Anorexia Nervosa and the Immune System—A Narrative Review
Abstract
:1. Introduction
2. The Innate Immune System Overview
3. The Adaptive Immune System Overview
4. The Immune System in Primary Malnutrition
5. The Immune System in Anorexia Nervosa
6. Oxidative Stress
7. Chronic Stress
8. Intestinal Microbiota
9. Gelatinous Marrow Transformation and Mesenchymal Stem Cells
10. Conclusions
Author Contributions
Conflicts of Interest
References
- Kerschensteiner, M.; Meinl, E.; Hohlfeld, R. Neuro-immune crosstalk in CNS diseases. Neuroscience 2009, 158, 1122–1132. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, C.; Gelernter, J.; Zhao, H. Pervasive pleiotropy between psychiatric disorders and immune disorders revealed by integrative analysis of multiple GWAS. Hum. Genet. 2015, 134, 1195–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowers, J.K.; Eckert, E. Leukopenia in anorexia nervosa: Lack of increased risk of infection. Arch. Intern. Med. 1978, 138, 1520–1523. [Google Scholar] [CrossRef] [PubMed]
- Duncan, L.; Yilmaz, Z.; Gaspar, H.; Walters, R.; Goldstein, J.; Anttila, V.; Bulik-Sullivan, B.; Ripke, S.; Eating Disorders Working Group of the Psychiatric Genomics Consortium; Thornton, L.; et al. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am. J. Psychiatry 2017, 174, 850–858. [Google Scholar] [CrossRef]
- Wotton, C.J.; James, A.; Goldacre, M.J. Coexistence of eating disorders and autoimmune diseases: Record linkage cohort study, UK. Int. J. Eat. Disord. 2016, 49, 663–672. [Google Scholar] [CrossRef]
- Zerwas, S.; Larsen, J.T.; Petersen, L.; Thornton, L.M.; Quaranta, M.; Koch, S.V.; Pisetsky, D.; Mortensen, P.B.; Bulik, C.M. Eating disorders, autoimmune, and autoinflammatory disease. Pediatrics 2017, 140, e20162089. [Google Scholar] [CrossRef]
- Raevuori, A.; Haukka, J.; Vaarala, O.; Suvisaari, J.M.; Gissler, M.; Grainger, M.; Linna, M.S.; Suokas, J.T. The increased risk for autoimmune diseases in patients with eating disorders. PLoS ONE 2014, 9, e104845. [Google Scholar] [CrossRef]
- Barber, J.; Sheeran, T.; Mulherin, D. Anti-tumor necrosis factor treatment in a patient with anorexia nervosa and juvenile idiopathic arthritis. Ann. Rheum. Dis. 2003, 62, 490–491. [Google Scholar] [CrossRef]
- Solmi, M.; Santonastaso, P.; Caccaro, R.; Favaro, A. A case of anorexia nervosa with comorbid Crohn’s disease: Beneficial effects of anti-TNF-alpha therapy? Int. J. Eat. Disord. 2013, 46, 639–641. [Google Scholar] [CrossRef]
- Li, D.; Change, X.; Connolly, J.J.; Tian, L.; Liu, Y.; Bhoj, E.J.; Robinson, N.; Abrams, D.; Li, Y.R.; Bradfield, J.P.; et al. A genome-wide association study of anorexia nervosa suggests a risk locus implicated in dysregulated leptin signaling. Sci. Rep. 2017, 7, 3847. [Google Scholar] [CrossRef]
- Wade, T.D.; Gordon, S.; Medland, S.; Bulik, C.; Heath, A.C.; Montgomery, G.W.; Martin, N.G. Genetic variants associated with disordered eating. Int. J. Eat. Disord. 2013, 46, 594–608. [Google Scholar] [CrossRef] [PubMed]
