Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring
Abstract
:1. Introduction
2. Risk Factors for Preeclampsia and Risk Reduction
3. Diagnosis
3.1. Blood Pressure
3.2. Proteinuria
3.3. Laboratory and Imaging Tests
4. Impact on the Foetus
4.1. Outcomes
4.2. Surveillance and Diagnosis of Complications
4.3. Management
5. Long-Term Impact on the Offspring
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ananth, C.V.; Keyes, K.M.; Wapner, R.J. Pre-Eclampsia Rates in the United States, 1980–2010: Age-Period-Cohort Analysis. BMJ 2013, 347, f6564. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef]
- National Guideline Alliance (UK). Hypertension in Pregnancy: Diagnosis and Management (NG133). 2019. Available online: https://www.nice.org.uk/guidance/ng133 (accessed on 3 October 2019).
- Madazli, R.; Yuksel, M.A.; Imamoglu, M.; Tuten, A.; Oncul, M.; Aydin, B.; Demirayak, G. Comparison of Clinical and Perinatal Outcomes in Early- and Late-Onset Preeclampsia. Arch. Gynecol. Obstet. 2014, 290, 53–57. [Google Scholar] [CrossRef]
- Haddad, B.; Deis, S.; Goffinet, F.; Paniel, B.J.; Cabrol, D.; Sibaï, B.M. Maternal and Perinatal Outcomes during Expectant Management of 239 Severe Preeclamptic Women between 24 and 33 Weeks’ Gestation. Am. J. Obstet. Gynecol. 2004, 190, 1590–1595. [Google Scholar] [CrossRef] [PubMed]
- Rezk, M.; Gamal, A.; Emara, M. Maternal and Fetal Outcome in de Novo Preeclampsia in Comparison to Superimposed Preeclampsia: A Two-Year Observational Study. Hypertens. Pregnancy 2015, 34, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.F.; Lazdam, M.; Lewandowski, A.J.; Worton, S.A.; Kelly, B.; Kenworthy, Y.; Adwani, S.; Wilkinson, A.R.; McCormick, K.; Sargent, I.; et al. Cardiovascular Risk Factors in Children and Young Adults Born to Preeclamptic Pregnancies: A Systematic Review. Pediatrics 2012, 129, e1552–e1561. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, E.; Medcalf, K.E.; Park, A.L.; Ray, J.G.; High Risk of Pre-eclampsia Identification Group. Clinical Risk Factors for Pre-Eclampsia Determined in Early Pregnancy: Systematic Review and Meta-Analysis of Large Cohort Studies. BMJ 2016, 353, i1753. [Google Scholar] [CrossRef] [PubMed]
- Askie, L.M.; Duley, L.; Henderson-Smart, D.J.; Stewart, L.A. Antiplatelet Agents for Prevention of Pre-Eclampsia: A Meta-Analysis of Individual Patient Data. Lancet 2007, 369, 1791–1798. [Google Scholar] [CrossRef]
- Bujold, E.; Roberge, S.; Lacasse, Y.; Bureau, M.; Audibert, F.; Marcoux, S.; Forest, J.C.; Giguère, Y. Prevention of Preeclampsia and Intrauterine Growth Restriction with Aspirin Started in Early Pregnancy: A Meta-Analysis. Obstet. Gynecol. 2010, 116, 402–414. [Google Scholar] [CrossRef] [PubMed]
- North, R.A.; McCowan, L.M.E.; Dekker, G.A.; Poston, L.; Chan, E.H.Y.; Stewart, A.W.; Black, M.A.; Taylor, R.S.; Walker, J.J.; Baker, P.N.; et al. Clinical Risk Prediction for Pre-Eclampsia in Nulliparous Women: Development of Model in International Prospective Cohort. BMJ 2011, 342, d1875. [Google Scholar] [CrossRef] [PubMed]
- Bahri Khomami, M.; Joham, A.E.; Boyle, J.A.; Piltonen, T.; Silagy, M.; Arora, C.; Misso, M.L.; Teede, H.J.; Moran, L.J. Increased Maternal Pregnancy Complications in Polycystic Ovary Syndrome Appear to Be Independent of Obesity-A Systematic Review, Meta-Analysis, and Meta-Regression. Obes. Rev. 2019, 20, 659–674. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-F.; Chen, H.-S.; Rao, D.-P.; Gong, J. Association between Polycystic Ovary Syndrome and the Risk of Pregnancy Complications: A PRISMA-Compliant Systematic Review and Meta-Analysis. Medicine (Baltimore) 2016, 95, e4863. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.Z.; Pang, L.H.; Li, M.J.; Fan, X.J.; Huang, R.D.; Chen, H.Y. Obstetric Complications in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Reprod. Biol. Endocrinol. 2013, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Pamidi, S.; Pinto, L.M.; Marc, I.; Benedetti, A.; Schwartzman, K.; Kimoff, R.J. Maternal Sleep-Disordered Breathing and Adverse Pregnancy Outcomes: A Systematic Review and Metaanalysis. Am. J. Obstet. Gynecol. 2014, 210, 52. [Google Scholar] [CrossRef]
- Rustveld, L.O.; Kelsey, S.F.; Sharma, R. Association between Maternal Infections and Preeclampsia: A Systematic Review of Epidemiologic Studies. Matern. Child Health J. 2008, 12, 223–242. [Google Scholar] [CrossRef]
- Bellos, I.; Daskalakis, G.; Pergialiotis, V. Helicobacter Pylori Infection Increases the Risk of Developing Preeclampsia: A Meta-Analysis of Observational Studies. Int. J. Clin. Pract. 2018, 72, 349–353. [Google Scholar] [CrossRef]
- Nourollahpour Shiadeh, M.; Riahi, S.M.; Adam, I.; Saber, V.; Behboodi Moghadam, Z.; Armon, B.; Spotin, A.; Nazari Kangavari, H.; Rostami, A. Helicobacter Pylori Infection and Risk of Preeclampsia: A Systematic Review and Meta-Analysis. J. Matern. Fetal. Neonatal Med. 2019, 32, 324–331. [Google Scholar] [CrossRef]
- Blazquez, A.; Garcia, D.; Rodriguez, A.; Vassena, R.; Figueras, F.; Vernaeve, V. Is Oocyte Donation a Risk Factor for Preeclampsia? A Systematic Review and Meta-Analysis. J. Assist. Reprod. Genet. 2016, 33, 855–863. [Google Scholar] [CrossRef]
- Jeve, Y.B.; Potdar, N.; Opoku, A.; Khare, M. Donor Oocyte Conception and Pregnancy Complications: A Systematic Review and Meta-Analysis. BJOG 2016, 123, 1471–1480. [Google Scholar] [CrossRef]
- Masoudian, P.; Nasr, A.; de Nanassy, J.; Fung-Kee-Fung, K.; Bainbridge, S.A.; El Demellawy, D. Oocyte Donation Pregnancies and the Risk of Preeclampsia or Gestational Hypertension: A Systematic Review and Metaanalysis. Am. J. Obstet. Gynecol. 2016, 214, 328–339. [Google Scholar] [CrossRef]
