ICSI versus Conventional IVF in Women Aged 40 Years or More and Unexplained Infertility: A Retrospective Evaluation of 685 Cycles with Propensity Score Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. ART Procedure
2.3. Preparation of Semen Samples and in Vitro Fertilization
2.4. Embryo Selection and Transfer
2.5. Statistical Analysis
2.6. Propensity Score
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Palermo, G.; Joris, H.; Devroey, P.; Van Steirteghem, A.C. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 1992, 340, 17–18. [Google Scholar] [CrossRef]
- Dyer, S.; Chambers, G.M.; de Mouzon, J.; Nygren, K.G.; Zegers-Hochschild, F.; Mansour, R.; Ishihara, O.; Banker, M.; Adamson, G.D. International Committee for Monitoring Assisted Reproductive Technologies world report: Assisted Reproductive Technology 2008, 2009 and 2010. Hum. Reprod. 2016, 31, 1588–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansour, R.; Ishihara, O.; Adamson, G.D.; Dyer, S.; de Mouzon, J.; Nygren, K.G.; Sullivan, E.; Zegers-Hochschild, F. International Committee for Monitoring Assisted Reproductive Technologies world report: Assisted Reproductive Technology 2006. Hum. Reprod. 2014, 29, 1536–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Wyns, C.; Mocanu, E.; Motrenko, T.; Scaravelli, G.; Smeenk, J.; Vidakovic, S.; Goossens, V.; et al. ART in Europe, 2014: Results generated from European registries by ESHRE: The European IVF-monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE). Hum. Reprod. 2018, 33, 1586–1601. [Google Scholar] [CrossRef]
- Boulet, S.L.; Mehta, A.; Kissin, D.M.; Warner, L.; Kawwass, J.F.; Jamieson, D.J. Trends in use of and reproductive outcomes associated with intracytoplasmic sperm injection. JAMA 2015, 313, 255–263. [Google Scholar] [CrossRef]
- Johnson, L.N.C.; Sasson, I.E.; Sammel, M.D.; Dokras, A. Does intracytoplasmic sperm injection improve the fertilization rate and decrease the total fertilization failure rate in couples with well-defined unexplained infertility? A systematic review and meta-analysis. Fertil. Steril. 2013, 100, 704–711. [Google Scholar] [CrossRef]
- Tournaye, H.; Verheyen, G.; Albano, C.; Camus, M.; Van Landuyt, L.; Devroey, P.; Van Steirteghem, A. Intracytoplasmic sperm injection versus in vitro fertilization: A randomized controlled trial and a meta-analysis of the literature. Fertil. Steril. 2002, 78, 1030–1037. [Google Scholar] [CrossRef]
- Van Rumste, M.M.E.; Evers, J.L.H.; Farquhar, C.M. ICSI versus conventional techniques for oocyte insemination during IVF in patients with non-male factor subfertility: A Cochrane review. Hum. Reprod. 2004, 19, 223–227. [Google Scholar] [CrossRef]
- Li, Z.; Wang, A.Y.; Bowman, M.; Hammarberg, K.; Farquhar, C.; Johnson, L.; Safi, N.; Sullivan, E.A. ICSI does not increase the cumulative live birth rate in non-male factor infertility. Hum. Reprod. 2018, 33, 1322–1330. [Google Scholar] [CrossRef]
- Luna, M.; Bigelow, C.; Duke, M.; Ruman, J.; Sandler, B.; Grunfeld, L.; Copperman, A.B. Should ICSI be recommended routinely in patients with four or fewer oocytes retrieved? J. Assist. Reprod. Genet. 2011, 28, 911–915. [Google Scholar] [CrossRef] [Green Version]