- Turvey, S.E.; Broide, D.H. Innate immunity. J. Allergy Clin. Immunol. 2010, 125, S24–S32. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, F.A.; Oettgen, H.C. Adaptive immunity. J. Allergy Clin. Immunol. 2010, 125, S33–S40. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.K.; Lord, G.M.; Matarese, G.; Vendetti, S.; Ghatei, M.A.; Ritter, M.A.; Lechler, R.I.; Bloom, S.R. Leptin protects mice from starvation-induced lymphoid atrophy and increases thymic cellularity in ob/ob mice. J. Clin. Investig. 1999, 104, 1051–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, R.L.; Newberne, P.M. Role of nutrition in immunologic function. Physiol. Rev. 1980, 60, 188–302. [Google Scholar] [CrossRef]
- Smythe, P.M.; Brereton-Stiles, G.G.; Grace, H.J.; Mafoyane, A.; Schonland, M.; Coovadia, H.M.; Loening, W.E.K.; Parent, M.A.; Vos, G.H. Thymolymphatic deficiency and depression of cell-mediated immunity in protein-calorie malnutrition. Lancet 1971, 298, 939–944. [Google Scholar] [CrossRef]
- Cunha, M.C.R.; Lima, F.D.S.; Vinolo, M.A.R.; Hastreiter, A.; Curi, R.; Borelli, P.; Fock, R.A. Protein malnutrition induces bone marrow mesenchymal stem cells commitment to adipogenic differentiation leading to hematopoietic failure. PLoS ONE 2013, 8, e58872. [Google Scholar] [CrossRef]
- Naveiras, O.; Nardi, V.; Wenzel, P.L.; Hauschka, P.V.; Fahey, F.; Daley, G.Q. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 2009, 460, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Sandozai, M.K.; Rajeshvari, V.; Haquani, A.H.; Kaur, J. Kwashiorkor: A clinic-haematological study. Br. Med. J. 1963, 2, 93–96. [Google Scholar] [CrossRef]
- Fock, R.A.; Vinolo, M.A.R.; Rocha, V.D.M.S.; Rocha, L.C.D.S.; Borelli, P. Protein-energy malnutrition decreases the expression of TLR-4/MD-2 and CD14 receptors in peritoneal macrophages and reduces the synthesis of TNF-alpha in response to lipopolysaccharide (LPS) in mice. Cytokine 2007, 40, 105–114. [Google Scholar] [CrossRef]
- Vinolo, M.A.R.; Crisma, A.R.; Nakajima, K.; Rogero, M.M.; Fock, R.A.; Borelli, P. Malnourished mice display an impaired hematologic response to granulocyte colony-stimulating factor administration. Nutr. Res. 2008, 28, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.K.; Gupta, S.; Singh, B.Sc. Inducer and suppressor T cell subsets in protein-energy malnutrition: Analysis by monoclonal antibodies. Nut. Res. 1982, 2, 21–26. [Google Scholar] [CrossRef]
- Rytter, M.J.H.; Kolte, L.; Briend, A.; Friis, H.; Christensen, V.B. The immune system in children with malnutrition—A systematic review. PLoS ONE 2014, 9, e105017. [Google Scholar] [CrossRef] [PubMed]
- Borelli, P.; Mariano, M.; Borojevic, R. Protein malnutrition: Effect on myeloid cell production and mobilization into inflammatory reactions in mice. Nutr. Res. 1995, 15, 1477–1485. [Google Scholar] [CrossRef]
- Catchatourian, R.; Eckerling, G.; Fried, W. Effect of short-term protein deprivation on hemopoietic functions of healthy volunteers. Blood 1980, 55, 625–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, S.; Saito, H.; Fukatsu, K.; Inoue, T.; Han, I.; Furukawa, S.; Matsuda, T.; Hidemura, A. Dietary restriction impairs neutrophil exudation by reducing CD11b/CD18 expression and chemokine production. Arch. Surg. 2001, 136, 297–304. [Google Scholar] [CrossRef]
