Ultra-Widefield Retinal Imaging for Analyzing the Association Between Types of Pathological Myopia and Posterior Staphyloma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Guidelines
2.2. Subjects
2.3. Data Analysis
2.4. Statistics
3. Results
3.1. Characteristics of The Patients
3.2. Comparison of Bilateral and Unilateral Axial Elongation
3.3. Relationship of Axial Length to Factors
3.4. Comparison in the Presence of Posterior Staphyloma
3.5. Classification of Posterior Staphyloma and Disorders
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohno-Matsui, K. Proposed classification of posterior staphylomas based on analyses of eye shape by three-dimensional magnetic resonance imaging and wide-field fundus imaging. Ophthalmology 2014, 121, 1798–1809. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.H. Unilateral high myopia: optical components, associated factors, and visual outcomes. Br. J. Ophthalmol. 2003, 87, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Choo, V. A look at slowing progression of myopia. Lancet (London, England) 2003, 361, 1622–1623. [Google Scholar] [CrossRef]
- Shimada, N.; Sugamoto, Y.; Ogawa, M.; Takase, H.; Ohno-Matsui, K. Fovea-sparing internal limiting membrane peeling for myopic traction maculopathy. Am. J. Ophthalmol. 2012, 154, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Curtin, B.J. The posterior staphyloma of pathologic myopia. Trans. Am. Ophthalmol. Society 1977, 75, 67–86. [Google Scholar]
- Ohno-Matsui, K. WHAT IS THE FUNDAMENTAL NATURE OF PATHOLOGIC MYOPIA? Retina 2017, 37, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, M.; Ohno-Matsui, K.; Hayashi, K.; Shimada, N.; Yoshida, T.; Tokoro, T.; Morita, I. Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging. Ophthalmology 2011, 118, 1626–1637. [Google Scholar] [CrossRef] [PubMed]
- Oie, Y.; Ikuno, Y.; Fujikado, T.; Tano, Y. Relation of posterior staphyloma in highly myopic eyes with macular hole and retinal detachment. Jpn. J. Ophthalmol. 2005, 49, 530–532. [Google Scholar] [CrossRef] [PubMed]
- Bontzos, G.; Plainis, S.; Papadaki, E.; Giannakopoulou, T.; Detorakis, E. Mechanical optic neuropathy in high myopia. Clin. Exp. Optom. 2018, 101, 613–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneko, Y.; Moriyama, M.; Hirahara, S.; Ogura, Y.; Ohno-Matsui, K. Areas of nonperfusion in peripheral retina of eyes with pathologic myopia detected by ultra-widefield fluorescein angiography. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Yannuzzi, L.A.; Ober, M.D.; Slakter, J.S.; Spaide, R.F.; Fisher, Y.L.; Flower, R.W.; Rosen, R. Ophthalmic fundus imaging: today and beyond. Am. J. Ophthalmol. 2004, 137, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Quinn, N.; Csincsik, L.; Flynn, E.; Curcio, C.A.; Kiss, S.; Sadda, S.R.; Hogg, R.; Peto, T.; Lengyel, I. The clinical relevance of visualising the peripheral retina. Prog. Retin. Eye Res. 2019, 68, 83–109. [Google Scholar] [CrossRef] [PubMed]
