Development of a Prediction Model for Colorectal Cancer among Patients with Type 2 Diabetes Mellitus Using a Deep Neural Network
Abstract
:1. Introduction
2. Experimental Section
2.1. Data Source and Sampled Participants
2.2. Outcome Measurements, Comorbidities, and Medications
2.3. Constructing Training and Data Sets
2.4. Algorithm and Training
2.5. Statistical Analyses
3. Results
3.1. Demographic Features of Patients
3.2. Evaluation of Predictor Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Global Report on Diabetes: World Health Organization. Available online: http://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf?sequence=1 (accessed on 25 July 2018).
- Jiang, Y.D.; Chang, C.H.; Tai, T.Y.; Chen, J.F.; Chuang, L.M. Incidence and prevalence rates of diabetes mellitus in Taiwan: Analysis of the 2000–2009 Nationwide Health Insurance database. J. Formos. Med. Assoc. 2012, 111, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Tsilidis, K.K.; Kasimis, J.C.; Lopez, D.S.; Ntzani, E.E.; Ioannidis, J.P.A. Type 2 diabetes cancer: Umbrella review of meta-analyses of observational studies. BMJ 2015, 350, g7607. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Hu, R.Y.; Wu, H.B.; Pan, J.; Gong, W.W.; Guo, L.H.; Zhong, J.M.; Fei, F.R.; Yu, M. Cancer risk among patients with type 2 diabetes mellitus: A population-based prospective study in China. Sci. Rep. 2015, 5, 11503. [Google Scholar] [CrossRef] [PubMed]
- Ballotari, P.; Vicentini, M.; Manicardi, V.; Gallo, M.; Chiatamone Ranieri, S.; Greci, M.; Giorgi Rossi, P. Diabetes and risk of cancer incidence: Results from a population-based cohort study in northern Italy. BMC Cancer 2017, 17, 703. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; Pollak, M.; Regensteiner, J.G.; Yee, D. Diabetes and cancer: A consensus report. Diabetes Care 2010, 33, 1674–1685. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Carstensen, B.; Witte, D.; Bowker, S.L.; Lipscombe, L.; Renehan, A.G. Diabetes and cancer (1): Evaluating the temporal relationship between type 2 diabetes and cancer incidence. Diabetologia 2012, 55, 1607–1618. [Google Scholar] [CrossRef] [PubMed]
- Jee, S.H.; Ohrr, H.; Sull, J.W.; Yun, J.E.; Ji, M.; Samet, J.M. Fasting serum glucose level and cancer risk in Korean men and women. JAMA 2005, 293, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.C.; Lee, T.C.; Cheng, S.M.; Tu, S.T.; Yen, M.H.; Tseng, C.H. The influence of type 2 diabetes and glucose-lowering therapies on cancer risk in the Taiwanese. Exp. Diabetes Res. 2012, 2012, 413782. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Gui, Z.; Zhao, L.; Wang, J.; Shen, L. Diabetes mellitus and the incidence of colorectal cancer: An updated systematic review and meta-analysis. Dig. Dis. Sci. 2012, 57, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Yuhara, H.; Steinmaus, C.; Cohen, S.E.; Corley, D.A.; Tei, Y.; Buffler, P.A. Is diabetes mellitus an independent risk factor for colon cancer and rectal cancer? Am. J. Gastroenterol. 2011, 106, 1911–1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinagra, E.; Guarnotta, V.; Raimondo, D.; Mocciaro, F.; Dolcimascolo, S.; Rizzolo, C.A.; Puccia, F.; Maltese, N.; Citarrella, R.; Messina, M.; et al. Colorectal cancer risk in patients with type 2 diabetes mellitus: A single-center experience. J. Biol. Regul. Homeost. Agents 2017, 31, 1101–1107. [Google Scholar] [PubMed]
- Jiang, Y.; Ben, Q.; Shen, H.; Lu, W.; Zhang, Y.; Zhu, J. Diabetes mellitus and incidence and mortality of colorectal cancer: A systematic review and meta-analysis of cohort studies. Eur. J. Epidemiol. 2011, 26, 863–876. [Google Scholar] [CrossRef] [PubMed]
- Cancer Statistics Annual Report: Taiwan Cancer Registry. Available online: http://tcr.cph.ntu.edu.tw/main.php?Page=N2 (accessed on 25 July 2018).
