Iron Deficiency in Acute Decompensated Heart Failure
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Study and Laboratory Measurements
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Biomarker Levels
3.3. Prevalence of Iron Deficiency
3.4. Interaction between Iron Deficiency and HFpEF
3.5. Interaction between Iron Deficiency and HFrEF
4. Discussion
4.1. Prevalence of Iron Deficiency
4.2. Clinical Implications
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Klip, I.T.; Comín-Colet, J.; Voors, A.A.; Ponikowski, P.; Enjuanes, C.; Banasiak, W.; Lok, D.J.; Rosentryt, P.; Torrens, A.; Polonski, L.; et al. Iron deficiency in chronic heart failure: An international pooled analysis. Am. Heart J. 2013, 165, 575–582.e3. [Google Scholar] [CrossRef] [PubMed]
- Martens, P.; Nijst, P.; Verbrugge, F.H.; Smeets, K.; Dupont, M.; Mullens, W. Impact of iron deficiency on exercise capacity and outcome in heart failure with reduced, mid-range and preserved ejection fraction. Acta Cardiol. 2017. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.; MacDougall, I.C. Iron therapy for the treatment of iron deficiency in chronic heart failure: Intravenous or oral? Eur. J. Heart Fail. 2015, 17, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.C.; Ng, A.C.; Kritharides, L.; Sindone, A.P.; Information, P.E.K.F.C. Iron Deficiency in Heart Failure: Looking Beyond Anaemia. Heart Lung Circ. 2016, 25, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Weiss, G.; Goodnough, L.T. Anemia of Chronic Disease. N. Engl. J. Med. 2005, 352, 1011–1023. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Rozentryt, P.; Witkowska, A.; Nowak, J.; Hartmann, O.; Ponikowska, B.; Borodulin-Nadzieja, L.; Banasiak, W.; Polonski, L.; Filippatos, G.; et al. Iron deficiency: An ominous sign in patients with systolic chronic heart failure. Eur. Heart J. 2010, 31, 1872–1880. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, E.A.; Rozentryt, P.; Witkowska, A.; Nowak, J.; Hartmann, O.; Ponikowska, B.; Borodulin-Nadzieja, L.; Von Haehling, S.; Doehner, W.; Banasiak, W.; et al. Iron Deficiency Predicts Impaired Exercise Capacity in Patients with Systolic Chronic Heart Failure. J. Card. Fail. 2011, 17, 899–906. [Google Scholar] [CrossRef]
- Comín-Colet, J.; Enjuanes, C.; Gonzalez, G.; Torrens, A.; Cladellas, M.; Meroño, O.; Ribas, N.; Ruiz, S.; Gómez, M.; Verdú, J.M.; et al. Iron deficiency is a key determinant of health-related quality of life in patients with chronic heart failure regardless of anaemia status. Eur. J. Heart Fail. 2013, 15, 1164–1172. [Google Scholar] [CrossRef]
- Avni, T.; Leibovici, L.; Gafter-Gvili, A. Iron supplementation for the treatment of chronic heart failure and iron deficiency: Systematic review and meta-analysis. Eur. J. Heart Fail. 2012, 14, 423–429. [Google Scholar] [CrossRef]