- Seth, V.; Chandra, R.K. Opsonic activity, phagocytosis, and bactericidal capacity of polymorphs in undernutrition. Arch. Dis. Child. 1972, 47, 282–284. [Google Scholar] [CrossRef]
- Moore, S.I.; Huffnagle, G.B.; Chen, G.H.; White, E.S.; Mancuso, P. Leptin modulates neutrophil phagocytosis of Klebsiella pneumoniae. Infect. Immun. 2003, 71, 4182–4185. [Google Scholar] [CrossRef]
- Santos, E.W.; de Oliveira, D.C.; Hastreiter, A.; Beltran, S.D.O.; Rogero, M.M.; Fock, F.A.; Borelli, P. High-fat diet or low-protein diet changes peritoneal macrophages function in mice. Nutrire 2016, 41, 6. [Google Scholar] [CrossRef]
- Sakamoto, M.; Ishii, S.; Nishioka, K.; Shimada, K. Complement response after experimental bacterial infection in various nutritional states. Immunology 1979, 38, 421–427. [Google Scholar]
- Sakamoto, M.; Fujisawa, Y.; Nishioka, K. Physiologic role of the complement system in host defense, disease, and malnutrition. Nutrition 1998, 14, 391–398. [Google Scholar] [CrossRef]
- Niiya, T.; Akbar, F.; Yoshida, O.; Miyake, T.; Matsuura, B.; Murakami, H.; Abe, M.; Hiasa, Y.; Onji, M. Impaired dendritic cell function resulting from chronic undernutrition disrupts the antigen-specific immune response in mice. J. Nutr. 2007, 137, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Salimonu, L.S.; Ojo-Amaize, E.; Williams, A.I.O.; Johnson, A.O.K.; Cooke, A.R.; Adekunle, F.A.; Alm, G.V.; Wigzell, H. Depressed natural killer activity in children with protein-calorie malnutrition. Clin. Immunol. Immunopathol. 1982, 24, 1–7. [Google Scholar] [CrossRef]
- Salimonu, L.S.; Ojo-Amaize, E.; Johnson, A.O.K.; Laditan, A.A.O.; Akinwolere, O.A.O.; Wigzell, H. Depressed natural killer cell activity in children with protein-calorie malnutrition: II. Correction of the impaired activity after nutritional recovery. Cell. Immunol. 1983, 82, 210–215. [Google Scholar] [CrossRef]
- Bowman, T.A.; Goonewardene, I.M.; Pasatiempo, A.M.; Ross, A.C.; Taylor, C.E. Vitamin A deficiency decreases natural killer cell activity and interferon production in rats. J. Nutr. 1990, 120, 1264–1273. [Google Scholar] [CrossRef]
- Kim, Y.I.; Hayek, M.; Mason, J.B.; Meydani, S.N. Severe folate deficiency impairs natural killer cell-mediated cytotoxicity in rats. J. Nutr. 2002, 132, 1361–1367. [Google Scholar] [CrossRef]
- Dowd, P.S.; Kelleher, J.; Walker, B.E.; Guillou, P.J. Nutrition and cellular immunity in hospital patients. Br. J. Nutr. 1986, 55, 515–527. [Google Scholar] [CrossRef]
- Edelman, R.; Suskind, R.; Olson, R.E.; Sirisinha, S. Mechanisms of defective delayed cutaneous hypersensitivity in children with protein-calorie malnutrition. Lancet 1973, 301, 506–509. [Google Scholar] [CrossRef]
- Najera, O.; Gonzalez, C.; Cortes, E.; Toledo, G.; Ortiz, R. Effector T lymphocytes in well-nourished and malnourished infected children. Clin. Exp. Immunol. 2007, 148, 501–506. [Google Scholar] [CrossRef]
- Najera, O.; Gonzalez, C.; Toledo, G.; Lopez, L.; Ortiz, R. Flow cytometry study of lymphocyte subsets in malnourished and well-nourished children with bacterial infections. Clin. Diagn. Lab. Immunol. 2004, 11, 577–580. [Google Scholar] [CrossRef]