- McGinnis, R.; Steinthorsdottir, V.; Williams, N.O.; Thorleifsson, G.; Shooter, S.; Hjartardottir, S.; Bumpstead, S.; Stefansdottir, L.; Hildyard, L.; Sigurdsson, J.K.; et al. Variants in the Fetal Genome near FLT1 Are Associated with Risk of Preeclampsia. Nat. Genet. 2017, 49, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Reidy, K.J.; Hjorten, R.C.; Simpson, C.L.; Rosenberg, A.Z.; Rosenblum, S.D.; Kovesdy, C.P.; Tylavsky, F.A.; Myrie, J.; Ruiz, B.L.; Haque, S.; et al. Fetal—Not Maternal—APOL1 Genotype Associated with Risk for Preeclampsia in Those with African Ancestry. Am. J. Hum. Genet. 2018, 103, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Krishna, I.; Martina, B.; Samuel, A. Can the Quantity of Cell-Free Fetal DNA Predict Preeclampsia: A Systematic Review. Prenat. Diagn. 2014, 34, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Black, K.D.; Horowitz, J.A. Inflammatory Markers and Preeclampsia: A Systematic Review. Nurs. Res. 2018, 67, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, F.; Schlussel, M.M.; Vaz, J.S.; Franco-Sena, A.B.; Pinto, T.J.P.; Bastos, F.I.; Adegboye, A.R.A.; Kac, G. C-Reactive Protein and Later Preeclampsia: Systematic Review and Meta-Analysis Taking into Account the Weight Status. J. Hypertens. 2013, 31, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Spracklen, C.N.; Smith, C.J.; Saftlas, A.F.; Robinson, J.G.; Ryckman, K.K. Maternal Hyperlipidemia and the Risk of Preeclampsia: A Meta-Analysis. Am. J. Epidemiol. 2014, 180, 346–358. [Google Scholar] [CrossRef]
- Gallos, I.D.; Sivakumar, K.; Kilby, M.D.; Coomarasamy, A.; Thangaratinam, S.; Vatish, M. Pre-Eclampsia Is Associated with, and Preceded by, Hypertriglyceridaemia: A Meta-Analysis. BJOG 2013, 120, 1321–1332. [Google Scholar] [CrossRef]
- Chien, P.F.; Arnott, N.; Gordon, A.; Owen, P.; Khan, K.S. How Useful Is Uterine Artery Doppler Flow Velocimetry in the Prediction of Pre-Eclampsia, Intrauterine Growth Retardation and Perinatal Death? An Overview. BJOG 2000, 107, 196–208. [Google Scholar] [CrossRef]
- Velauthar, L.; Plana, M.N.; Kalidindi, M.; Zamora, J.; Thilaganathan, B.; Illanes, S.E.; Khan, K.S.; Aquilina, J.; Thangaratinam, S. First-Trimester Uterine Artery Doppler and Adverse Pregnancy Outcome: A Meta-Analysis Involving 55,974 Women. Ultrasound Obstet. Gynecol. 2014, 43, 500–507. [Google Scholar] [CrossRef]
- Al-Rubaie, Z.; Askie, L.M.; Ray, J.G.; Hudson, H.M.; Lord, S.J. The Performance of Risk Prediction Models for Pre-Eclampsia Using Routinely Collected Maternal Characteristics and Comparison with Models That Include Specialised Tests and with Clinical Guideline Decision Rules: A Systematic Review. BJOG 2016, 123, 1441–1452. [Google Scholar] [CrossRef]
- Mol, B.W.J.; Roberts, C.T.; Thangaratinam, S.; Magee, L.A.; de Groot, C.J.M.; Hofmeyr, G.J. Pre-Eclampsia. Lancet 2016, 387, 999–1011. [Google Scholar] [CrossRef]
- Akbari, S.; Khodadadi, B.; Ahmadi, S.A.Y.; Abbaszadeh, S.; Shahsavar, F. Association of Vitamin D Level and Vitamin D Deficiency with Risk of Preeclampsia: A Systematic Review and Updated Meta-Analysis. Taiwan. J. Obstet. Gynecol. 2018, 57, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Mirzakhani, H.; Litonjua, A.A.; McElrath, T.F.; O’Connor, G.; Lee-Parritz, A.; Iverson, R.; Macones, G.; Strunk, R.C.; Bacharier, L.B.; Zeiger, R.; et al. Early Pregnancy Vitamin D Status and Risk of Preeclampsia. J. Clin. Investig. 2016, 126, 4702–4715. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Alobaid, A.; Malhis, T.N.; Khattab, A.F. Effect of Vitamin D3 Supplementation in Pregnancy on Risk of Pre-Eclampsia—Randomized Controlled Trial. Clin. Nutr. 2019, 38, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.-Q.; Qi, H.-P.; Luo, Z.-C.; Fraser, W.D. Maternal Vitamin D Status and Adverse Pregnancy Outcomes: A Systematic Review and Meta-Analysis. J. Matern. Fetal. Neonatal Med. 2013, 26, 889–899. [Google Scholar] [CrossRef]
- Purswani, J.M.; Gala, P.; Dwarkanath, P.; Larkin, H.M.; Kurpad, A.; Mehta, S. The Role of Vitamin D in Pre-Eclampsia: A Systematic Review. BMC Pregnancy Childbirth 2017, 17, 231. [Google Scholar] [CrossRef]
- Arain, N.; Mirza, W.A.; Aslam, M. Review-Vitamin D and the Prevention of Preeclampsia: A Systematic Review. Pak. J. Pharm. Sci. 2015, 28, 1015–1021. [Google Scholar] [PubMed]
- Nassar, N.; Halligan, G.H.; Roberts, C.L.; Morris, J.M.; Ashton, A.W. Systematic Review of First-Trimester Vitamin D Normative Levels and Outcomes of Pregnancy. Am. J. Obstet. Gynecol. 2011, 205, e1–e7. [Google Scholar] [CrossRef]
- Roth, D.E.; Leung, M.; Mesfin, E.; Qamar, H.; Watterworth, J.; Papp, E. Vitamin D Supplementation during Pregnancy: State of the Evidence from a Systematic Review of Randomised Trials. BMJ 2017, 35, j5237. [Google Scholar] [CrossRef]
- Villar, J.; Abdel-Aleem, H.; Merialdi, M.; Mathai, M.; Ali, M.M.; Zavaleta, N.; Purwar, M.; Hofmeyr, J.; Thi Nhu Ngoc, N.; Campódonico, L.; et al. World Health Organization Randomized Trial of Calcium Supplementation among Low Calcium Intake Pregnant Women. Am. J. Obstet. Gynecol. 2006, 194, 639–649. [Google Scholar] [CrossRef]
- Hofmeyr, G.J.; Lawrie, T.A.; Atallah, Á.N.; Torloni, M.R. Calcium Supplementation during Pregnancy for Preventing Hypertensive Disorders and Related Problems. Cochrane Database Syst. Rev. 2018, 10, CD001059. [Google Scholar] [CrossRef] [PubMed]