- Qian, C.; Wei, B.; Ding, J.; Wu, H.; Wang, Y. The Efficacy and Safety of Iron Supplementation in Patients with Heart Failure and Iron Deficiency: A Systematic Review and Meta-analysis. Can. J. Cardiol. 2016, 32, 151–159. [Google Scholar] [CrossRef]
- Anker, S.D.; Kirwan, B.-A.; Van Veldhuisen, D.J.; Filippatos, G.; Comin-Colet, J.; Ruschitzka, F.; Lüscher, T.F.; Arutyunov, G.P.; Motro, M.; Mori, C.; et al. Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients: An individual patient data meta-analysis. Eur. J. Heart Fail. 2017, 20, 125–133. [Google Scholar] [CrossRef] [PubMed]
- van Veldhuisen, D.J.; Ponikowski, P.; van der Meer, P.; Metra, M.; Böhm, M.; Doletsky, A.; Voors, A.A.; Macdougall, I.C.; Anker, S.D.; Roubert, B.; et al. Effect of Ferric Carboxymaltose on Exercise Capacity in Patients with Chronic Heart Failure and Iron Deficiency. Circulation 2017, 136, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.D.; Malhotra, R.; Hernandez, A.F.; McNulty, S.E.; Smith, A.; Felker, G.M.; Tang, W.H.W.; LaRue, S.J.; Redfield, M.M.; Semigran, M.J.; et al. Effect of Oral Iron Repletion on Exercise Capacity in Patients with Heart Failure With Reduced Ejection Fraction and Iron Deficiency: The IRONOUT HF Randomized Clinical Trial. JAMA 2017, 317, 1958–1966. [Google Scholar] [CrossRef] [PubMed]
- Núñez, J.; Dominguez, E.; Ramón, J.M.; Núñez, E.; Sanchis, J.; Santas, E.; Heredia, R.; González, J.; Minana, G.; López, L.; et al. Iron deficiency and functional capacity in patients with advanced heart failure with preserved ejection fraction. Int. J. Cardiol. 2016, 207, 365–367. [Google Scholar] [CrossRef]
- Núñez, J.; Comín-Colet, J.; Minana, G.; Núñez, E.; Santas, E.; Mollar, A.; Valero, E.; García-Blas, S.; Cardells, I.; Bodí, V.; et al. Iron deficiency and risk of early readmission following a hospitalization for acute heart failure. Eur. J. Heart Fail. 2016, 18, 798–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komajda, M.; Lam, C.S. Heart failure with preserved ejection fraction: A clinical dilemma. Eur. Heart J. 2014, 35, 1022–1032. [Google Scholar] [CrossRef]
- Cohen-Solal, A.; Damy, T.; Terbah, M.; Kerebel, S.; Baguet, J.-P.; Hanon, O.; Zannad, F.; Laperche, T.; Leclercq, C.; Concas, V.; et al. High prevalence of iron deficiency in patients with acute decompensated heart failure. Eur. J. Heart Fail. 2014, 16, 984–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponikowski, P.; Voors, A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016, 37, 2129–2200. [Google Scholar]
- Nanas, J.N.; Matsouka, C.; Karageorgopoulos, D.; Leonti, A.; Tsolakis, E.; Drakos, S.G.; Tsagalou, E.P.; Maroulidis, G.D.; Alexopoulos, G.P.; Kanakakis, J.E.; et al. Etiology of Anemia in Patients with Advanced Heart Failure. J. Am. Coll. Cardiol. 2006, 48, 2485–2489. [Google Scholar] [CrossRef]
- Levi, M.; Rosselli, M.; Simonetti, M.; Brignoli, O.; Cancian, M.; Masotti, A.; Pegoraro, V.; Cataldo, N.; Heiman, F.; Chelo, M.; et al. Epidemiology of iron deficiency anaemia in four European countries: A population-based study in primary care. Eur. J. Haematol. 2016, 97, 583–593. [Google Scholar] [CrossRef]