- Cancer Statistics: Cancer Incidence Trends. Taiwan Cancer Registry. Available online: http://tcr.cph.ntu.edu.tw/main.php?Page=A5B2 (accessed on 25 July 2018).
- Young, B.A.; Lin, E.; Von, K.M.; Simon, G.; Ciechanowski, P.; Ludman, E.J.; Everson-Stewart, S.; Kinder, L.; Oliver, M.; Boyko, E.J.; et al. Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. Am. J. Manag. Care 2008, 14, 15–23. [Google Scholar] [PubMed]
- Chang, H.Y.; Weiner, J.P.; Richards, T.M.; Bleich, S.N.; Segal, J.B. Validating the adapted Diabetes Complications Severity Index in claims data. Am. J. Manag. Care 2012, 18, 721–726. [Google Scholar] [PubMed]
- Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the importance of initialization and momentum in deep learning. PMLR 2013, 28, 1139–1147. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. Available online: https://arxiv.org/pdf/1412.6980.pdf (accessed on 25 July 2018).
- Dozat, T. Incorporating Nesterov Momentum into Adam. In Proceedings of the International Conference on Learning Representations Workshop, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Hahnloser, R.H.; Sarpeshkar, R.; Mahowald, M.A.; Douglas, R.J.; Seung, H.S. Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature 2000, 405, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Delving Deep into Rectifiers: Surpassing Human-Level Performance on Imagenet Classification. Available online: https://arxiv.org/pdf/1502.01852.pdf (accessed on 25 July 2018).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isardet, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, M.S.; Dunger, D.B.; Giovannucci, E.L. Insulin, insulin-like growth factor-I (IGF-I), IGF binding proteins, their biologic interactions, and colorectal cancer. J. Natl. Cancer Inst. 2002, 94, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Yavari, K.; Taghikhani, M.; Maragheh, M.G.; Mesbah-Namin, S.A.; Babaei, M.H. Knockdown of IGF-IR by RNAi inhibits SW480 colon cancer cells growth in vitro. Arch. Med. Res. 2009, 40, 235–240. [Google Scholar] [CrossRef] [PubMed]
- LeRoith, D.; Baserga, R.; Helman, L.; Roberts, C.T., Jr. Insulin-like growth factors and cancer. Ann. Intern. Med. 1995, 122, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Renehan, A.G.; Zwahlen, M.; Minder, C.; O’Dwyer, S.T.; Shalet, S.M.; Egger, M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: Systematic review and meta-regression analysis. Lancet 2004, 363, 1346–1353. [Google Scholar] [CrossRef]
- Schoen, R.E.; Weissfeld, J.L.; Kuller, L.H.; Thaete, F.L.; Evans, R.W.; Hayes, R.B.; Rosen, C.J. Insulin-like growth factor-I and insulin are associated with the presence and advancement of adenomatous polyps. Gastroenterology 2005, 129, 4644–4675. [Google Scholar] [CrossRef] [PubMed]