- Chandra, R.K. Numerical and functional deficiency in T helper cells in protein energy malnutrition. Clin. Exp. Immunol. 1983, 51, 126–132. [Google Scholar] [PubMed]
- Iyer, S.S.; Chatraw, J.H.; Tan, W.G.; Wherry, E.J.; Becker, T.C.; Ahmed, R.; Kapasi, Z.F. Protein energy malnutrition impairs homeostatic proliferation of memory CD8 T cells. J. Immunol. 2012, 188, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.; Gonzalez, C.; Flores, L.; Jimenez-Zamudio, L.; Graniel, J.; Ortiz, R. Assessment by flow cytometry of cytokine production in malnourished children. Clin. Diagn. Lab. Immunol. 2005, 12, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Torres, C.; Gonzalez-Martinez, H.; Miliar, A.; Najera, O.; Graniel, J.; Firo, V.; Alvarex, C.; Bonilla, E.; Rodriguez, L. Effect of malnutrition on the expression of cytokines involved in Th1 cell differentiation. Nutrients 2013, 5, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Martinez, H.; Rodriguez, L.; Najera, O.; Cruz, D.; Miliar, A.; Dominguez, A.; Sanchez, F.; Graniel, J.; Gonzelez-Torres, M.C. Expression of cytokine mRNA in lymphocytes of malnourished children. J. Clin. Immunol. 2008, 28, 593–599. [Google Scholar] [CrossRef]
- Bhaskaram, P.; Hemalatha, R.; Narayana Goud, B. Expression of messenger ribonucleic acid and production of cytokines in children with malnutrition. Nutr. Res. 2003, 23, 367–376. [Google Scholar] [CrossRef]
- Sauerwein, R.W.; Mulder, J.A.; Mulder, L.; Lowe, B.; Peshu, N.; Demacker, P.N.M.; van der Meer, J.W.M.; Marsh, K. Inflammatory mediators in children with protein energy malnutrition. Am. J. Clin. Nutr. 1997, 65, 1534–1539. [Google Scholar] [CrossRef]
- De Oliveira, D.C.; Hastreiter, A.A.; Mello, A.S.; Beltran, J.S.D.O.; Santos, E.W.C.O.; Borelli, P. The effects of protein malnutrition on the TNF-RI and NF-kB expression via the TNF-alpha signaling pathway. Cytokine 2014, 6, 218–225. [Google Scholar] [CrossRef]
- Munoz, C.; Arevalo, M.; Lopez, M.; Schlesinger, L. Impaired interleukin-1 and tumor necrosis factor production in protein-calorie malnutrition. Nutr. Res. 1994, 14, 347–352. [Google Scholar] [CrossRef]
- Bhaskaram, P.; Sivakumar, B. Interleukin-1 in malnutrition. Arch. Dis. Child. 1986, 61, 182–185. [Google Scholar] [CrossRef]
- Anstead, G.M.; Chandrasekar, B.; Zhang, Q.; Melby, P.C. Multinutrient undernutrition dysregulates the resident macrophage proinflammatory cytokine network, nuclear factor-kB activation, and nitric oxide production. J. Leukoc. Biol. 2003, 74, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Dulger, H.; Arik, M.; Sekeroglu, M.R.; Tarakcioglu, M.; Noyan, T.; Cesur, Y.; Balahoroglu, B. Pro-inflammatory cytokines in Turkish children with protein-energy malnutrition. Mediat. Inflamm. 2002, 11, 363–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarter, M.D.; Naama, H.A.; Shou, J.; Kwi, L.X.; Evoy, D.A.; Calvano, S.E.; Daly, J.M. Altered macrophage intracellular signaling induced by protein-calorie malnutrition. Cell. Immunol. 1998, 183, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Fock, R.A.; Rogero, M.M.; Vinolo, M.A.R.; Curi, R.; Borges, M.C.; Borelli, P. Effects of protein-energy malnutrition on NF-KappaB signaling in murine peritoneal macrophages. Inflammation 2010, 33, 101–109. [Google Scholar] [CrossRef]