- Lowe, S.A.; Bowyer, L.; Lust, K.; McMahon, L.P.; Morton, M.; North, R.A.; Paech, M.; Said, J.M. SOMANZ Guidelines for the Management of Hypertensive Disorders of Pregnancy 2014. Aust. N. Z. J. Obstet. Gynaecol. 2015, 55, e1–e29. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M.; August, P.A.; Bakris, G.; Barton, J.R.; Bernstein, I.M.; Druzin, M.; Gaiser, R.R.; Granger, J.R.; Jeyabalan, A.; Johnson, D.D.; et al. Hypertension in Pregnancy: Executive Summary. Obstet. Gynecol. 2013, 122, 1122–1131. [Google Scholar]
- Tenorio, M.B.; Ferreira, R.C.; Moura, F.A.; Bueno, N.B.; Goulart, M.O.F.; Oliveira, A.C.M. Oral Antioxidant Therapy for Prevention and Treatment of Preeclampsia: Meta-Analysis of Randomized Controlled Trials. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 865–876. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Perez-Cuevas, R.; Xiong, X.; Reyes, H.; Roy, C.; Julien, P.; Smith, G.; von Dadelszen, P.; Leduc, L.; Audibert, F.; et al. An International Trial of Antioxidants in the Prevention of Preeclampsia (INTAPP). Am. J. Obstet. Gynecol. 2010, 202, 239.e1. [Google Scholar] [CrossRef] [PubMed]
- Poston, L.; Briley, A.L.; Seed, P.T.; Kelly, F.J.; Shennan, A.H.; Vitamins in Pre-eclampsia (VIP) Trial Consortium. Vitamin C and Vitamin E in Pregnant Women at Risk for Pre-Eclampsia (VIP Trial): Randomised Placebo-Controlled Trial. Lancet 2006, 367, 1145–1154. [Google Scholar] [CrossRef]
- Villar, J.; Ba’aqeel, H.; Piaggio, G.; Lumbiganon, P.; Miguel Belizan, J.; Farnot, U.; Al-Mazrou, Y.; Carroli, G.; Pinol, A.; Donner, A.; et al. WHO Antenatal Care Randomised Trial for the Evaluation of a New Model of Routine Antenatal Care. Lancet 2001, 357, 1551–1564. [Google Scholar] [CrossRef]
- Chappell, L.C.; Seed, P.T.; Briley, A.L.; Kelly, F.J.; Lee, R.; Hunt, B.J.; Parmar, K.; Bewley, S.J.; Shennan, A.H.; Steer, P.J.; et al. Effect of Antioxidants on the Occurrence of Pre-Eclampsia in Women at Increased Risk: A Randomised Trial. Lancet 1999, 354, 810–816. [Google Scholar] [CrossRef]
- Wen, S.W.; White, R.R.; Rybak, N.; Gaudet, L.M.; Robson, S.; Hague, W.; Simms-Stewart, D.; Carroli, G.; Smith, G.; Fraser, W.D.; et al. Effect of High Dose Folic Acid Supplementation in Pregnancy on Pre-Eclampsia (FACT): Double Blind, Phase III, Randomised Controlled, International, Multicentre Trial. BMJ 2018, 362, k3478. [Google Scholar] [CrossRef]
- Saccone, G.; Sarno, L.; Roman, A.; Donadono, V.; Maruotti, G.M.; Martinelli, P. 5-Methyl-Tetrahydrofolate in Prevention of Recurrent Preeclampsia. J. Matern. Neonatal Med. 2016, 29, 916–920. [Google Scholar] [CrossRef]
- Dodd, J.M.; Mcleod, A.; Windrim, R.C.; Kingdom, J. Antithrombotic Therapy for Improving Maternal or Infant Health Outcomes in Women Considered at Risk of Placental Dysfunction. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Camarena Pulido, E.E.; Garcia Benavides, L.; Panduro Baron, J.G.; Pascoe Gonzalez, S.; Madrigal Saray, A.J.; Garcia Padilla, F.E.; Totsuka Sutto, S.E. Efficacy of L-Arginine for Preventing Preeclampsia in High-Risk Pregnancies: A Double-Blind, Randomized, Clinical Trial. Hypertens. Pregnancy 2016, 35, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Marrs, C.C.; Costantine, M.M. Should We Add Pravastatin to Aspirin for Preeclampsia Prevention in High-Risk Women? Clin. Obstet. Gynecol. 2017, 60, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Steyn, D.W.; Odendaal, H.J. Randomised Controlled Trial of Ketanserin and Aspirin in Prevention of Pre-Eclampsia. Lancet 1997, 350, 1267–1271. [Google Scholar] [CrossRef]
- Teran, E.; Hernandez, I.; Nieto, B.; Tavara, R.; Ocampo, J.E.; Calle, A. Coenzyme Q10 Supplementation during Pregnancy Reduces the Risk of Pre-Eclampsia. Int. J. Gynaecol. Obstet. 2009, 105, 43–45. [Google Scholar] [CrossRef]
- Thangaratinam, S.; Rogozinska, E.; Jolly, K.; Glinkowski, S.; Roseboom, T.; Tomlinson, J.W.; Kunz, R.; Mol, B.W.; Coomarasamy, A.; Khan, K.S. Effects of Interventions in Pregnancy on Maternal Weight and Obstetric Outcomes: Meta-Analysis of Randomised Evidence. BMJ 2012, 344, e2088. [Google Scholar] [CrossRef]
- Allen, R.; Rogozinska, E.; Sivarajasingam, P.; Khan, K.S.; Thangaratinam, S. Effect of Diet- And Lifestyle-Based Metabolic Risk-Modifying Interventions on Preeclampsia: A Meta-Analysis. Acta Obstet. Gynecol. Scand. 2014, 93, 973–985. [Google Scholar] [CrossRef]
- Brantsæter, A.L.; Haugen, M.; Samuelsen, S.O.; Torjusen, H.; Trogstad, L.; Alexander, J.; Magnus, P.; Meltzer, H.M. A Dietary Pattern Characterized by High Intake of Vegetables, Fruits, and Vegetable Oils Is Associated with Reduced Risk of Preeclampsia in Nulliparous Pregnant Norwegian Women. J. Nutr. 2009, 139, 1162–1168. [Google Scholar] [CrossRef] [Green Version]
- Dodd, J.M.; Turnbull, D.; McPhee, A.J.; Deussen, A.R.; Grivell, R.M.; Yelland, L.N.; Crowther, C.A.; Wittert, G.; Owens, J.A.; Robinson, J.S. Antenatal Lifestyle Advice for Women Who Are Overweight or Obese: LIMIT Randomised Trial. BMJ 2014, 348, g1285. [Google Scholar] [CrossRef]
- Magro-Malosso, E.R.; Saccone, G.; Di Tommaso, M.; Roman, A.; Berghella, V. Exercise during Pregnancy and Risk of Gestational Hypertensive Disorders: A Systematic Review and Meta-Analysis. Acta Obstet. Gynecol. Scand. 2017, 96, 921–931. [Google Scholar] [CrossRef]
- Meher, S.; Duley, L. Exercise or Other Physical Activity for Preventing Pre-Eclampsia and Its Complications. Cochrane Database Syst. Rev. 2006, 19, CD005942. [Google Scholar] [CrossRef]
- Conde-Agudelo, A.; Althabe, F.; Belizan, J.M.; Kafury-Goeta, A.C. Cigarette Smoking during Pregnancy and Risk of Preeclampsia: A Systematic Review. Am. J. Obstet. Gynecol. 1999, 181, 1026–1035. [Google Scholar] [CrossRef]
