] [CrossRef] [Green Version]
- McCombe, P.A.; de Jersey, J.; Pender, M.P. Inflammatory cells, microglia and MHC class II antigen-positive cells in the spinal cord of Lewis rats with acute and chronic relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol. 1994, 51, 153–167. [Google Scholar] [CrossRef] [Green Version]
- Mokhtarian, F.; McFarlin, D.E.; Raine, C.S. Adoptive transfer of myelin basic protein-sensitized T cells produces chronic relapsing demyelinating disease in mice. Nature 1984, 309, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Van der Veen, R.C.; Trotter, J.L.; Clark, H.B.; Kapp, J.A. The adoptive transfer of chronic relapsing experimental allergic encephalomyelitis with lymph node cells sensitized to myelin proteolipid protein. J. Neuroimmunol. 1989, 21, 183–191. [Google Scholar] [CrossRef]
- Zepp, J.; Wu, L.; Li, X. IL-17 receptor signaling and T helper 17-mediated autoimmune demyelinating disease. Trends Immunol. 2011, 32, 232–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostami, A.; Ciric, B. Role of Th17 cells in the pathogenesis of CNS inflammatory demyelination. J. Neurol. Sci. 2013, 333, 76–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, R.A.; Anderton, S.M. Foxp3+ regulatory T cells in the control of experimental CNS autoimmune disease. J. Neuroimmunol. 2008, 193, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Slavin, A.; Ewing, C.; Liu, J.; Ichikawa, M.; Slavin, J.; Bernard, C.C. Induction of a multiple sclerosis-like disease in mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein. Autoimmunity 1998, 28, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Harness, J.; Pender, M.P.; McCombe, P.A. Cyclosporin A treatment modulates cytokine mRNA expression by inflammatory cells extracted from the spinal cord of rats with experimental autoimmune encephalomyelitis induced by inoculation with myelin basic protein. J. Neurol. Sci. 2001, 187, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Pitarokoili, K.; Ambrosius, B.; Gold, R. Lewis Rat Model of Experimental Autoimmune Encephalomyelitis. Curr. Protoc. Neurosci. 2017, 81, 9.61.1–9.61.20. [Google Scholar] [CrossRef] [PubMed]
- Puentes, F.; Dickhaut, K.; Hofstatter, M.; Falk, K.; Rotzschke, O. Active suppression induced by repetitive self-epitopes Protects against EAE development. PLoS ONE 2013, 8, e64888. [Google Scholar] [CrossRef] [PubMed]
- Keith, A.B. Effect of pregnancy on experimental allergic encephalomyelitis in guinea pigs and rats. J. Neurol. Sci. 1978, 38, 317–326. [Google Scholar] [CrossRef]
- Mertin, L.A.; Rumjanek, V.M. Pregnancy and the susceptibility of Lewis rats to experimental allergic encephalomyelitis. J. Neurol. Sci. 1985, 68, 15–24. [Google Scholar] [CrossRef]
- Harness, J.; McCombe, P.A. The effects of pregnancy on myelin basic protein-induced experimental autoimmune encephalomyelitis in Lewis rats: Suppression of clinical disease, modulation of cytokine expression in the spinal cord inflammatory infiltrate and suppression of lymphocyte proliferation by pregnancy sera. Am. J. Reprod. Immunol. 2001, 46, 405–412. [Google Scholar] [PubMed]
- Langer-Gould, A.; Garren, H.; Slansky, A.; Ruiz, P.J.; Steinman, L. Late pregnancy suppresses relapses in experimental autoimmune encephalomyelitis: Evidence for a suppressive pregnancy-related serum factor. J. Immunol. 2002, 169, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- McClain, M.A.; Gatson, N.N.; Powell, N.D.; Papenfuss, T.L.; Gienapp, I.E.; Song, F.; Shawler, T.M.; Kithcart, A.; Whitacre, C.C. Pregnancy suppresses experimental autoimmune encephalomyelitis through immunoregulatory cytokine production. J. Immunol. 2007, 179, 8146–8152. [Google Scholar] [CrossRef] [PubMed]