- Giovannucci, E. Insulin, insulin-like growth factors and colon cancer: A review of the evidence. J. Nutr. 2001, 131, 3109S–3120S. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; Gupta, S.; Goldspink, G.; Winslet, M. The insulin-like growth factor system and colorectal cancer: Clinical and experimental evidence. Int. J. Colorectal. Dis. 2006, 21, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.C.; Huang, C.C.; Chen, Y.C. Increased risk of gastrointestinal malignancy in patients with diabetes mellitus and correlations with anti-diabetes drugs: A nationwide population-based study in Taiwan. Intern. Med. 2013, 52, 52939–52946. [Google Scholar] [CrossRef]
- Tseng, C.H. Diabetes, metformin use, and colon cancer: A population-based cohort study in Taiwan. Eur. J. Endocrinol. 2012, 167, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.H.; Sun, L.M.; Chen, P.C.; Lin, M.C.; Liang, J.A.; Muo, C.H.; Chang, S.N.; Sung, F.C. A population-based cohort study in Taiwan-use of insulin sensitizers can decrease cancer risk in diabetic patients. Ann. Oncol. 2013, 24, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Chen, H.H.; Wu, M.S.; Chiu, H.M. Current status and future challenge of population-based organized colorectal cancer screening: Lesson from the first decade of Taiwanese program. J. Formos. Med. Assoc. 2018, 117, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D.; Capra, A.M.; Achacoso, N.S.; Ferrara, A.; Levin, T.R.; Quesenberry, C.P., Jr.; Habel, L.A. Medical therapy for diabetes is associated with increased use of lower endoscopy. Pharmacoepidemiol. Drug Saf. 2007, 16, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.; Schubert, M.L. Decreased efficacy of polyethylene glycol lavage solution (golytely) in the preparation of diabetic patients for outpatient colonoscopy: A prospective and blinded study. Am. J. Gastroenterol. 2001, 96, 710–714. [Google Scholar] [CrossRef] [PubMed]
All Patients | Training Set | Test Set | |
---|---|---|---|
N | 1,349,640 | 1,315,899 | 337,410 |
Colorectal Cancer | |||||
---|---|---|---|---|---|
No | Yes | ||||
N = 1334773 | N = 14867 | ||||
Variable | n | (%) | n | (%) | p Value |
Age group (year) | <0.001 | ||||
≤49 | 420,354 | 31.5 | 1737 | 11.7 | |
50–64 | 515,804 | 38.6 | 5950 | 40.0 | |
65 + | 398,615 | 29.9 | 7180 | 48.3 | |
Mean (SD) (year) † | 56.2 | 14.2 | 63.7 | 11.2 | <0.001 |
Gender | <0.001 | ||||
Women | 633,366 | 47.5 | 6259 | 42.1 | |
Men | 701,407 | 52.6 | 8608 | 57.9 | |
Urbanization level # | 0.001 | ||||
1 (highest) | 387,470 | 29.0 | 4374 | 29.4 | |
2 | 397,750 | 29.8 | 4383 | 29.5 | |
3 | 223,753 | 16.8 | 2337 | 15.7 | |
4 (lowest) | 325,800 | 24.4 | 3773 | 25.4 | |
Occupation | <0.001 | ||||
White collar | 640,808 | 48.1 | 6695 | 45.0 | |
Blue collar | 554,764 | 41.6 | 6577 | 44.2 | |
Others ‡ | 139,201 | 10.4 | 1595 | 10.7 | |
Underlying disease | |||||
Hypertension | 984,221 | 73.7 | 11,707 | 78.7 | 0.001 |
Hyperlipidemia | 899,397 | 67.4 | 9102 | 61.2 | <0.001 |
Stroke | 259,808 | 19.5 | 2940 | 19.8 | 0.34 |
Congestive heart failure | 183,790 | 13.8 | 2076 | 14.0 | <0.001 |
Colorectal polyps | 58,952 | 4.42 | 1562 | 10.5 | <0.001 |
Obesity | 71,119 | 5.33 | 452 | 3.04 | <0.001 |
COPD | 375,331 | 28.1 | 4654 | 31.3 | <0.001 |
CAD | 510,862 | 38.3 | 6264 | 42.1 | <0.001 |
Asthma | 259,565 | 19.5 | 2859 | 19.2 | 0.51 |
Smoking | 50,660 | 3.80 | 324 | 2.18 | <0.001 |