All | Men | Women | p Value | ||
---|---|---|---|---|---|
Subjects n (%) | 138 | 78 (56.4) | 60 (43.6) | ||
Age (yrs) | 63.1 ± 13.5 | 62.1 ± 12.5 | 64.5 ± 14.7 | 0.306 | † |
AXL (mm) | 28.1 ± 2.2 | 28.1 ± 2.3 | 28.2 ± 2.1 | 0.822 | † |
Staphyloma n (%) | 107 (46.7) | 51 (47.7) | 56 (52.3) | 0.033 | †† |
Bilateral | Unilateral | p Value | ||
---|---|---|---|---|
All n (%) | 91 (65.9) | 47 (34.1) | ||
Men n (%) | 49 (53.8) | 29 (61.7) | 0.469 | † |
Women n (%) | 42 (46.2) | 18 (38.3) | ||
Age (yrs) | 63.0 ± 14.0 | 63.4 ± 12.4 | 0.881 | †† |
AXL (mm) | 28.8 ± 2.2 | 27.3 ± 1.2 | <0.001 | †† |
AXL | p Value | |||||
---|---|---|---|---|---|---|
26.00 to 26.79 mm | 26.80 to 27.67 mm | 27.68 to 29.76 mm | 29.77 mm≤ | |||
Subjects | All | 57 | 58 | 57 | 57 | |
Men n (%) | 33 (57.9) | 34 (58.6) | 24 (42.1) | 36 (63.2) | 0.119 | |
Women n (%) | 24 (42.1) | 24 (41.4) | 33 (57.9) | 21 (36.8) | ||
Staphyloma | All n (%) | 27 (47.4) | 30 (51.7) | 23 (40.4) | 27 (47.4) | 0.675 |
Men n (%) | 16 (48.5) | 12 (35.3) | 6 (25.0) | 17 (47.2) | 0.228 | |
Women n (%) | 11 (45.8) | 18 (75.0) | 17 (51.5) | 10 (47.6) | 0.150 | |
Curtin (n) | Ⅰ | 14 | 17 | 14 | 23 | |
Ⅱ | 9 | 8 | 7 | 3 | ||
Ⅲ | 3 | 4 | 0 | 1 | ||
Ⅳ | 0 | 0 | 0 | 0 | ||
Ⅴ | 1 | 0 | 1 | 0 | ||
Ⅵ | 0 | 1 | 1 | 0 | ||
Ⅶ-Ⅹ | 0 | 0 | 0 | 0 | 0.391 | |
Ohno–Matsui (n) | Ⅰ | 14 | 18 | 15 | 23 | |
Ⅱ | 9 | 8 | 7 | 3 | ||
Ⅲ | 3 | 4 | 0 | 1 | ||
Ⅳ | 0 | 0 | 0 | 0 | ||
Ⅴ | 1 | 0 | 1 | 0 | 0.334 | |
Disorders | RD n (%) | 17 (27.8) | 17 (29.3) | 16 (28.1) | 13 (22.8) | 0.784 |
RVO n (%) | 0 (0.0) | 1 (1.7) | 0 (0.0) | 4 (7.0) | 0.032 | |
ERM n (%) | 3 (5.3) | 5 (8.6) | 8 (14.0) | 14 (24.6) | 0.013 | |
Schisis n (%) | 1 (1.8) | 3 (5.2) | 5 (8.8) | 8 (14.0) | 0.076 | |
MH n (%) | 4 (7.0) | 4 (6.9) | 1 (1.8) | 5 (8.9) | 0.425 | |
mCNV n (%) | 1 (1.8) | 6 (10.3) | 4 (7.0) | 1 (1.8) | 0.102 | |
Atrophy n (%) | 7 (18.9) | 13 (35.1) | 10 (27.0) | 7 (18.9) | 0.388 | |
Neuropathy n (%) | 22 (38.6) | 15 (25.9) | 11 (19.3) | 14 (24.6) | 0.122 |
Non Staphyloma | Staphyloma | p Value | ||
---|---|---|---|---|
Age (yrs) | 59.4 ± 13.1 | 67.8 ± 12.6 | <0.001 | † |
AXL (mm) | 28.5 ± 2.1 | 28.4 ± 2.1 | 0.783 | † |
Disorders | ||||
RD (n) | 42 | 21 | 0.017 | †† |
RVO (n) | 3 | 2 | 1.000 | †† |
ERM (n) | 12 | 18 | 0.169 | †† |
Schisis (n) | 1 | 16 | <0.001 | †† |
MH (n) | 4 | 10 | 0.094 | †† |
mCNV (n) | 1 | 11 | 0.002 | †† |
Atrophy (n) | 5 | 32 | <0.001 | †† |
Neuropathy (n) | 26 | 36 | 0.038 | †† |
(A) | |||||||||
Staphyloma (n) | Curtin’s Classification | p Value | |||||||
I | II | III | IV | V | VI | VI-X | |||
total (n) | 107 | 68 | 27 | 8 | 0 | 2 | 2 | 0 | |
RD n (%) | 21 | 16 (23.5) | 4 (14.8) | 1 (12.5) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.683 |
RVO n (%) | 2 | 1 (1.5) | 1 (3.7) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.941 |