- Barac-Latas, V.; Muhvic, D.; Radosevic-Stabic, B. The influence of pregnancy on development and course of chronic relapsing experimental autoimmune encephalomyelitis in rats: Implications for multiple sclerosis. Coll. Antropol. 2010, 34 (Suppl. 1), 267–271. [Google Scholar] [PubMed]
- Gatson, N.N.; Williams, J.L.; Powell, N.D.; McClain, M.A.; Hennon, T.R.; Robbins, P.D.; Whitacre, C.C. Induction of pregnancy during established EAE halts progression of CNS autoimmune injury via pregnancy-specific serum factors. J. Neuroimmunol. 2011, 230, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Brenner, T.; Ovadia, H.; Evron, S.; Mizrachi, R.; Abramsky, O. Experimental allergic encephalomyelitis: Passive transfer of resistance during lactation. J. Neuroimmunol. 1986, 12, 317–327. [Google Scholar] [CrossRef]
- Williams, J.L.; Gatson, N.N.; Smith, K.M.; Almad, A.; McTigue, D.M.; Whitacre, C.C. Serum exosomes in pregnancy-associated immune modulation and neuroprotection during CNS autoimmunity. Clin. Immunol. 2013, 149, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engler, J.B.; Kursawe, N.; Solano, M.E.; Patas, K.; Wehrmann, S.; Heckmann, N.; Luhder, F.; Reichardt, H.M.; Arck, P.C.; Gold, S.M.; et al. Glucocorticoid receptor in T cells mediates protection from autoimmunity in pregnancy. Proc. Natl. Acad. Sci. USA 2017, 114, E181–E190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedek, G.; Zhang, J.; Nguyen, H.; Kent, G.; Seifert, H.A.; Davin, S.; Stauffer, P.; Vandenbark, A.A.; Karstens, L.; Asquith, M.; et al. Estrogen protection against EAE modulates the microbiota and mucosal-associated regulatory cells. J. Neuroimmunol. 2017, 310, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Benedek, G.; Zhang, J.; Nguyen, H.; Kent, G.; Seifert, H.; Vandenbark, A.A.; Offner, H. Novel feedback loop between M2 macrophages/microglia and regulatory B cells in estrogen-protected EAE mice. J. Neuroimmunol. 2017, 305, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itoh, N.; Kim, R.; Peng, M.; DiFilippo, E.; Johnsonbaugh, H.; MacKenzie-Graham, A.; Voskuhl, R.R. Bedside to bench to bedside research: Estrogen receptor beta ligand as a candidate neuroprotective treatment for multiple sclerosis. J. Neuroimmunol. 2017, 304, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalkanen, A.; Alanen, A.; Airas, L. Pregnancy outcome in women with multiple sclerosis: Results from a prospective nationwide study in Finland. Mult. Scler. 2010, 16, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Roullet, E.; Verdier-Tailefer, M.M.; Amarenco, P.; Ghabi, G.; Alperovitch, A.; Marteau, R. Pregnancy and multiple sclerosis: A longitudinal study of 125 remittent patients. J. Neurol. Neurosurg. Psychiatry 1993, 56, 1062–1065. [Google Scholar] [CrossRef] [PubMed]
- Worthington, J.; Jones, R.; Crawford, M.; Forti, A. Pregnancy and multiple sclerosis—A 3-year prospective study. J. Neurol. 1994, 241, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Portaccio, E.; Ghezzi, A.; Hakiki, B.; Sturchio, A.; Martinelli, V.; Moiola, L.; Patti, F.; Mancardi, G.L.; Solaro, C.; Tola, M.R.; et al. Postpartum relapses increase the risk of disability progression in multiple sclerosis: The role of disease modifying drugs. J. Neurol. Neurosurg. Psychiatry 2014, 85, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Vukusic, S.; Hutchinson, M.; Hours, M.; Moreau, T.; Cortinovis-Tourniaire, P.; Adeleine, P.; Confavreux, C.; Pregnancy in Multiple Sclerosis Group. Pregnancy and multiple sclerosis (the PRIMS study): Clinical predictors of post-partum relapse. Brain 2004, 127, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Portaccio, E.; Ghezzi, A.; Hakiki, B.; Martinelli, V.; Moiola, L.; Patti, F.; La, M.L.; Mancardi, G.L.; Solaro, C.; Tola, M.R.; et al. Breastfeeding is not related to postpartum relapses in multiple sclerosis. Neurology 2011, 77, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Pasto, L.; Portaccio, E.; Ghezzi, A.; Hakiki, B.; Giannini, M.; Razzolini, L.; Piscolla, E.; De Giglio, L.; Pozzilli, C.; Paolicelli, D.; et al. Epidural analgesia and cesarean delivery in multiple sclerosis post-partum relapses: The Italian cohort study. BMC Neurol. 2012, 12, 165. [Google Scholar] [CrossRef] [PubMed]