- Vaisman, N.; Hahn, T. Tumor necrosis factor-alpha and anorexia—Cause or effect. Metabolism 1991, 40, 720–723. [Google Scholar] [CrossRef]
- Tanaka, M.; Suganami, T.; Kim-Saijo, M.; Toda, C.; Tsuiji, M.; Ochi, K.; Kamei, Y.; Minokoshi, Y.; Ogawa, Y. Role of central leptin signaling in the starvation-induced alteration of B-cell development. J. Neurosci. 2011, 31, 8370–8380. [Google Scholar] [CrossRef]
- Douglas, S.D. Analytical review: Host defense mechanisms in protein-energy malnutrition. Clin. Immunol. Immunopathol. 1976, 5, 1–5. [Google Scholar] [CrossRef]
- Passwell, J.H.; Steward, M.W.; Soothill, J.F. The effects of protein malnutrition on macrophage function and the amount and affinity of antibody response. Clin. Exp. Immunol. 1974, 17, 491–495. [Google Scholar]
- Chandra, R.K. Protein-energy malnutrition and immunological responses. J. Nutr. 1992, 122, 597–600. [Google Scholar] [CrossRef]
- Mathur, M.; Ramalingaswami, V.; Deo, M.G. Influence of protein deficiency on 19S antibody-forming cells in rats and mice. J. Nutr. 1972, 102, 841–846. [Google Scholar] [CrossRef]
- Abella, E.; Feliu, E.; Granada, I.; Milla, F.; Oriol, A.; Ribera, J.M.; Sancehz-Planell, L.; Berga, L.; Reverter, J.C.; Rozman, C. Bone marrow changes in anorexia nervosa are correlated with the amount of weight loss and not with other clinical findings. Am. J. Clin. Pathol. 2002, 118, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Bohm, J. Gelatinous transformation of the bone marrow: The spectrum of underlying diseases. Am. J. Surg. Pathol. 2000, 24, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Mehler, P.S.; Howe, S.E. Serous fat atrophy with leukopenia in severe anorexia nervosa. Am. J. Hematol. 1995, 49, 171–172. [Google Scholar] [CrossRef] [PubMed]
- Barbin, F.F.; Oliveira, C.C. Gelatinous transformation of bone marrow. Autops. Case Rep. 2017, 7, 5–8. [Google Scholar] [CrossRef]
- Palmblad, J.; Fohlin, L.; Lundstrom, M. Anorexia nervosa and polymorphonuclear granulocyte reactions. Scand. J. Haematol. 1977, 19, 334–342. [Google Scholar] [CrossRef]
- Gotch, F.M.; Spry, C.J.F.; Mowat, A.G.; Beeson, P.B.; Maclennan, I.C.M. Reversible granulocyte killing defect in anorexia nervosa. Clin. Exp. Immunol. 1975, 21, 244–249. [Google Scholar]
- Wyatt, R.J.; Farrell, M.; Berry, P.; Forristal, J.; Maloney, M.J.; West, C.D. Reduced alternative complement pathway control protein levels in anorexia nervosa: Response to parenteral alimentation. Am. J. Clin. Nutr. 1982, 35, 973–980. [Google Scholar] [CrossRef]
- Flierl, M.A.; Gaudiani, J.L.; Sabel, A.L.; Long, C.S.; Stahel, P.F.; Mehler, P.S. Complement C3 serum levels in anorexia nervosa: A potential biomarker for the severity of disease? Ann. Gen. Psychiatry 2011, 10, 16. [Google Scholar] [CrossRef]
- Allende, L.M.; Corell, A.; Manzanares, J.; Madruga, D.; Marcos, A.; Madrono, A.; Lopez-Goyanes, A.; Garcia-Perez, A.; Moreno, J.M.; Rodrigo, M.; et al. Immunodeficiency associated with anorexia nervosa is secondary and improves after refeeding. Immunology 1998, 94, 543–551. [Google Scholar] [CrossRef]