- Sfontouris, I.A.; Kolibianakis, E.M.; Lainas, G.T.; Navaratnarajah, R.; Tarlatzis, B.C.; Lainas, T.G. Live birth rates using conventional in vitro fertilization compared to intracytoplasmic sperm injection in Bologna poor responders with a single oocyte retrieved. J. Assist. Reprod. Genet. 2015, 32, 691–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, M.; Rindfuss, R.R.; McDonald, P.; te Velde, E. ESHRE Reproduction and Society Task Force Why do people postpone parenthood? Reasons and social policy incentives. Hum. Reprod. Update 2011, 17, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, C.; Tekin, Y.B.; Sakinci, M.; Ercan, C.M. Effects of maternal ageing on ICSI outcomes and embryo development in relation to oocytes morphological characteristics of birefringent structures. Zygote 2015, 23, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.Y.; Garrett, C.; Baker, H.W.G. Clinical application of sperm-oocyte interaction tests in in vitro fertilization--embryo transfer and intracytoplasmic sperm injection programs. Fertil. Steril. 2004, 82, 1251–1263. [Google Scholar] [CrossRef]
- WHO. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Tannus, S.; Son, W.-Y.; Gilman, A.; Younes, G.; Shavit, T.; Dahan, M.-H. The role of intracytoplasmic sperm injection in non-male factor infertility in advanced maternal age. Hum. Reprod. 2017, 32, 119–124. [Google Scholar] [CrossRef]
- Holte, J.; Berglund, L.; Milton, K.; Garello, C.; Gennarelli, G.; Revelli, A.; Bergh, T. Construction of an evidence-based integrated morphology cleavage embryo score for implantation potential of embryos scored and transferred on day 2 after oocyte retrieval. Hum. Reprod. 2007, 22, 548–557. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Joffe, M.M.; Rosenbaum, P.R. Invited commentary: Propensity scores. Am. J. Epidemiol. 1999, 150, 327–333. [Google Scholar] [CrossRef]
- Abu-Hassan, D.; Al-Hasani, S. The use of ICSI for all cases of in-vitro conception. Hum. Reprod. 2003, 18, 893–894, author reply 894–895. [Google Scholar] [CrossRef]
- Tucker, M.; Graham, J.; Han, T.; Stillman, R.; Levy, M. Conventional insemination versus intracytoplasmic sperm injection. Lancet 2001, 358, 1645–1646. [Google Scholar] [CrossRef]
- Salute, M. Della Relazione del Ministro della Salute al Parlamento Sullo Stato di Attuazione della Legge Contenente Norme in Materia di Procreazione Medicalmente Assistita (L. 19 febbraio 2004, n. 40, articolo 15)-anno. 2019. Available online: http://www.salute.gov.it/portale/documentazione/p6_2_2_1.jsp?lingua=italiano&id=2866 (accessed on 9 September 2019).
- Sunderam, S.; Kissin, D.M.; Crawford, S.B.; Folger, S.G.; Jamieson, D.J.; Warner, L.; Barfield, W.D. Assisted Reproductive Technology Surveillance—United States, 2014. MMWR Surveill. Summ. 2017, 66, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Check, J.H.; Chase, D.S.; Horwath, D.; Yuan, W.; Garberi-Levito, M.C.; Press, M. Oocytes from women of advanced reproductive age do not appear to have an increased risk of zona pellucida hardening. Clin. Exp. Obstet. Gynecol. 2012, 39, 440–441. [Google Scholar] [PubMed]
- Shuai, H.-L.; Ye, Q.; Huang, Y.-H.; Xie, B.-G. Comparison of conventional in vitro fertilisation and intracytoplasmic sperm injection outcomes in patients with moderate oligoasthenozoospermia. Andrologia 2015, 47, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Ebner, T.; Yaman, C.; Moser, M.; Sommergruber, M.; Jesacher, K.; Tews, G. A prospective study on oocyte survival rate after ICSI: Influence of injection technique and morphological features. J. Assist. Reprod. Genet. 