- Langer-Gould, A.; Huang, S.M.; Gupta, R.; Leimpeter, A.D.; Greenwood, E.; Albers, K.B.; Van Den Eeden, S.K.; Nelson, L.M. Exclusive breastfeeding and the risk of postpartum relapses in women with multiple sclerosis. Arch. Neurol. 2009, 66, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Airas, L.; Jalkanen, A.; Alanen, A.; Pirttila, T.; Marttila, R.J. Breast-feeding, postpartum and prepregnancy disease activity in multiple sclerosis. Neurology 2010, 75, 474–476. [Google Scholar] [CrossRef] [PubMed]
- Neuteboom, R.F.; Verbraak, E.; Voerman, J.S.; van, M.M.; Steegers, E.A.; De Groot, C.J.; Laman, J.D.; Hintzen, R.Q. First trimester interleukin 8 levels are associated with postpartum relapse in multiple sclerosis. Mult. Scler. 2009, 15, 1356–1358. [Google Scholar] [CrossRef] [PubMed]
- De Seze, J.; Chapelotte, M.; Delalande, S.; Ferriby, D.; Stojkovic, T.; Vermersch, P. Intravenous corticosteroids in the postpartum period for reduction of acute exacerbations in multiple sclerosis. Mult. Scler. 2004, 10, 596–597. [Google Scholar] [CrossRef] [PubMed]
- Achiron, A.; Kishner, I.; Dolev, M.; Stern, Y.; Dulitzky, M.; Schiff, E.; Achiron, R. Effect of intravenous immunoglobulin treatment on pregnancy and postpartum-related relapses in multiple sclerosis. J. Neurol. 2004, 251, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Haas, J.; Hommes, O.R. A dose comparison study of IVIG in postpartum relapsing-remitting multiple sclerosis. Mult. Scler. 2007, 13, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, K.; Beste, C.; Schimrigk, S.; Chan, A. Immunomodulation and postpartum relapses in patients with multiple sclerosis. Ther. Adv. Neurol. Disord. 2009, 2, 7–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, G.R.; O’Brien, A.T.; Nogueira, E.A.G.; Carvalho, V.M.; Paz, S.C.; Fragoso, Y.D. There is no benefit in the use of postnatal intravenous immunoglobulin for the prevention of relapses of multiple sclerosis: Findings from a systematic review and meta-analysis. Arq. Neuropsiquiatr. 2018, 76, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Laplaud, D.A.; Leray, E.; Barriere, P.; Wiertlewski, S.; Moreau, T. Increase in multiple sclerosis relapse rate following in vitro fertilization. Neurology 2006, 66, 1280–1281. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, K.; Beste, C.; Brune, N.; Haghikia, A.; Muller, T.; Schimrigk, S.; Gold, R. Increased MS relapse rate during assisted reproduction technique. J. Neurol. 2008, 255, 592–593. [Google Scholar] [CrossRef] [PubMed]
- Hellwig, K.; Schimrigk, S.; Beste, C.; Muller, T.; Gold, R. Increase in relapse rate during assisted reproduction technique in patients with multiple sclerosis. Eur. Neurol. 2009, 61, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Correale, J.; Farez, M.F.; Ysrraelit, M.C. Increase in multiple sclerosis activity after assisted reproduction technology. Ann. Neurol. 2012, 72, 682–694. [Google Scholar] [CrossRef] [PubMed]
- Michel, L.; Foucher, Y.; Vukusic, S.; Confavreux, C.; de Sèze, J.; Brassat, D.; Clanet, M.; Clavelou, P.; Ouallet, J.C.; Brochet, B.; et al. Increased risk of multiple sclerosis relapse after in vitro fertilisation. J. Neurol. Neurosurg. Psychiatry 2012, 83, 796–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.; Ganor, Y.; Rahimipour, S.; Ben-Aroya, N.; Koch, Y.; Levite, M. The neuropeptides GnRH-II and GnRH-I are produced by human T cells and trigger laminin receptor gene expression, adhesion, chemotaxis and homing to specific organs. Nat. Med. 2002, 8, 1421–1426. [Google Scholar] [CrossRef] [PubMed]