- Oktay, A.A.; Rich, J.D.; Shah, S.J. The emerging epidemic of heart failure with preserved ejection fraction. Curr. Heart Fail. Rep. 2013, 10, 401–410. [Google Scholar] [CrossRef]
- Meyer, S.; Brouwers, F.P.; Voors, A.A.; Hillege, H.L.; de Boer, R.A.; Gansevoort, R.T.; van der Harst, P.; Rienstra, M.; van Gelder, I.C.; van Veldhuisen, D.J.; et al. Sex differences in new-onset heart failure. Clin. Res. Cardiol. 2015, 104, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Tromp, J.; Khan, M.A.F.; Klip, I.T.; Meyer, S.; De Boer, R.A.; Jaarsma, T.; Hillege, H.; Van Veldhuisen, D.J.; Van Der Meer, P.; Voors, A.A. Biomarker Profiles in Heart Failure Patients with Preserved and Reduced Ejection Fraction. J. Am. Heart Assoc. 2017, 6, e003989. [Google Scholar] [CrossRef] [PubMed]
- Haas, J.D.; Brownlie, T. Iron Deficiency and Reduced Work Capacity: A Critical Review of the Research to Determine a Causal Relationship. J. Nutr. 2001, 131, 676S–690S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houstis, N.E.; Eisman, A.S.; Pappagianopoulos, P.P.; Wooster, L.; Bailey, C.S.; Wagner, P.D.; Lewis, G.D. Exercise Intolerance in HFpEF: Diagnosing and Ranking its Causes Using Personalized O2 Pathway Analysis. Circulation 2017, 148–161. [Google Scholar] [CrossRef] [PubMed]
- Martens, P.; Verbrugge, F.; Nijst, P.; Dupont, M.; Tang, W.W.; Mullens, W. Impact of Iron Deficiency on Response to and Remodeling After Cardiac Resynchronization Therapy. Am. J. Cardiol. 2017, 119, 65–70. [Google Scholar] [CrossRef]
- Naito, Y.; Tsujino, T.; Matsumoto, M.; Sakoda, T.; Ohyanagi, M.; Masuyama, T. Adaptive response of the heart to long-term anemia induced by iron deficiency. Am. J. Physiol. Circ. Physiol. 2009, 296, H585–H593. [Google Scholar] [CrossRef] [Green Version]
- Paulus, W.J.; Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef]
- Sanders-Van Wijk, S.; Van Empel, V.; Davarzani, N.; Maeder, M.T.; Handschin, R.; Pfisterer, M.E.; Brunner-La Rocca, H.P.; TIME-CHF investigators. Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs. reduced left ventricular ejection fraction. Eur. J. Heart Fail. 2015, 17. [Google Scholar] [CrossRef]
- Beard, J.L. Iron Biology in Immune Function, Muscle Metabolism and Neuronal Functioning. J. Nutr. 2001, 131, 568S–580S. [Google Scholar] [CrossRef]
- Ather, S.; Chan, W.; Bozkurt, B.; Aguilar, D.; Ramasubbu, K.; Zachariah, A.A.; Wehrens, X.H.; Deswal, A. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J. Am. Coll. Cardiol. 2012, 59, 998–1005. [Google Scholar] [CrossRef] [PubMed]