- Magee, L.A.; Pels, A.; Helewa, M.; Rey, E.; von Dadelszen, P.; Audibert, F.; Bujold, E.; Côté, A.M.; Douglas, M.J.; Eastabrook, G.; et al. Diagnosis, Evaluation, and Management of the Hypertensive Disorders of Pregnancy: Executive Summary. J. Obstet. Gynaecol. Can. 2014, 36, 416–438. [Google Scholar] [CrossRef]
- Tucker, K.L.; Taylor, K.S.; Crawford, C.; Hodgkinson, J.A.; Bankhead, C.; Carver, T.; Ewers, E.; Glogowska, M.; Greenfield, S.M.; Ingram, L.; et al. Blood Pressure Self-Monitoring in Pregnancy: Examining Feasibility in a Prospective Cohort Study. BMC Pregnancy Childbirth 2017, 17, 442. [Google Scholar] [CrossRef] [PubMed]
- Ross-McGill, H.; Hewison, J.; Hirst, J.; Dowswell, T.; Holt, A.; Brunskill, P.; Thornton, J.G. Antenatal Home Blood Pressure Monitoring: A Pilot Randomised Controlled Trial. Br. J. Obstet. Gynaecol. 2000, 107, 217–221. [Google Scholar] [CrossRef]
- Hinton, L.; Tucker, K.L.; Greenfield, S.M.; Hodgkinson, J.A.; Mackillop, L.; McCourt, C.; Carver, T.; Crawford, C.; Glogowska, M.; Locock, L.; et al. Blood Pressure Self-Monitoring in Pregnancy (BuMP) Feasibility Study; A Qualitative Analysis of Women’s Experiences of Self-Monitoring. BMC Pregnancy Childbirth 2017, 17, 427. [Google Scholar] [CrossRef]
- Brown, M.A. Is There a Role for Ambulatory Blood Pressure Monitoring in Pregnancy? Clin. Exp. Pharmacol. Physiol. 2014, 41, 16–21. [Google Scholar] [CrossRef]
- Waugh, J.J.S.; Bell, S.C.; Kilby, M.D.; Blackwell, C.N.; Seed, P.; Shennan, A.H.; Halligan, A.W.F. Optimal Bedside Urinalysis for the Detection of Proteinuria in Hypertensive Pregnancy: A Study of Diagnostic Accuracy. BJOG 2005, 112, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Menzies, J.; Magee, L.A.; MacNab, Y.C.; Ansermino, J.M.; Li, J.; Douglas, M.J.; Gruslin, A.; Kyle, P.; Lee, S.K.; Moore, M.P.; et al. Current CHS and NHBPEP Criteria for Severe Preeclampsia Do Not Uniformly Predict Adverse Maternal or Perinatal Outcomes. Hypertens. Pregnancy 2007, 26, 447–462. [Google Scholar] [CrossRef]
- Waugh, J.; Hooper, R.; Lamb, E.; Robson, S.; Shennan, A.; Milne, F.; Price, C.; Thangaratinam, S.; Berdunov, V.; Bingham, J. Spot Protein-Creatinine Ratio and Spot Albumin-Creatinine Ratio in the Assessment of Pre-Eclampsia: A Diagnostic Accuracy Study with Decision-Analytic Model-Based Economic Evaluation and Acceptability Analysis. Health Technol. Assess. 2017, 21, 1–90. [Google Scholar] [CrossRef]
- Kucukgoz Gulec, U.; Sucu, M.; Ozgunen, F.T.; Buyukkurt, S.; Guzel, A.B.; Paydas, S. Spot Urine Protein-to-Creatinine Ratio to Predict the Magnitude of 24-Hour Total Proteinuria in Preeclampsia of Varying Severity. J. Obstet. Gynaecol. Can. 2017, 39, 854–860. [Google Scholar] [CrossRef] [PubMed]
- Kyle, P.M.; Fielder, J.N.; Pullar, B.; Horwood, L.J.; Moore, M.P. Comparison of Methods to Identify Significant Proteinuria in Pregnancy in the Outpatient Setting. BJOG 2008, 115, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Côté, A.M.; Brown, M.A.; Lam, E.; Von Dadelszen, P.; Firoz, T.; Liston, R.M.; Magee, L.A. Diagnostic Accuracy of Urinary Spot Protein:Creatinine Ratio for Proteinuria in Hypertensive Pregnant Women: Systematic Review. BMJ 2008, 336, 1003–1006. [Google Scholar] [CrossRef] [PubMed]
- Price, C.P.; Newall, R.G.; Boyd, J.C. Use of Protein: Creatinine Ratio Measurements on Random Urine Samples for Prediction of Significant Proteinuria: A Systematic Review. Clin. Chem. 2005, 51, 1577–1586. [Google Scholar] [CrossRef] [PubMed]
- Karumanchi, S.A.; Epstein, F.H. Placental Ischemia and Soluble Fms-like Tyrosine Kinase 1: Cause or Consequence of Preeclampsia? Kidney Int. 2007, 71, 959–961. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.J.; Lam, C.; Qian, C.; Yu, K.F.; Maynard, S.E.; Sachs, B.P.; Sibai, B.M.; Epstein, F.H.; Romero, R.; Thadhani, R.; et al. Soluble Endoglin and Other Circulating Antiangiogenic Factors in Preeclampsia. N. Engl. J. Med. 2006, 355, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Chappell, L.C.; Duckworth, S.; Seed, P.T.; Griffin, M.; Myers, J.; Mackillop, L.; Simpson, N.; Waugh, J.; Anumba, D.; Kenny, L.C.; et al. Diagnostic Accuracy of Placental Growth Factor in Women with Suspected Preeclampsia: A Prospective Multicenter Study. Circulation 2013, 128, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Duhig, K.E.; Myers, J.; Seed, P.T.; Sparkes, J.; Lowe, J.; Hunter, R.M.; Shennan, A.H.; Chappell, L.C.; Bahl, R.; Bambridge, G.; et al. Placental Growth Factor Testing to Assess Women with Suspected Pre-Eclampsia: A Multicentre, Pragmatic, Stepped-Wedge Cluster-Randomised Controlled Trial. Lancet 2019, 393, 1807–1818. [Google Scholar] [CrossRef]
- Zeisler, H.; Llurba, E.; Chantraine, F.; Vatish, M.; Staff, A.C.; Sennström, M.; Olovsson, M.; Brennecke, S.P.; Stepan, H.; Allegranza, D.; et al. Predictive Value of the SFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N. Engl. J. Med. 2016, 374, 13–22. [Google Scholar] [CrossRef]
- Steegers, E.A.P.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-Eclampsia. Lancet 2010, 376, 631–644. [Google Scholar] [CrossRef]
- Phipps, E.A.; Thadhani, R.; Benzing, T.; Karumanchi, S.A. Pre-Eclampsia: Pathogenesis, Novel Diagnostics and Therapies. Nat. Rev. Nephrol. 2019, 15, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Lemoine, E.; Granger, J.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef] [PubMed]
- ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet. Gynecol. 2019, 133, e1–e25.