- Houtchens, M.K.; Edwards, N.C.; Schneider, G.; Stern, K.; Phillips, A.L. Pregnancy rates and outcomes in women with and without MS in the United States. Neurology 2018. [Google Scholar] [CrossRef] [PubMed]
- Sandberg-Wollheim, M.; Neudorfer, O.; Grinspan, A.; Weinstock-Guttman, B.; Haas, J.; Izquierdo, G.; Riley, C.; Ross, A.P.; Baruch, P.; Drillman, T.; et al. Pregnancy Outcomes from the Branded Glatiramer Acetate Pregnancy Database. Int. J. MS Care 2018, 20, 9–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellwig, K.; Haghikia, A.; Gold, R. Pregnancy and natalizumab: Results of an observational study in 35 accidental pregnancies during natalizumab treatment. Mult. Scler. 2011, 17, 958–963. [Google Scholar] [CrossRef] [PubMed]
- Hoevenaren, I.A.; de Vries, L.C.; Rijnders, R.J.; Lotgering, F.K. Delivery of healthy babies after natalizumab use for multiple sclerosis: A report of two cases. Acta Neurol. Scand. 2011, 123, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Portaccio, E.; Annovazzi, P.; Ghezzi, A.; Zaffaroni, M.; Moiola, L.; Martinelli, V.; Lanzillo, R.; Brescia Morra, V.; Rinaldi, F.; Gallo, P.; et al. Pregnancy decision-making in women with multiple sclerosis treated with natalizumab: I Fetal risks. Neurology 2018, 90, e823–e831. [Google Scholar] [CrossRef] [PubMed]
- Haghikia, A.; Langer-Gould, A.; Rellensmann, G.; Schneider, H.; Tenenbaum, T.; Elias-Hamp, B.; Menck, S.; Zimmermann, J.; Herbstritt, S.; Marziniak, M.; et al. Natalizumab use during the third trimester of pregnancy. JAMA Neurol. 2014, 71, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Runmarker, B.; Andersen, O. Pregnancy is associated with a lower risk of onset and a better prognosis in multiple sclerosis. Brain 1995, 118, 253–261. [Google Scholar] [CrossRef] [PubMed]
- D’Hooghe, M.B.; Nagels, G.; Uitdehaag, B.M. Long-term effects of childbirth in MS. J. Neurol. Neurosurg. Psychiatry 2010, 81, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Verdru, P.; Theys, P.; D’Hooghe, M.B.; Carton, H. Pregnancy and multiple sclerosis: The influence on long term disability. Clin. Neurol. Neurosurg. 1994, 96, 38–41. [Google Scholar] [CrossRef]
- Altintas, A.; Najar, B.; Gozubatik-Celik, G.; Menku, S.F. Pregnancy Data in a Turkish Multiple Sclerosis Population. Eur. Neurol. 2015, 74, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Ponsonby, A.L.; Lucas, R.M.; van der Mei, I.A.; Dear, K.; Valery, P.C.; Pender, M.P.; Taylor, B.V.; Kilpatrick, T.J.; Coulthard, A.; Chapman, C.; et al. Offspring number, pregnancy, and risk of a first clinical demyelinating event: The AusImmune Study. Neurology 2012, 78, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Jokubaitis, V.G.; Spelman, T.; Kalincik, T.; Lorscheider, J.; Havrdova, E.; Horakova, D.; Duquette, P.; Girard, M.; Prat, A.; Izquierdo, G.; et al. Predictors of long-term disability accrual in relapse-onset multiple sclerosis. Ann. Neurol. 2016, 80, 89–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, M.; Uyttenboogaart, M.; Heersema, D.; Steen, C.; De, K.J. Parity and secondary progression in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2009, 80, 676–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basso, O.; Campi, R.; Frydenberg, M.; Koch-Henriksen, N.; Bronnum-Hansen, H.; Olsen, J. Multiple sclerosis in women having children by multiple partners. A population-based study in Denmark. Mult. Scler. 2004, 10, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Thompson, E.E.; Nicodemus-Johnson, J.; Kim, K.W.; Gern, J.E.; Jackson, D.J.; Lemanske, R.F.; Ober, C. Global DNA methylation changes spanning puberty are near predicted estrogen-responsive genes and enriched for genes involved in endocrine and immune processes. Clin. Epigenetics 2018, 10, 62. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.M.; Sun, D.; Kandhi, S.; Froogh, G.; Zhuge, J.; Huang, W.; Hammock, B.D.; Huang, A. Estrogen-dependent epigenetic regulation of soluble epoxide hydrolase via DNA methylation. Proc. Natl. Acad. Sci. USA 2018, 115, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, J.R.; Mutesa, L.; Uddin, M. Traumatic Stress Epigenetics. Curr. Behav. Neurosci. Rep. 2018, 5, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Gapp, K.; Bohacek, J.; Grossmann, J.; Brunner, A.M.; Manuella, F.; Nanni, P.; Mansuy, I.M. Potential of Environmental Enrichment to Prevent Transgenerational Effects of Paternal Trauma. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2016, 41, 2749–2758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, N.M.; Jorgensen, K.T.; Stenager, E.; Jensen, A.; Pedersen, B.V.; Hjalgrim, H.; Kjaer, S.K.; Frisch, M. Reproductive history and risk of multiple sclerosis. Epidemiology 2011, 22, 546–552. [Google Scholar] [CrossRef] [PubMed]
Antigen | Species Studied | Clinical Course | Pathological Features | References |
---|---|---|---|---|
Guinea pig spinal cord | Rat | Monophasic | Inflammation and demyelination | [26] |
Myelin basic protein | Lewis rat | Monophasic | Inflammation and demyelination, including nerve roots | [17] |
Myelin proteolipid protein | Lewis rats, SJL mice | Chronic relapsing | Inflammation and demyelination | [19,20,21] |
Myelin oligodendrocyte glycoprotein | Mice and rats | Chronic relapsing | Inflammation and demyelination, role for antibody | [22,23,24] |
Hormone | Timing of Increased Levels | Immune Effects | Reparative Effects | References |
---|---|---|---|---|
Estriol | Pregnancy | Anti-inflammatory | Neuroprotective, aids remyelination | [36,37] |
Progesterone | Pregnancy | Anti-inflammatory | Neuroprotective | [38,39] |
Prolactin | Pregnancy and lactation | Pro-inflammatory (controversial) | Possible role in neurogenesis | [40,41] |
Oxytocin | Lactation | Complex effects | Neuroprotection | [42,43] |
Study | Type of Study | No of Patients | No of ART Cycles | Relapses with GnRH Agonists | Relapses with GnRH Antagonists | Reference |
---|---|---|---|---|---|---|
Laplaud et al., 2006 | Retrospective | 6 | 10 | 5/6 treatments | 0/4 treatments | [130] |
Hellwig et al., 2008 | Retrospective | 6 | 14 | 3/9 treatments | 2/5 treatments | [131] |
Hellwig et al., 2009 | Prospective/retrospective | 23 | 78 | Increased annualized relapse rate (ARR) | Increased ARR | [132] |
Hellwig et al., 2009 | Prospective group | 10 | 14 | 2/8 | 1/4 | [132] |
Correale et al., 2012 | Prospective | 16 | 26 | 15/26 | Not applicable | [133] |
Michel et al., 2012 | Retrospective | 32 | 70 | Increased ARR (48 treatments) | No increased ARR (19 treatments) | [134] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCombe, P.A. The Short and Long-Term Effects of Pregnancy on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. J. Clin. Med. 2018, 7, 494. https://doi.org/10.3390/jcm7120494
McCombe PA. The Short and Long-Term Effects of Pregnancy on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Journal of Clinical Medicine. 2018; 7(12):494. https://doi.org/10.3390/jcm7120494
Chicago/Turabian StyleMcCombe, Pamela A. 2018. "The Short and Long-Term Effects of Pregnancy on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis" Journal of Clinical Medicine 7, no. 12: 494. https://doi.org/10.3390/jcm7120494
APA StyleMcCombe, P. A. (2018). The Short and Long-Term Effects of Pregnancy on Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Journal of Clinical Medicine, 7(12), 494. https://doi.org/10.3390/jcm7120494