2001, 18, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.P.; Shen, S.; Dobson, A.T.; Fujimoto, V.Y.; McCulloch, C.E.; Cedars, M.I. Oocyte degeneration after intracytoplasmic sperm injection: A multivariate analysis to assess its importance as a laboratory or clinical marker. Fertil. Steril. 2006, 85, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Farhi, J.; Cohen, K.; Mizrachi, Y.; Weissman, A.; Raziel, A.; Orvieto, R. Should ICSI be implemented during IVF to all advanced-age patients with non-male factor subfertility? Reprod. Biol. Endocrinol. 2019, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Sustar, K.; Rozen, G.; Agresta, F.; Polyakov, A. Use of intracytoplasmic sperm injection (ICSI) in normospermic men may result in lower clinical pregnancy and live birth rates. Aust. N. Z. J. Obstet. Gynaecol. 2019. [Google Scholar] [CrossRef]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef] [Green Version]
- Martens, E.P.; Pestman, W.R.; de Boer, A.; Belitser, S.V.; Klungel, O.H. Systematic differences in treatment effect estimates between propensity score methods and logistic regression. Int. J. Epidemiol. 2008, 37, 1142–1147. [Google Scholar] [CrossRef] [Green Version]
- Biondi-Zoccai, G.; Romagnoli, E.; Agostoni, P.; Capodanno, D.; Castagno, D.; D’Ascenzo, F.; Sangiorgi, G.; Modena, M.G. Are propensity scores really superior to standard multivariable analysis? Contemp. Clin. Trials 2011, 32, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Weber, R.F.A.; Dohle, G.R.; Romijn, J.C. Clinical laboratory evaluation of male subfertility. Adv. Clin. Chem. 2005, 40, 317–364. [Google Scholar] [PubMed]
- Oehninger, S.; Ombelet, W. Limits of current male fertility testing. Fertil. Steril. 2019, 111, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Moore, V.M.; Willson, K.J.; Van Essen, P.; Priest, K.; Scott, H.; Haan, E.A.; Chan, A. Reproductive technologies and the risk of birth defects. N. Engl. J. Med. 2012, 366, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Tararbit, K.; Lelong, N.; Thieulin, A.-C.; Houyel, L.; Bonnet, D.; Goffinet, F.; Khoshnood, B. EPICARD Study Group The risk for four specific congenital heart defects associated with assisted reproductive techniques: A population-based evaluation. Hum. Reprod. 2013, 28, 367–374. [Google Scholar] [CrossRef]
- Sandin, S.; Nygren, K.-G.; Iliadou, A.; Hultman, C.M.; Reichenberg, A. Autism and mental retardation among offspring born after in vitro fertilization. JAMA 2013, 310, 75–84. [Google Scholar] [CrossRef]
- Kissin, D.M.; Zhang, Y.; Boulet, S.L.; Fountain, C.; Bearman, P.; Schieve, L.; Yeargin-Allsopp, M.; Jamieson, D.J. Association of assisted reproductive technology (ART) treatment and parental infertility diagnosis with autism in ART-conceived children. Hum. Reprod. 2015, 30, 454–465. [Google Scholar] [CrossRef]
- Nouri, K.; Ott, J.; Stoegbauer, L.; Pietrowski, D.; Frantal, S.; Walch, K. Obstetric and perinatal outcomes in IVF versus ICSI-conceived pregnancies at a tertiary care center—A pilot study. Reprod. Biol. Endocrinol. 2013, 11, 84. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, Q.; Wang, Y.; Wang, B.; Lyu, Q.; Kuang, Y. Comparative study on risk for birth defects among infants after in vitro fertilization and intracytoplasmic sperm injection. Syst. Biol. Reprod. Med. 2019, 65, 54–60. [Google Scholar] [CrossRef]
- Lie, R.T.; Lyngstadaas, A.; Ørstavik, K.H.; Bakketeig, L.S.; Jacobsen, G.; Tanbo, T. Birth defects in children conceived by ICSI compared with children conceived by other IVF-methods; a meta-analysis. Int. J. Epidemiol. 2005, 34, 696–701. [Google Scholar] [CrossRef]