- Grant, A.; Valentin, L.; Elbourne, D.; Alexander, S. Routine Formal Fetal Movement Counting and Risk of Antepartum Late Death in Normally Formed Singletons. Lancet 1989, 334, 345–349. [Google Scholar] [CrossRef]
- Lalor, J.G.; Fawole, B.; Alfirevic, Z.; Devane, D. Biophysical Profile for Fetal Assessment in High Risk Pregnancies. Cochrane Database Syst. Rev. 2008, 23, CD000038. [Google Scholar] [CrossRef]
- Grivell, R.M.; Alfirevic, Z.; Gyte, G.M.L.; Devane, D. Antenatal Cardiotocography for Fetal Assessment. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Nabhan, A.F.; Abdelmoula, Y.A. Amniotic Fluid Index versus Single Deepest Vertical Pocket as a Screening Test for Preventing Adverse Pregnancy Outcome. Cochrane Database Syst. Rev. 2008. [Google Scholar] [CrossRef]
- Williams, K.P.; Farquharson, D.F.; Bebbington, M.; Dansereau, J.; Galerneau, F.; Wilson, R.D.; Shaw, D.; Kent, N. Screening for Fetal Well-Being in a High-Risk Pregnant Population Comparing the Nonstress Test with Umbilical Artery Doppler Velocimetry: A Randomized Controlled Clinical Trial. Am. J. Obstet. Gynecol. 2003, 188, 1366–1371. [Google Scholar] [CrossRef]
- Alfirevic, Z.; Stampalija, T.; Dowswell, T. Fetal and Umbilical Doppler Ultrasound in High-Risk Pregnancies. Cochrane Database Syst. Rev. 2017. [Google Scholar] [CrossRef]
- Alfirevic, Z.; Neilson, J.P. Doppler Ultrasonography in High-Risk Pregnancies: Systematic Review with Meta-Analysis. Am. J. Obstet. Gynecol. 1995, 172, 1379–1387. [Google Scholar] [CrossRef]
- Karsdorp, V.H.M.; van Vugt, J.M.G.; van Geijn, H.P.; Kostense, P.J.; Arduim, D.; Montenegro, N.; Todros, T. Clinical Significance of Absent or Reversed End Diastolic Velocity Waveforms in Umbilical Artery. Lancet 1994, 344, 1664–1668. [Google Scholar] [CrossRef]
- Arduini, D.; Rizzo, G.; Romanini, C. The Development of Abnormal Heart Rate Patterns after Absent End-Diastolic Velocity in Umbilical Artery: Analysis of Risk Factors. Am. J. Obstet. Gynecol. 2013, 168, 43–50. [Google Scholar] [CrossRef]
- Westergaard, H.B.; Langhoff-Roos, J.; Lingman, G.; Marsál, K.; Kreiner, S. A Critical Appraisal of the Use of Umbilical Artery Doppler Ultrasound in High-Risk Pregnancies: Use of Meta-Analyses in Evidence-Based Obstetrics. Ultrasound Obstet. Gynecol. 2001, 17, 466–476. [Google Scholar] [CrossRef]
- Yagel, S.; Kivilevitch, Z.; Cohen, S.M.; Valsky, D.V.; Messing, B.; Shen, O.; Achiron, R. The Fetal Venous System, Part II: Ultrasound Evaluation of the Fetus with Congenital Venous System Malformation or Developing Circulatory Compromise. Ultrasound Obstet. Gynecol. 2010, 36, 93–111. [Google Scholar] [CrossRef] [PubMed]
- Baschat, A.A.; Cosmi, E.; Bilardo, C.M.; Wolf, H.; Berg, C.; Rigano, S.; Germer, U.; Moyano, D.; Turan, S.; Hartung, J.; et al. Predictors of Neonatal Outcome in Early-Onset Placental Dysfunction. Obstet. Gynecol. 2007, 109, 253–261. [Google Scholar] [CrossRef]
- Harrington, K.; Thompson, M.O.; Carpenter, R.G.; Nguyen, M.; Campbell, S. Doppler Fetal Circulation in Pregnancies Complicated by Pre-Eclampsia or Delivery of a Small for Gestational Age Baby: 2. Longitudinal Analysis. BJOG An. Int. J. Obstet. Gynaecol. 1999, 106, 453–466. [Google Scholar] [CrossRef] [PubMed]
- Özeren, M.; Dinç, H.; Ekmen, Ü.; Senekayli, C.; Aydemir, V. Umbilical and Middle Cerebral Artery Doppler Indices in Patients with Preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 1999, 82, 11–16. [Google Scholar] [CrossRef]
- Eser, A.; Zulfikaroglu, E.; Eserdag, S.; Kilic, S.; Danisman, N. Predictive Value of Middle Cerebral Artery to Uterine Artery Pulsatility Index Ratio in Preeclampsia. Arch. Gynecol. Obstet. 2011, 284, 307–311. [Google Scholar] [CrossRef]
- Simanaviciute, D.; Gudmundsson, S. Fetal Middle Cerebral to Uterine Artery Pulsatility Index Ratios in Normal and Pre-Eclamptic Pregnancies. Ultrasound Obstet. Gynecol. 2006, 28, 794–801. [Google Scholar] [CrossRef]
- Makhseed, M.; Jirous, J.; Ahmed, M.A.; Viswanathan, D.L. Middle Cerebral Artery to Umbilical Artery Resistance Index Ratio in the Prediction of Neonatal Outcome. Int. J. Gynecol. Obstet. 2000, 71, 119–125. [Google Scholar] [CrossRef]
- Ebrashy, A.; Azmy, O.; Ibrahim, M.; Waly, M.; Edris, A. Middle Cerebral/Umbilical Artery Resistance Index Ratio as Sensitive Parameter for Fetal Well-Being and Neonatal Outcome in Patients with Preeclampsia: Case-Control Study. Croat. Med. J. 2005, 46, 821–825. [Google Scholar] [PubMed]
- Campbell, S.; Griffin, D.R.; Pearce, J.M.; Diaz-Recasens, J.; Cohen-Overbeek, T.E.; Willson, K.; Teague, M.J. New Doppler Technique for Assessing Uteroplacental Blood Flow. Lancet 1983, 321, 675–677. [Google Scholar] [CrossRef]
- Thangaratinam, S.; Ismail, K.M.K.; Sharp, S.; Coomarasamy, A.; Khan, K.S. Accuracy of Serum Uric Acid in Predicting Complications of Pre-Eclampsia: A Systematic Review. BJOG 2006, 169, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Thangaratinam, S.; Coomarasamy, A.; O’Mahony, F.; Sharp, S.; Zamora, J.; Khan, K.S.; Ismail, K.M.K. Estimation of Proteinuria as a Predictor of Complications of Pre-Eclampsia: A Systematic Review. BMC Med. 2009, 7, 10. [Google Scholar] [CrossRef]
- Thangaratinam, S.; Koopmans, C.M.; Iyengar, S.; Zamora, J.; Ismail, K.M.K.; Mol, B.W.J.; Khan, K.S.; TIPPS (Tests in Prediction of Preeclampsia’s Severity) Review Group. Accuracy of Liver Function Tests for Predicting Adverse Maternal and Fetal Outcomes in Women with Preeclampsia: A Systematic Review. Acta Obstet. Gynecol. Scand. 2011, 90, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Tsikas, D.; Bollenbach, A.; Savvidou, M.D. Inverse Correlation between Maternal Plasma Asymmetric Dimethylarginine (ADMA) and Birthweight Percentile in Women with Impaired Placental Perfusion: Circulating ADMA as an NO-Independent Indicator of Fetal Growth Restriction? Amino Acids 2018, 50, 341–351. [Google Scholar] [CrossRef]
- Ali, Z.; Bokhari, F.A.; Zaki, S.; Zargham, U.; Tauseef, A.; Khakan, S. Correlation of CRP Levels in Third Trimester with Fetal Birth Weight in Preeclamptic and Normotensive Pregnant Women. J. Coll. Physicians Surg. Pak. 2015, 25, 111–114. [Google Scholar] [PubMed]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and Causes of Preterm Birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef]
- National Guideline Alliance (UK). Preterm Labour and Birth (NG25). 2015. Available online: https://www.nice.org.uk/guidance/ng25 (accessed on 3 October 2019).