- Elegido, A.; Graell, M.; Andres, P.; Gheorghe, A.; Marcos, A.; Nova, E. Increased naïve CD4+ and B lymphocyte subsets are associated with body mass loss and drive relative lymphocytosis in anorexia nervosa patients. Nutr. Res. 2017, 39, 43–50. [Google Scholar] [CrossRef]
- Omodei, D.; Pucino, V.; Labruna, G.; Procaccini, C.; Galgani, M.; Perna, F.; Pirozzi, D.; de Caprio, C.; Marone, G.; Fontana, L.; et al. Immune-metabolic profiling of anorexic patients reveals an anti-oxidant and anti-inflammatory phenotype. Metabolism 2015, 64, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Dowd, P.S.; Kelleher, J.; Walker, B.E.; Guillou, P.J. Nutritional and immunological assessment of patients with anorexia nervosa. Proc. Nutr. Soc. 1983, 2, 79–83. [Google Scholar] [CrossRef]
- Staurenghi, A.H.; Masera, R.G.; Prolo, P.; Griot, G.; Sartori, M.L.; Ravizza, L.; Angeli, A. Hypothalamic-pituitary-adrenal axis function, psychopathological traits, and natural killer (NK) cell activity in anorexia nervosa. Psychoneuroendocrinology 1997, 22, 575–590. [Google Scholar] [CrossRef]
- Cason, J.; Ainley, C.C.; Wolstencroft, R.A.; Norton, K.R.W.; Thompson, R.P.H. Cell-mediated immunity in anorexia nervosa. Clin. Exp. Immunol. 1986, 64, 370–375. [Google Scholar] [CrossRef]
- Pertschuk, M.; Crosby, L.; Barot, L.; Mullen, J.L. Immunocompetency in anorexia nervosa. Am. J. Clin. Nutr. 1982, 35, 968–972. [Google Scholar] [CrossRef]
- Schattner, A.; Steinbock, M.; Tepper, R.; Schonfeld, A.; Vaisman, N.; Hahn, T. Tumour necrosis factor production and cell-mediated immunity in anorexia nervosa. Clin. Exp. Immunol. 1999, 79, 62–66. [Google Scholar] [CrossRef]
- Nagata, T.; Kiriike, N.; Tobitani, W.; Kawarada, Y.; Matsunaga, H.; Yamagami, S. Lymphocyte subset, lymphocyte proliferative response, and soluble interleukin-2 receptor in anorexic patients. Biol. Psychiatry 1999, 45, 471–474. [Google Scholar] [CrossRef]
- Silber, T.J.; Chan, M. Immunologic cytofluorometric studies in adolescents with anorexia nervosa. Int. J. Eat. Disord. 1996, 19, 415–418. [Google Scholar] [CrossRef]
- Golla, J.A.; Larson, L.A.; Anderson, C.F.; Lucas, A.R.; Wilson, W.R.; Tomasi, T.B. An immunological assessment of patients with anorexia nervosa. Am. J. Clin. Nutr. 1981, 34, 2756–2762. [Google Scholar] [CrossRef] [Green Version]
- Bentdal, O.H.; Froland, S.S.; Larsen, S. Cell-mediated immunity in anorexia nervosa augmented lymphocyte transformation response to concanavalin A and lack of increased risk of infection. Clin. Nutr. 1989, 8, 253–258. [Google Scholar] [CrossRef]
- Mustafa, A.; Ward, A.; Treasure, J.; Peakman, M. T lymphocyte subpopulations in anorexia nervosa and refeeding. Clin. Immunol. Immunopathol. 1997, 82, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Fink, S.; Eckert, E.; Mitchell, J.; Crosby, R.; Pomeroy, C. T-lymphocyte subsets in patients with abnormal body weight: Longitudinal studies in anorexia nervosa and obesity. Int. J. Eat. Disord. 1996, 20, 295–305. [Google Scholar] [CrossRef]
- Paszthy, B.; Svec, P.; Vasarhelyi, B.; Tury, F.; Mazzag, J.; Tulassay, T.; Treszl, A. Investigation of regulatory T cells in anorexia nervosa. Eur. J. Clin. Nutr. 2007, 61, 1245–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcos, A.; Varela, P.; Santacruz, I.; Munoz-Velez, A.; Morande, G. Nutritional status and immunocompetence in eating disorders. A comparative study. Eur. J. Clin. Nutr. 1993, 47, 787–793. [Google Scholar] [PubMed]