Inflammatory bowel disease | 49,295 | 3.69 | 575 | 3.87 | 0.26 |
Irritable bowel syndrome | 182,951 | 13.7 | 2781 | 18.7 | <0.001 |
Alcohol-related illness | 142,265 | 10.7 | 1107 | 7.45 | <0.001 |
CKD | 856,446 | 64.2 | 8314 | 55.9 | <0.001 |
Diabetes complication (components of the aDCSI) | |||||
Retinopathy | 262,293 | 19.7 | 2423 | 16.3 | <0.001 |
Nephropathy | 479,819 | 36.0 | 4659 | 31.3 | <0.001 |
Neuropathy | 398,979 | 29.9 | 3871 | 26.0 | <0.001 |
Cerebrovascular | 354,430 | 26.6 | 3741 | 25.2 | <0.001 |
Cardiovascular | 769,763 | 57.7 | 8887 | 59.8 | <0.001 |
Peripheral vascular disease | 365,797 | 27.4 | 3406 | 22.9 | <0.001 |
Metabolic | 60,532 | 4.54 | 434 | 2.92 | <0.001 |
Mean aDCSI score (SD) † | |||||
Onset | 1.55 | 1.67 | 1.55 | 1.62 | 0.74 |
End of follow-up | 3.03 | 2.35 | 2.75 | 2.15 | <0.001 |
Medications | |||||
Statin | 706,079 | 52.9 | 6351 | 42.7 | <0.001 |
Insulin | 437,994 | 32.8 | 3506 | 23.6 | <0.001 |
Sulfonylureas | 770,838 | 57.8 | 8432 | 56.7 | <0.001 |
Metformin | 856,446 | 64.2 | 8314 | 55.9 | <0.001 |
TZD | 223,650 | 16.8 | 1767 | 11.9 | <0.001 |
Other antidiabetic drugs | 365,662 | 27.4 | 3071 | 20.7 | <0.001 |
Mean follow-up for endpoint, y (SD) † | 6.86 | 3.87 | 4.73 | 3.33 | <0.001 |
Dataset | F1 | Precision | Recall | AUROC | AUROC 95% CI | AUROC SE |
---|---|---|---|---|---|---|
All data (n = 1349640) | 0.931 | 0.982 | 0.889 | 0.738 | 0.734–0.742 | 0.002 |
Training set (n = 1315899) | 0.931 | 0.982 | 0.889 | 0.739 | 0.735–0.743 | 0.002 |
Test set (n = 337410) | 0.929 | 0.980 | 0.886 | 0.700 | 0.674–0.727 | 0.013 |
Dataset | AUROC | AUROC 95% CI | AUROC SE |
---|---|---|---|
All data (n = 1349640) | 0.492 | 0.487–0.497 | 0.003 |
Training set (n = 1315899) | 0.492 | 0.487–0.498 | 0.003 |
Test set (n = 337410) | 0.498 | 0.466–0.530 | 0.016 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsieh, M.-H.; Sun, L.-M.; Lin, C.-L.; Hsieh, M.-J.; Sun, K.; Hsu, C.-Y.; Chou, A.-K.; Kao, C.-H. Development of a Prediction Model for Colorectal Cancer among Patients with Type 2 Diabetes Mellitus Using a Deep Neural Network. J. Clin. Med. 2018, 7, 277. https://doi.org/10.3390/jcm7090277
Hsieh M-H, Sun L-M, Lin C-L, Hsieh M-J, Sun K, Hsu C-Y, Chou A-K, Kao C-H. Development of a Prediction Model for Colorectal Cancer among Patients with Type 2 Diabetes Mellitus Using a Deep Neural Network. Journal of Clinical Medicine. 2018; 7(9):277. https://doi.org/10.3390/jcm7090277
Chicago/Turabian StyleHsieh, Meng-Hsuen, Li-Min Sun, Cheng-Li Lin, Meng-Ju Hsieh, Kyle Sun, Chung-Y. Hsu, An-Kuo Chou, and Chia-Hung Kao. 2018. "Development of a Prediction Model for Colorectal Cancer among Patients with Type 2 Diabetes Mellitus Using a Deep Neural Network" Journal of Clinical Medicine 7, no. 9: 277. https://doi.org/10.3390/jcm7090277
APA StyleHsieh, M. -H., Sun, L. -M., Lin, C. -L., Hsieh, M. -J., Sun, K., Hsu, C. -Y., Chou, A. -K., & Kao, C. -H. (2018). Development of a Prediction Model for Colorectal Cancer among Patients with Type 2 Diabetes Mellitus Using a Deep Neural Network. Journal of Clinical Medicine, 7(9), 277. https://doi.org/10.3390/jcm7090277