- Roberts, D.; Brown, J.; Medley, N.; Dalziel, S.R. Antenatal Corticosteroids for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth. Cochrane Database Syst. Rev. 2017, 3, CD004454. [Google Scholar]
- Brownfoot, F.C.; Gagliardi, D.I.; Bain, E.; Middleton, P.; Crowther, C.A. Different Corticosteroids and Regimens for Accelerating Fetal Lung Maturation for Women at Risk of Preterm Birth. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Kashanian, M.; Eshraghi, N.; Sheikhansari, N.; Bordbar, A.; Khatami, E. Comparison between Two Doses of Betamethasone Administration with 12 Hours vs. 24 Hours Intervals on Prevention of Respiratory Distress Syndrome: A Randomised Trial. J. Obstet. Gynaecol. 2018, 38, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Porto, A.M.F.; Coutinho, I.C.; Correia, J.B.; Amorim, M.M.R. Effectiveness of Antenatal Corticosteroids in Reducing Respiratory Disorders in Late Preterm Infants: Randomised Clinical Trial. BMJ 2011, 342, d1696. [Google Scholar] [CrossRef] [PubMed]
- Saccone, G.; Berghella, V. Antenatal Corticosteroids for Maturity of Term or near Term Fetuses: Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMJ 2016, 355, i5044. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.A.; Lewandowski, A.J.; Worton, S.A.; Davis, E.F.; Lazdam, M.; Francis, J.; Neubauer, S.; Lucas, A.; Singhal, A.; Leeson, P. Antenatal Glucocorticoid Exposure and Long-Term Alterations in Aortic Function and Glucose Metabolism. Pediatrics 2012, 129, e1282–e1290. [Google Scholar] [CrossRef] [PubMed]
- Crowther, C.A.; Haslam, R.R.; Hiller, J.E.; Doyle, L.W.; Robinson, J.S. Neonatal Respiratory Distress Syndrome after Repeat Exposure to Antenatal Corticosteroids: A Randomised Controlled Trial. Lancet 2006, 367, 1913–1919. [Google Scholar] [CrossRef]
- Murphy, K.E.; Hannah, M.E.; Willan, A.R.; Hewson, S.A.; Ohlsson, A.; Kelly, E.N.; Matthews, S.G.; Saigal, S.; Asztalos, E.; Ross, S.; et al. Multiple Courses of Antenatal Corticosteroids for Preterm Birth (MACS): A Randomised Controlled Trial. Lancet 2008, 372, 2143–2151. [Google Scholar] [CrossRef]
- Atarod, Z.; Taghipour, M.; Roohanizadeh, H.; Fadavi, S.; Taghavipour, M. Effects of Single Course and Multicourse Betamethasone Prior to Birth in the Prognosis of the Preterm Neonates. J. Res. Med. Sci. 2014, 19, 715–719. [Google Scholar] [PubMed]
- Crowther, C.A.; Doyle, L.W.; Haslam, R.R.; Hiller, J.E.; Harding, J.E.; Robinson, J.S. Outcomes at 2 Years of Age after Repeat Doses of Antenatal Corticosteroids. N. Engl. J. Med. 2007, 357, 1179–1189. [Google Scholar] [CrossRef] [Green Version]
- Asztalos, E.V.; Murphy, K.E.; Willan, A.R.; Matthews, S.G.; Ohlsson, A.; Saigal, S.; Armson, B.A.; Kelly, E.N.; Delisle, M.F.; Gafni, A.; et al. Multiple Courses of Antenatal Corticosteroids for Preterm Birth Study Outcomes in Children at 5 Years of Age (MACS-5). JAMA Pediatr. 2013, 167, 1102–1110. [Google Scholar]
- Asztalos, E.V.; Murphy, K.E.; Hannah, M.E.; Willan, A.R.; Matthews, S.G.; Ohlsson, A.; Kelly, E.N.; Saigal, S.; Ross, S.; Delisle, M.-F.; et al. Multiple Courses of Antenatal Corticosteroids for Preterm Birth Study: 2-Year Outcomes. Pediatrics 2010, 126, E1045–E1055. [Google Scholar]
- Doyle, L.W.; Crowther, C.A.; Middleton, P.; Marret, S.; Rouse, D. Magnesium Sulphate for Women at Risk of Preterm Birth for Neuroprotection of the Fetus. Cochrane Database Syst. Rev. 2009. [Google Scholar] [CrossRef]
- Duley, L. Do Women with Pre-Eclampsia, and Their Babies, Benefit from Magnesium Sulphate? The Magpie Trial: A Randomised Placebo-Controlled Trial. Lancet 2002, 359, 1877–1890. [Google Scholar]
- Duley, L.; Farrell, B.; Armstrong, N.; Spark, P.; Roberts, B.; Smyth, R.; Tivnan, M.; Laws, A.; Corfield, N.; Salter, A.; et al. The Magpie Trial: A Randomised Trial Comparing Magnesium Sulphate with Placebo for Pre-Eclampsia. Outcome for Children at 18 Months. BJOG 2007, 114, 289–299. [Google Scholar]
- Bombrys, A.E.; Barton, J.R.; Nowacki, E.A.; Habli, M.; Pinder, L.; How, H.; Sibai, B.M. Expectant Management of Severe Preeclampsia at Less than 27 Weeks’ Gestation: Maternal and Perinatal Outcomes According to Gestational Age by Weeks at Onset of Expectant Management. Am. J. Obstet. Gynecol. 2008, 199, e1–e6. [Google Scholar] [CrossRef]
- Budden, A.; Wilkinson, L.; Buksh, M.J.; McCowan, L. Pregnancy Outcome in Women Presenting with Pre-Eclampsia at Less than 25 Weeks Gestation. Aust. N. Z. J. Obstet. Gynaecol. 2006, 46, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Churchill, D.; Duley, L.; Thornton, J.G.; Moussa, M.; Ali, H.S.M.; Walker, K.F. Interventionist versus Expectant Care for Severe Pre-Eclampsia between 24 and 34 Weeks’ Gestation. Cochrane Database Syst. Rev. 2018. [Google Scholar] [CrossRef]
- Bernardes, T.P.; Zwertbroek, E.F.; Broekhuijsen, K.; Koopmans, C.; Boers, K.; Owens, M.; Thornton, J.; van Pampus, M.G.; Scherjon, S.A.; Wallace, K.; et al. Delivery or Expectant Management for Prevention of Adverse Maternal and Neonatal Outcomes in Hypertensive Disorders of Pregnancy: An Individual Participant Data Meta-Analysis. Ultrasound Obstet. Gynecol. 2019, 53, 443–453. [Google Scholar] [CrossRef]
- Chappell, L.C.; Green, M.; Marlow, N.; Sandall, J.; Hunter, R.; Robson, S.; Bowler, U.; Chiocchia, V.; Hardy, P.; Juszczak, E.; et al. Planned Delivery or Expectant Management for Late Preterm Pre-Eclampsia: Study Protocol for a Randomised Controlled Trial (PHOENIX Trial). Trials 2019, 20, 85. [Google Scholar] [CrossRef]
- Koopmans, C.M.; Bijlenga, D.; Groen, H.; Vijgen, S.M.C.; Aarnoudse, J.G.; Bekedam, D.J.; van den Berg, P.P.; de Boer, K.; Burggraaff, J.M.; Bloemenkamp, K.W.M.; et al. Induction of Labour versus Expectant Monitoring for Gestational Hypertension or Mild Pre-Eclampsia after 36 Weeks’ Gestation (HYPITAT): A Multicentre, Open-Label Randomised Controlled Trial. Lancet 2009, 374, 979–988. [Google Scholar] [CrossRef]
- Thornton, J.G.; Hornbuckle, J.; Vail, A.; Spiegelhalter, D.J.; Levene, M. GRIT study group. Infant Wellbeing at 2 Years of Age in the Growth Restriction Intervention Trial (GRIT): Multicentred Randomised Controlled Trial. Lancet 2004, 364, 513–520. [Google Scholar]
- Van Bulck, B.; Kalakoutis, G.M.; Sak, P.; Schneider, K.T.M.; Major, T.; Karpathios, S.E.; Todros, T.; Arduini, D.; Tranquilli, A.; Tenore, A.C.; et al. A Randomised Trial of Timed Delivery for the Compromised Preterm Fetus: Short Term Outcomes and Bayesian Interpretation. BJOG 2003, 110, 27–32. [Google Scholar]