- Wen, J.; Jiang, J.; Ding, C.; Dai, J.; Liu, Y.; Xia, Y.; Liu, J.; Hu, Z. Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: A meta-analysis. Fertil. Steril. 2012, 97, 1331–1337.e4. [Google Scholar] [CrossRef]
- Practice Committees of the American Society for Reproductive Medicine and Society for Assisted Reproductive Technology. Intracytoplasmic sperm injection (ICSI) for non-male factor infertility: A committee opinion. Fertil. Steril. 2012, 98, 1395–1399. [Google Scholar] [CrossRef] [PubMed]
cIVF (n = 297) | ICSI (n = 307) | p | |
---|---|---|---|
Woman age (years) | 41.1 ± 0.8 | 41 ± 0.8 | 0.9957 |
Years of infertility | 2.8 ± 2.3 | 3.2 ± 2.4 | 0.0137 |
Couples with previous ART treatments (%) | 80 (27%) | 138 (45%) | < 0.0001 |
BMI (Kg/m2) | 22.6 ± 3.3 | 23 ± 3.9 | 0.3832 |
AFC | 9.5 ± 5.7 | 10.3 ± 6.1 | 0.0697 |
AMH (ng/mL) | 1.6 ± 2.1 | 1.4 ± 1.3 | 0.5644 |
Women who smoke | 33 (11.1%) | 44 (14.3) | 0.2354 |
Partner’s age (years) | 41.9 ± 5.2 | 42.8 ± 5 | 0.0770 |
Sperm concentration (Mln/mL) | 80.2 ± 34.1 | 80.4 ± 38.9 | 0.3121 |
Progressive motility (A+B; %) | 40.5 ± 4.8 | 40.3 ± 4.4 | 0.4126 |
Normal morphology (%) | 5.0 ± 0.8 | 4.9 ± 0.8 | 0.3036 |
cIVF (n = 297) | ICSI (n = 307) | P | |
---|---|---|---|
Total FSH dose (IU) | 2725 ± 1172 | 2816 ± 1287 | 0.3181 |
Mean FSH dose (IU) | 265 ± 83 | 267 ± 87 | 0.9545 |
Total LH dose (IU) | 1470 ± 767 | 1587± 892 | 0.5842 |
Mean LH dose (IU) | 188 ± 89 | 184 ± 61 | 0.7537 |
Endometrial thickness (mm) | 10.1 ± 2.4 | 9.9 ± 2.1 | 0.4445 |
Retrieved oocytes | 5.8 ± 4.2 | 6.3 ± 4.6 | 0.2816 |
Mature (MII) oocytes | 4.9 ± 3.4 | 4.9 ± 3.6 | 0.7006 |
MII/retrieved oocytes (%) | 87.1 | 80,7 | < 0.001 |
Fertilized oocytes | 3.5 ± 2.8 | 3.2 ± 2.6 | 0.1701 |
Fertilization rate (%) | 60,7 ± 28,3 | 52,1 ± 28,1 | < 0.01 |
No fertilization (%) | 6,7 (20/297) | 9.4 (29/307) | 0,2222 |
Cleaved embryos | 3 ± 2.7 | 2.9 ± 2.5 | 0.8834 |
Transferred embryos | 1.5 ± 0.7 | 1.4 ± 0.8 | 0.0899 |
Frozen embryos | 0.4 ± 1 | 0.4 ± 1 | 0.6184 |
Mean embryo score | 7.9 ± 1.8 | 7.9 ± 1.8 | 0.4458 |
PR/ET n.(%) | 64 (10.4%) | 63 (10.6%) | 0.7567 |
Cumulative PR/OPU n. (%) | 73 (12%) | 72 (11.9%) | 0.7459 |
LBR/ET n.(%) | 38 (6.3%) | 40 (6.6%) | 0.9315 |
Cumulative LBR/OPU n.(%) | 45 (7.5%) | 43 (7.1%) | 0.6901 |
Abortion rate n.(%) | 28 (38.3%) | 29 (40.3%) | 0.7 |
Univariate OR (CI 95%) | Multivariate * OR (CI 95%) | Adj with PS ** OR (CI 95%) | |
---|---|---|---|
PREGNANCY, fresh ET (cIVF vs. ICSI) | 1.064 (0.719–1.574) | 1.018 (0.656–1.582) | 1.035 (0.674–1.588) |
PREGNANCY, fresh+frozen ET (cIVF vs. ICSI) | 1.064 (0.732–1.545) | 1.049 (0.693–1.588) | 1.040 (0.695–1.555) |
LIVE BIRTH, fresh ET (cIVF vs. ICSI) | 0.979 (0.609–1.576) | 0.881 (0.513–1.514) | 0.924 (0.552–1.546) |
Single pregnancy (n = 116) | 0.729 (0.345–1.537) | 0.399 (0.143–1.113) | 0.692 (0.291–1.644) |
Twin pregnancy (n = 11) | 3.500 (0.145-84.694) | == | == |
LIVE BIRTH, fresh+frozen ET (cIVF vs. ICSI) | 1.096 (0.698–1.723) | 0.983 (0.592–1.633) | 1.008 (0.619–1.642) |
Single pregnancy (n = 125) | 0.913 (0.430–1.942) | 0.457 (0.162–1.289) | 0.815 (0.339–1.962) |
Twin pregnancy (n = 23) | 3.500 (0.145–84.694) | == | == |
cIVF (n = 217) | ICSI (n = 169) | p | |
---|---|---|---|
Total FSH dose (IU) | 2745 ± 1153 | 2732 ± 1313 | 0.8456 |