ERM n (%) | 18 | 16 (23.5) | 2 (7.4) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.176 |
Schisis n (%) | 16 | 11 (16.2) | 5 (18.5) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.652 |
MH n (%) | 10 | 7 (10.4) | 2 (7.4) | 1 (12.5) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.949 |
mCNV n (%) | 11 | 7 (10.3) | 1 (3.7) | 2 (25.0) | 0 (0.0) | 0 (0.0) | 1 (50.0) | 0 (0.0) | 0.147 |
Atrophy n (%) | 32 | 20 (29.4) | 10 (37.0) | 1 (12.5) | 0 (0.0) | 0 (0.0) | 1 (50.0) | 0 (0.0) | 0.548 |
Neuropathy n (%) | 36 | 24 (35.3) | 8 (29.6) | 3 (37.5) | 0 (0.0) | 1 (50.0) | 0 (0.0) | 0 (0.0) | 0.812 |
(B) | |||||||||
Staphyloma (n) | Ohno–Matsui’s Classification | p Value | |||||||
I | II | III | IV | V | |||||
total (n) | 107 | 70 | 27 | 8 | 0 | 2 | |||
RD n (%) | 21 | 16 (22.9) | 4 (14.8) | 1 (12.5) | 0 (0.0) | 0 (0.0) | 0.658 | ||
RVO n (%) | 2 | 1 (1.4) | 1 (3.7) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.859 | ||
ERM n (%) | 18 | 16 (22.9) | 2 (7.4) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.135 | ||
Schisis n (%) | 16 | 11 (15.7) | 5 (18.5) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0.560 | ||
MH n (%) | 10 | 7 (10.1) | 2 (7.4) | 1 (12.5) | 0 (0.0) | 0 (0.0) | 0.926 | ||
mCNV n (%) | 11 | 8 (11.4) | 1 (3.7) | 2 (25.0) | 0 (0.0) | 0 (0.0) | 0.324 | ||
Atrophy n (%) | 32 | 21 (30.0) | 10 (37.0) | 1 (12.5) | 0 (0.0) | 0 (0.0) | 0.446 | ||
Neuropathy n (%) | 36 | 24 (34.3) | 8 (29.6) | 3 (37.5) | 0 (0.0) | 1 (50.0) | 0.919 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mimura, R.; Mori, K.; Torii, H.; Nagai, N.; Suzuki, M.; Minami, S.; Ozawa, Y.; Kurihara, T.; Tsubota, K. Ultra-Widefield Retinal Imaging for Analyzing the Association Between Types of Pathological Myopia and Posterior Staphyloma. J. Clin. Med. 2019, 8, 1505. https://doi.org/10.3390/jcm8101505
Mimura R, Mori K, Torii H, Nagai N, Suzuki M, Minami S, Ozawa Y, Kurihara T, Tsubota K. Ultra-Widefield Retinal Imaging for Analyzing the Association Between Types of Pathological Myopia and Posterior Staphyloma. Journal of Clinical Medicine. 2019; 8(10):1505. https://doi.org/10.3390/jcm8101505
Chicago/Turabian StyleMimura, Ririko, Kiwako Mori, Hidemasa Torii, Norihiro Nagai, Misa Suzuki, Sakiko Minami, Yoko Ozawa, Toshihide Kurihara, and Kazuo Tsubota. 2019. "Ultra-Widefield Retinal Imaging for Analyzing the Association Between Types of Pathological Myopia and Posterior Staphyloma" Journal of Clinical Medicine 8, no. 10: 1505. https://doi.org/10.3390/jcm8101505
APA StyleMimura, R., Mori, K., Torii, H., Nagai, N., Suzuki, M., Minami, S., Ozawa, Y., Kurihara, T., & Tsubota, K. (2019). Ultra-Widefield Retinal Imaging for Analyzing the Association Between Types of Pathological Myopia and Posterior Staphyloma. Journal of Clinical Medicine, 8(10), 1505. https://doi.org/10.3390/jcm8101505