- Bilardo, C.M.; Wolf, H.; Stigter, R.H.; Ville, Y.; Baez, E.; Visser, G.H.A.; Hecher, K. Relationship between Monitoring Parameters and Perinatal Outcome in Severe, Early Intrauterine Growth Restriction. Ultrasound Obstet. Gynecol. 2004, 23, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Lees, C.C.; Marlow, N.; Van Wassenaer-Leemhuis, A.; Arabin, B.; Bilardo, C.M.; Brezinka, C.; Calvert, S.; Derks, J.B.; Diemert, A.; Duvekot, J.J.; et al. 2 Year Neurodevelopmental and Intermediate Perinatal Outcomes in Infants with Very Preterm Fetal Growth Restriction (TRUFFLE): A Randomised Trial. Lancet 2015, 385, 2162–2172. [Google Scholar] [CrossRef]
- Sameshima, H.; Kodama, Y.; Ikenoue, T.; Kajiwara, Y. Antithrombin Improves Fetal Condition in Women with Severe Pre-Eclampsia before 32 Weeks of Gestation; a Randomized, Double-Blind, Placebo-Controlled Trial. J. Obstet. Gynaecol. Res. 2008, 34, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Herraiz, S.; Pellicer, B.; Serra, V.; Cauli, O.; Cortijo, J.; Felipo, V.; Pellicer, A. Sildenafil Citrate Improves Perinatal Outcome in Fetuses from Pre-Eclamptic Rats. BJOG 2012, 119, 1394–1402. [Google Scholar] [CrossRef] [PubMed]
- Costantine, M.M.; Cleary, K. Pravastatin for the Prevention of Preeclampsia in High-Risk Pregnant Women. Obstet. Gynecol. 2013, 121, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Brownfoot, F.C.; Tong, S.; Hannan, N.J.; Binder, N.K.; Walker, S.P.; Cannon, P.; Hastie, R.; Onda, K.; Kaitu’U-Lino, T.J. Effects of Pravastatin on Human Placenta, Endothelium, and Women with Severe Preeclampsia. Hypertension 2015, 66, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Costantine, M.M.; Cleary, K.; Hebert, M.F.; Ahmed, M.S.; Brown, L.M.; Ren, Z.; Easterling, T.R.; Haas, D.M.; Haneline, L.S.; Caritis, S.N.; et al. Safety and Pharmacokinetics of Pravastatin Used for the Prevention of Preeclampsia in High-Risk Pregnant Women: A Pilot Randomized Controlled Trial. Am. J. Obstet. Gynecol. 2016, 214, e17. [Google Scholar] [CrossRef]
- Brownfoot, F.C.; Hastie, R.; Hannan, N.J.; Cannon, P.; Tuohey, L.; Parry, L.J.; Senadheera, S.; Illanes, S.E.; Kaitu’U-Lino, T.J.; Tong, S. Metformin as a Prevention and Treatment for Preeclampsia: Effects on Soluble Fms-like Tyrosine Kinase 1 and Soluble Endoglin Secretion and Endothelial Dysfunction. Am. J. Obstet. Gynecol. 2016, 214, e15. [Google Scholar] [CrossRef]
- Thadhani, R.; Kisner, T.; Hagmann, H.; Bossung, V.; Noack, S.; Schaarschmidt, W.; Jank, A.; Kribs, A.; Cornely, O.A.; Kreyssig, C.; et al. Pilot Study of Extracorporeal Removal of Soluble Fms-like Tyrosine Kinase 1 in Preeclampsia. Circulation 2011, 124, 940–950. [Google Scholar] [CrossRef]
- Thadhani, R.; Hagmann, H.; Schaarschmidt, W.; Roth, B.; Cingoez, T.; Karumanchi, S.A.; Wenger, J.; Lucchesi, K.J.; Tamez, H.; Lindner, T.; et al. Removal of Soluble Fms-like Tyrosine Kinase-1 by Dextran Sulfate Apheresis in Preeclampsia. J. Am. Soc. Nephrol. 2016, 27, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Perry, H.; Khalil, A.; Thilaganathan, B. Preeclampsia and the Cardiovascular System: An Update. Trends Cardiovasc. Med. 2018, 28, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Thilaganathan, B.; Kalafat, E. Cardiovascular System in Preeclampsia and Beyond. Hypertension 2019, 73, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, R.; Dunford, J.; Mehran, R.; Robson, S.; Kunadian, V. Pre-Eclampsia and Future Cardiovascular Risk among Women: A Review. J. Am. Coll. Cardiol. 2014, 63, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.F.; Lewandowski, A.J.; Aye, C.; Williamson, W.; Boardman, H.; Huang, R.C.; Mori, T.A.; Newnham, J.; Beilin, L.J.; Leeson, P. Clinical Cardiovascular Risk during Young Adulthood in Offspring of Hypertensive Pregnancies: Insights from a 20-Year Prospective Follow-up Birth Cohort. BMJ Open 2015, 5, e008136. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.; Peeters, L.L.; Stehouwer, C.D.A. Preeclampsia and Increased Blood Pressure in the Offspring: Meta-Analysis and Critical Review of the Evidence. J. Hypertens. 2009, 27, 1955–1959. [Google Scholar] [CrossRef] [PubMed]
- Kajantie, E.; Eriksson, J.G.; Osmond, C.; Thornburg, K.; Barker, D.J.P. Pre-Eclampsia Is Associated With Increased Risk of Stroke in the Adult Offspring. Stroke 2009, 40, 1176–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazdam, M.; De La Horra, A.; Diesch, J.; Kenworthy, Y.; Davis, E.; Lewandowski, A.J.; Szmigielski, C.; Shore, A.; MacKillop, L.; Kharbanda, R.; et al. Unique Blood Pressure Characteristics in Mother and Offspring after Early Onset Preeclampsia. Hypertension 2012, 60, 1338–1345. [Google Scholar] [CrossRef] [PubMed]
- Lazdam, M.; De La Horra, A.; Pitcher, A.; Mannie, Z.; Diesch, J.; Trevitt, C.; Kylintireas, I.; Contractor, H.; Singhal, A.; Lucas, A.; et al. Elevated Blood Pressure in Offspring Born Premature to Hypertensive Pregnancy: Is Endothelial Dysfunction the Underlying Vascular Mechanism? Hypertension 2010, 56, 159–165. [Google Scholar] [CrossRef]
- Alsnes, I.V.; Vatten, L.J.; Fraser, A.; Bjørngaard, J.H.; Rich-Edwards, J.; Romundstad, P.R.; Åsvold, B.O. Hypertension in Pregnancy and Offspring Cardiovascular Risk in Young Adulthood: Prospective and Sibling Studies in the HUNT Study (Nord-Trøndelag Health Study) in Norway. Hypertension 2017, 69, 591–598. [Google Scholar] [CrossRef]
- Yu, G.Z.; Leeson, P. Hypertension: Hypertension in Pregnancy: A Risk Factor for the Whole Family? Nat. Rev. Nephrol. 2017, 13, 326–327. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.F.; Newton, L.; Lewandowski, A.J.; Lazdam, M.; Kelly, B.A.; Kyriakou, T.; Leeson, P. Pre-Eclampsia and Offspring Cardiovascular Health: Mechanistic Insights from Experimental Studies. Clin. Sci. 2012, 123, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Akcakus, M.; Altunay, L.; Yikilmaz, A.; Yazici, C.; Koklu, E. The Relationship between Abdominal Aortic Intima-Media Thickness and Lipid Profile in Neonates Born to Mothers with Preeclampsia. J. Pediatr. Endocrinol. Metab. 2010, 23, 1143–1149. [Google Scholar] [CrossRef]
- Kvehaugen, A.S.; Dechend, R.; Ramstad, H.B.; Troisi, R.; Fugelseth, D.; Staff, A.C. Endothelial Function and Circulating Biomarkers Are Disturbed in Women and Children after Preeclampsia. Hypertension 2011, 58, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Jayet, P.Y.; Rimoldi, S.F.; Stuber, T.; Salinas Salmòn, C.; Hutter, D.; Rexhaj, E.; Thalmann, S.; Schwab, M.; Turini, P.; Sartori-Cucchia, C.; et al. Pulmonary and Systemic Vascular Dysfunction in Young Offspring of Mothers with Preeclampsia. Circulation 2010, 122, 488–494. [Google Scholar] [CrossRef]