- Aigner, E.; Feldman, A.; Datz, C. Obesity as an Emerging Risk Factor for Iron Deficiency. Nutrients 2014, 6, 3587–3600. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, D.S.; Schwartz, D.; Schwartz, I.; Ben Assa, E. The missed opportunities to diagnose and treat iron deficiency in patients hospitalized with heart failure. Int. J. Cardiol. 2013, 168, 2164–2166. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Colet, J.C.; Filippatos, G.; Willenheimer, R.; Dickstein, K.; Drexler, H.; Lüscher, T.F.; Bart, B.; Banasiak, W.; Niegowska, J.; et al. Ferric Carboxymaltose in Patients with Heart Failure and Iron Deficiency. N. Engl. J. Med. 2009, 361, 2436–2448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponikowski, P.; van Veldhuisen, D.J.; Comin-Colet, J.; Ertl, G.; Komajda, M.; Mareev, V.; McDonagh, T.; Parkhomenko, A.; Tavazzi, L.; Levesque, V.; et al. Beneficial effects of long-term intravenous iron therapy with ferric carboxymaltose in patients with symptomatic heart failure and iron deficiencydagger. Eur. Heart J. 2015, 36, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
Total Cohort | HFrEF, 160 (33%) | HFpEF, 270 (55%) | p-Value | |
---|---|---|---|---|
Baseline characteristics | ||||
LVEF (%) | 48 ± 16 | 27 ± 6 | 60 ± 6 | <0.001 * |
Age, year | 78 ± 11 | 75 ± 12 | 80 ± 10 | <0.001* |
Female sex, n (%) | 217 (43%) | 48 (30%) | 141 (52%) | <0.001 * |
NYHA class, I/II/III/IV (%) | 2/6/37/55 | 1/7/40/52 | 1/7/38/54 | 0.97 |
Length of stay, days | 11 ± 9 | 11 ± 8 | 10 ± 8 | 0.34 |
Coronary artery disease, n (%) | 177 (36%) | 65 (42%) | 83 (32%) | 0.054 |
Hypertension, n (%) | 393 (79%) | 111 (70%) | 223 (84%) | <0.001 * |
Diabetes mellitus, n (%) | 157 (31%) | 47 (30%) | 87 (32%) | 0.61 |
Obesity, n (%) | 231 (47%) | 69 (45%) | 130 (49%) | 0.49 |
Active/past smoker, n (%) | 288 (60%) | 106 (68%) | 145 (56%) | 0.019 * |
Chronic kidney disease, n (%) | 175 (36%) | 49 (31%) | 105 (40%) | 0.081 |
Atrial fibrillation or flutter, n (%) | 222 (45%) | 58 (36%) | 132 (50%) | 0.01 * |
COPD, n (%) | 73 (15%) | 21 (14%) | 38 (16%) | 0.61 |
Iron studies | ||||
Iron deficiency, n (%) | 239 (57%) | 73 (54%) | 123 (56%) | 0.88 |
Absolute iron deficiency, n (%) | 165 (38%) | 49 (37%) | 82 (41%) | 0.64 |
Functional iron deficiency, n (%) | 74 (18%) | 24 (18%) | 30 (15%) | 0.61 |
Haemoglobin level, g/mL | 123 ± 23 | 129 ± 20 | 121 ± 23 | <0.001 * |
Biomarker levels | ||||
CRP, mg/L | 11.4 ± 27.6 | 9.4 ± 19.8 | 12.1 ± 31.5 | 0.064 |
BNP, ng/L | 857 ± 885 | 1279 ± 974 | 648 ± 687 | <0.001 * |
NT-proBNP, pg/mL | 3926 ± 6763 | 7340 ± 8020 | 2695 ± 5171 | <0.001 * |
Iron Deficient | |||||
---|---|---|---|---|---|
Iron Replete | Total | Absolute | Functional | p-Value | |
Female sex, n (%) | 39 (40%) | 79 (64%) | 59 (67%) | 20 (57%) | 0.0012 * |
Age | 79.1 ± 9.2 | 79.1 ± 10.2 | 78.7 ± 10.2 | 82.8 ± 9.6 | 0.038 * |
NYHA class, I/II/III/IV (%) | 2/6/34/44 | 1/9/45/57 | 1/3/32/44 | 0/6/13/13 | 0.19 |
Length of stay, days | 9 ± 6 | 11 ± 7.7 | 11 ± 7 | 11 ± 9.5 | 0.036 * |
CAD, n (%) | 36 (38%) | 35 (29%) | 27 (31%) | 8 (24%) | 0.30 |
Hypertension, n (%) | 84 (87%) | 96 (81%) | 69 (81%) | 27 (82%) | 0.58 |
Diabetes mellitus, n (%) | 35 (36%) | 37 (31%) | 26 (30%) | 11 (32%) | 0.67 |
Obesity, n (%) | 46 (47%) | 60 (50%) | 47 (54%) | 13 (38%) | 0.28 |