Mean FSH dose (IU) | 262 ± 80 | 260 ± 88 | 0.7328 |
Total LH dose (IU) | 1531 ± 797 | 1578 ± 943 | 0.9699 |
Mean LH dose (IU) | 191 ± 96 | 191 ± 63 | 0.5010 |
Endometrial thickness (mm) | 10.2 ± 2.5 | 9.9 ± 2.2 | 0.2969 |
Retrieved oocytes | 5.9 ± 4.0 | 6.7 ± 4.9 | 0.3253 |
Mature (MII) oocytes | 4.8 ± 3.1 | 5.2 ± 3.9 | 0.9638 |
MII/retrieved oocytes (%) | 85.9 ± 19.1 | 79.9 ± 19.6 | 0.0006 |
Fertilized oocytes | 3.5 ± 2.6 | 3.4 ± 2.9 | 0.3204 |
Fertilization rate (%) | 59.2 ± 28.9 | 51.8 ± 28.9 | 0.0102 |
No fertilization (%) | 6.9 (15/217) | 11.2 (19/169) | 0.1364 |
Cleaved embryos | 3.0 ± 2.5 | 3.1 ± 2.8 | 0.8418 |
Transferred embryos | 1.5 ± 0.7 | 1.4 ± 0.8 | 0.1070 |
Frozen embryos | 0.4 ± 1.1 | 0.6 ± 1.3 | 0.0691 |
Mean embryo score | 8.0 ± 1.8 | 7.7 ± 1.8 | 0.1284 |
PR/ET, n (%) | 45 (20.7%) | 31 (18.3%) | 0.5573 |
Cumulative PR/OPU, n (%) | 53 (24.4%) | 39 (23.1%) | 0.7580 |
LBR/ET, n (%) | 26 (11.9%) | 19 (11.2%) | 0.8224 |
Cumulative LBR/OPU, n (%) | 32 (14.8%) | 22 (13.0%) | 0.6271 |
Abortion rate, n (%) | 21 (9.7%) | 17 (10.1%) | 0.9006 |
Univariate OR (CI 95%) | Multivariate * OR (CI 95%) | Adj with PS ** OR (CI 95%) | |
---|---|---|---|
PREGNANCY, fresh ET (cIVF vs. ICSI) | 1.165 (0.700–1.938) | 0.906 (0.515–1.594) | 1.033 (0.604–1.768) |
PREGNANCY, fresh+frozen ET (cIVF vs. ICSI) | 1.077 (0.671–1.729) | 1.049 (0.693–1.588) | 0.945 (0.561–1.593) |
LIVE BIRTH, fresh ET (cIVF vs. ICSI) | 0.979 (0.609–1.576) | 0.881 (0.513–1.514) | 0.924 (0.552–1.546) |
Single pregnancy (n = 116) | 0.729 (0.345–1.537) | 0.399 (0.143–1.113) | 0.692 (0.291–1.644) |
Twin pregnancy (n = 11) | 3.500 (0.145–84.694) | == | == |
LIVE BIRTH, fresh+frozen ET (cIVF vs. ICSI) | 1.156 (0.644–2.073) | 0.895 (0.472–1.696) | 0.697 (0.526–1.777) |
Single pregnancy (n = 125) | 1.019 (0.380–2.730) | 0.742 (0.140–3.942) | 0.800 (0.251–2.555) |
Twin pregnancy (n = 23) | 1.500 (0.055–40.633) | == | == |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gennarelli, G.; Carosso, A.; Canosa, S.; Filippini, C.; Cesarano, S.; Scarafia, C.; Brunod, N.; Revelli, A.; Benedetto, C. ICSI versus Conventional IVF in Women Aged 40 Years or More and Unexplained Infertility: A Retrospective Evaluation of 685 Cycles with Propensity Score Model. J. Clin. Med. 2019, 8, 1694. https://doi.org/10.3390/jcm8101694
Gennarelli G, Carosso A, Canosa S, Filippini C, Cesarano S, Scarafia C, Brunod N, Revelli A, Benedetto C. ICSI versus Conventional IVF in Women Aged 40 Years or More and Unexplained Infertility: A Retrospective Evaluation of 685 Cycles with Propensity Score Model. Journal of Clinical Medicine. 2019; 8(10):1694. https://doi.org/10.3390/jcm8101694
Chicago/Turabian StyleGennarelli, Gianluca, Andrea Carosso, Stefano Canosa, Claudia Filippini, Sara Cesarano, Carlotta Scarafia, Nicole Brunod, Alberto Revelli, and Chiara Benedetto. 2019. "ICSI versus Conventional IVF in Women Aged 40 Years or More and Unexplained Infertility: A Retrospective Evaluation of 685 Cycles with Propensity Score Model" Journal of Clinical Medicine 8, no. 10: 1694. https://doi.org/10.3390/jcm8101694
APA StyleGennarelli, G., Carosso, A., Canosa, S., Filippini, C., Cesarano, S., Scarafia, C., Brunod, N., Revelli, A., & Benedetto, C. (2019). ICSI versus Conventional IVF in Women Aged 40 Years or More and Unexplained Infertility: A Retrospective Evaluation of 685 Cycles with Propensity Score Model. Journal of Clinical Medicine, 8(10), 1694. https://doi.org/10.3390/jcm8101694