- Lawlor, D.A.; MacDonald-Wallis, C.; Fraser, A.; Nelson, S.M.; Hingorani, A.; Davey Smith, G.; Sattar, N.; Deanfield, J. Cardiovascular Biomarkers and Vascular Function during Childhood in the Offspring of Mothers with Hypertensive Disorders of Pregnancy: Findings from the Avon Longitudinal Study of Parents and Children. Eur. Heart J. 2012, 33, 335–345. [Google Scholar] [CrossRef]
- Yu, G.Z.; Aye, C.Y.L.; Lewandowski, A.J.; Davis, E.F.; Khoo, C.P.; Newton, L.; Yang, C.T.; Al Haj Zen, A.; Simpson, L.J.; O’Brien, K.; et al. Association of Maternal Antiangiogenic Profile at Birth with Early Postnatal Loss of Microvascular Density in Offspring of Hypertensive Pregnancies. Hypertension 2016, 68, 749–759. [Google Scholar] [CrossRef]
- Yu, G.Z.; Reilly, S.; Lewandowski, A.J.; Aye, C.Y.L.; Simpson, L.J.; Newton, L.D.; Davis, E.F.; Zhu, S.J.; Fox, W.R.; Goel, A.; et al. Neonatal MicroRNA Profile Determines Endothelial Function in Offspring of Hypertensive Pregnancies. Hypertension 2018, 72, 937–945. [Google Scholar] [CrossRef]
- Timpka, S.; Macdonald-Wallis, C.; Hughes, A.D.; Chaturvedi, N.; Franks, P.W.; Lawlor, D.A.; Fraser, A. Hypertensive Disorders of Pregnancy and Offspring Cardiac Structure and Function in Adolescence. J. Am. Heart Assoc. 2016, 5, e003906. [Google Scholar] [CrossRef]
- Lewandowski, A.J.; Augustine, D.; Lamata, P.; Davis, E.F.; Lazdam, M.; Francis, J.; McCormick, K.; Wilkinson, A.R.; Singhal, A.; Lucas, A.; et al. Preterm Heart in Adult Life: Cardiovascular Magnetic Resonance Reveals Distinct Differences in Left Ventricular Mass, Geometry, and Function. Circulation 2013, 127, 197–206. [Google Scholar] [CrossRef]
- Aye, C.Y.L.; Lewandowski, A.J.; Oster, J.; Upton, R.; Davis, E.; Kenworthy, Y.; Boardman, H.; Yu, G.Z.; Siepmann, T.; Adwani, S.; et al. Neonatal Autonomic Function after Pregnancy Complications and Early Cardiovascular Development. Pediatr. Res. 2018, 84, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Aye, C.Y.L.; Lewandowski, A.J.; Lamata, P.; Upton, R.; Davis, E.; Ohuma, E.O.; Kenworthy, Y.; Boardman, H.; Wopperer, S.; Packham, A.; et al. Disproportionate Cardiac Hypertrophy during Early Postnatal Development in Infants Born Preterm. Pediatr. Res. 2017, 82, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Nathan, H.L.; Seed, P.T.; Hezelgrave, N.L.; De Greeff, A.; Lawley, E.; Anthony, J.; Hall, D.R.; Steyn, W.; Chappell, L.C.; Shennan, A.H. Early Warning System Hypertension Thresholds to Predict Adverse Outcomes in Pre-Eclampsia: A Prospective Cohort Study. Pregnancy Hypertens. 2018, 12, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Nathan, H.L.; Duhig, K.; Vousden, N.; Lawley, E.; Seed, P.T.; Sandall, J.; Bellad, M.B.; Brown, A.C.; Chappell, L.C.; Goudar, S.S.; et al. Evaluation of a Novel Device for the Management of High Blood Pressure and Shock in Pregnancy in Low-Resource Settings: Study Protocol for a Stepped-Wedge Cluster-Randomised Controlled Trial (CRADLE-3 Trial). Trials 2018, 19, 206. [Google Scholar] [CrossRef] [PubMed]
Preeclampsia is Defined as Gestational Hypertension Associated with New-Onset Maternal or Uteroplacental Dysfunction at or after 20 Weeks’ Gestation | |
---|---|
Gestational hypertension | |
Systolic blood pressure ≥ 140 and/or diastolic blood pressure ≥ 90 | |
Blood pressure should be repeated to confirm true hypertension | |
A liquid crystal sphygmomanometer should be used with appropriate size cuff. Or, if unavailable an appropriately calibrated automated device. | |
Accompanied by at ≥1 of the following new-onset conditions: | |
Proteinuria | Initial assessment with automated dipstick urinalysis. If unavailable, visual analysis can be used. |
If dipstick is positive (≥1+), confirmed with spot urine. Abnormal if P:Cr ≥ 30 mg/mmol or A:Cr ≥ 8 mg/mmol | |
Renal complications | Acute Kidney Injury (creatinine ≥ 90 umol/L) |
Liver complications | Elevated transaminases, with or without right upper quadrant of epigastric abdominal pain |
Neurological complications | Eclampsia, altered mental status, blindness, stroke, clonus, severe and persistent visual scotomata |
Haematological complications | Thrombocytopenia (platelet count < 150000/µL, disseminated intravascular coagulation, haemolysis) |
Uteroplacental dysfunction | Foetal growth restriction, abnormal umbilical artery Doppler wave form analysis, stillbirth |
Guideline | Cardiotocograph | Biophysical Profile | Amniotic Fluid Volume | Umbilical Artery Doppler | Ultrasound for Foetal Growth |
---|---|---|---|---|---|
NICE (United Kingdom) † [3] | At diagnosis. If normal, do not routinely repeat unless indicated. | Not recommended | At diagnosis and every two weeks. | At diagnosis and every two weeks. | At diagnosis and every two weeks. |
SOMANZ (Australia and New Zealand) * [43] | Twice weekly or more frequently if indicated. | Not recommended | At diagnosis and every two to three weeks. | At diagnosis and every two to three weeks. | At diagnosis and every two to three weeks. |
ACOG (United States of America) [44,84] | At diagnosis, then twice weekly. | If CTG is non-reactive. | At diagnosis, then at least once weekly. | Adjunct if there is evidence of foetal growth restriction. | At diagnosis and every three to four weeks. |
SOGC (Canada) [64] | Recommended, however timing not specified. | Not recommended | Recommended, however timing not specified. | Recommended, however timing not specified. | Recommended. Timing not specified. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fox, R.; Kitt, J.; Leeson, P.; Aye, C.Y.L.; Lewandowski, A.J. Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring. J. Clin. Med. 2019, 8, 1625. https://doi.org/10.3390/jcm8101625
Fox R, Kitt J, Leeson P, Aye CYL, Lewandowski AJ. Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring. Journal of Clinical Medicine. 2019; 8(10):1625. https://doi.org/10.3390/jcm8101625
Chicago/Turabian StyleFox, Rachael, Jamie Kitt, Paul Leeson, Christina Y.L. Aye, and Adam J. Lewandowski. 2019. "Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring" Journal of Clinical Medicine 8, no. 10: 1625. https://doi.org/10.3390/jcm8101625
APA StyleFox, R., Kitt, J., Leeson, P., Aye, C. Y. L., & Lewandowski, A. J. (2019). Preeclampsia: Risk Factors, Diagnosis, Management, and the Cardiovascular Impact on the Offspring. Journal of Clinical Medicine, 8(10), 1625. https://doi.org/10.3390/jcm8101625