Active/past smoker, n (%) | 53 (58%) | 71 (59%) | 51 (59%) | 20 (59%) | 0.98 |
CKD, n (%) | 50 (53%) | 44 (37%) | 26 (31%) | 18 (53%) | 0.008 * |
Atrial fibrillation, n (%) | 50 (52%) | 61 (50%) | 41 (47%) | 20 (59%) | 0.50 |
COPD, n (%) | 11 (12%) | 26 (22%) | 22 (27%) | 4 (12%) | 0.024 * |
CRP | 13.3 ± 51.6 | 9.9 ± 26 | 7.5 ± 20.1 | 24 ± 48.6 | <0.001 * |
BNP | 768 ± 710 | 585 ± 463 | 525 ± 461 | 1090 ± 236 | 0.46 |
NT-proBNP | 3239 ± 6814 | 2389 ± 3174 | 2318 ± 2294 | 2515 ± 7058 | 0.12 |
EF (%) | 60 ± 5 | 60 ± 7.5 | 60 ± 7.62 | 60 ± 7.5 | 0.97 |
Iron Deficient | |||||
---|---|---|---|---|---|
Iron Replete | Total | Absolute | Functional | p-Value | |
Female sex, n (%) | 14 (23%) | 29 (40%) | 24 (49%) | 5 (22%) | 0.007 * |
Age, HFpEF | 74.7 ± 11.1 | 76.4 ± 12.4 | 77.3 ± 13.1 | 74.5 ± 11 | 0.32 |
NYHA class, I/II/III/IV (%) | 0/4/23/34 | 0/6/32/32 | 0/3/24/20 | 0/3/8/11 | 0.74 |
Length of stay, days | 12 ± 8 | 12 ± 9 | 11 ± 10 | 12 ± 6.5 | 0.78 |
CAD, n (%) | 25 (42%) | 28 (41%) | 19 (40%) | 8 (38%) | 0.96 |
Hypertension, n (%) | 45 (74%) | 46 (64%) | 32 (65%) | 13 (59%) | 0.39 |
Diabetes mellitus, n (%) | 18 (30%) | 20 (28%) | 10 (20%) | 9 (41%) | 0.20 |
Obesity, n (%) | 28 (48%) | 29 (40%) | 16 (33%) | 12 (55%) | 0.14 |
Active/past smoker, n (%) | 37 (64%) | 51 (72%) | 32 (67%) | 18 (82%) | 0.30 |
CKD, n (%) | 24 (39%) | 17 (24%) | 10 (21%) | 7 (32%) | 0.12 |
Atrial fibrillation, n (%) | 23 (38%) | 24 (33%) | 14 (29%) | 9 (41%) | 0.49 |
COPD, n (%) | 9 (15%) | 10 (14%) | 8 (17%) | 2 (9%) | 0.74 |
CRP | 11.4 ± 24.6 | 8.7 ± 19.1 | 7.9 ± 12.8 | 11.4 ± 35.6 | 0.33 |
BNP | 1294 ± 983 | 1292 ± 1052 | 1340 ± 678 | 926 ± 737 | 0.41 |
NT-proBNP | 7928 ± 7201 | 6853 ± 10,327 | 6998 ± 10,787 | 3938 ± 7196 | 0.45 |
EF (%) | 27.5 ± 10 | 27.5 ± 10 | 27.5 ± 7.5 | 32.5 ± 8.8 | 0.083 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beale, A.; Carballo, D.; Stirnemann, J.; Garin, N.; Agoritsas, T.; Serratrice, J.; Kaye, D.; Meyer, P.; Carballo, S. Iron Deficiency in Acute Decompensated Heart Failure. J. Clin. Med. 2019, 8, 1569. https://doi.org/10.3390/jcm8101569
Beale A, Carballo D, Stirnemann J, Garin N, Agoritsas T, Serratrice J, Kaye D, Meyer P, Carballo S. Iron Deficiency in Acute Decompensated Heart Failure. Journal of Clinical Medicine. 2019; 8(10):1569. https://doi.org/10.3390/jcm8101569
Chicago/Turabian StyleBeale, Anna, David Carballo, Jerome Stirnemann, Nicolas Garin, Thomas Agoritsas, Jacques Serratrice, David Kaye, Philippe Meyer, and Sebastian Carballo. 2019. "Iron Deficiency in Acute Decompensated Heart Failure" Journal of Clinical Medicine 8, no. 10: 1569. https://doi.org/10.3390/jcm8101569
APA StyleBeale, A., Carballo, D., Stirnemann, J., Garin, N., Agoritsas, T., Serratrice, J., Kaye, D., Meyer, P., & Carballo, S. (2019). Iron Deficiency in Acute Decompensated Heart Failure. Journal of Clinical Medicine, 8(10), 1569. https://doi.org/10.3390/jcm8101569