- Ponton, F.; Wilson, K.; Cotter, S.C.; Raubenheimer, D.; Simpson, S.J. Nutritional immunology: A multi-dimensional approach. PLoS Pathog. 2011, 7, e1002223. [Google Scholar] [CrossRef] [PubMed]
- Perez-Perez, A.; Vilarino-Garcia, T.; Fernandez-Riejos, P.; Martin-Gonzalez, J.; Segura-Egea, J.J.; Sanchez-Margalet, V. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev. 2017, 35, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Noh, M. Interleukin-17A increases leptin production in human bone marrow mesenchymal stem cells. Biochem. Pharmacol. 2012, 83, 661–670. [Google Scholar] [CrossRef]
- Devlin, M.J.; Brooks, D.J.; Conlon, C.; Vliet, M.V.; Louis, L.; Rosen, C.J.; Bouxsein, M.L. Daily leptin blunts marrow fat but does not impact bone mass in calorie restricted mice. J. Endocrinol. 2016, 229, 295–306. [Google Scholar] [CrossRef]
- Bennett, B.D.; Solar, G.P.; Yuan, J.Q.; Mathias, J.; Thomas, G.R.; Matthews, W. A role for leptin and its cognate receptor in hematopoiesis. Curr. Biol. 1996, 6, 1170–1180. [Google Scholar] [CrossRef] [Green Version]
- Procaccini, C.; La Rocca, C.; Carbone, F.; de Rosa, V.; Galgani, M.; Matarese, G. Leptin as immune mediator: Interaction between neuroendocrine and immune system. Dev. Comp. Immunol. 2017, 66, 120–129. [Google Scholar] [CrossRef]
- Dayakar, A.; Chandrasekaran, S.; Veronica, J.; Maurya, R. Leptin induces the phagocytosis and protective immune response in Leishmania donovani infected THP-cell line and human PBMCs. Exp. Parasitol. 2016, 160, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, P.; Myers Jr, M.G.; Goel, D.; Serezani, C.H.; O’Brien, E.; Goldberg, J.; Aronoff, D.M.; Peters-Golden, M. Ablation of leptin receptor-mediated ERK activation impairs host defense against gram-negative pneumonia. J. Immunol. 2012, 189, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.L.; Kuo, C.J.; Huang, H.C.; Chu, Y.Y.; Chiu, C.T. Association between leptin and complement in hepatitis C patients with viral clearance: Homeostasis of metabolism and immunity. PLoS ONE 2016, 11, e0166712. [Google Scholar] [CrossRef] [PubMed]
- Matarese, G.; La Rocca, C.; Moon, H.S.; Huh, J.Y.; Brinkoetter, M.T.; Chou, S.; Perna, F.; Greco, D.; Kilim, H.P.; Gao, C.; et al. Selective capacity of metreleptin administration to reconstitute CD4+ T-cell number in females with acquired hypoleptinemia. Proc. Natl. Acad. Sci. USA 2013, 110, E818–E827. [Google Scholar] [CrossRef]
- Saucillo, D.C.; Gerriets, V.A.; Sheng, J.; Rathmell, J.C.; MacIver, N.J. Leptin metabolically licenses T cells for activation to link nutrition and immunity. J. Immunol. 2014, 192, 136–144. [Google Scholar] [CrossRef]
- Naylor, C.; Petri, W.A., Jr. Leptin regulation of immune responses. Trends Mol. Med. 2016, 22, 88–98. [Google Scholar] [CrossRef]
- Rodriguez, L.; Graniel, J.; Ortiz, R. Effect of leptin on activation and cytokine synthesis in peripheral blood lymphocytes of malnourished infected children. Clin. Exp. Immunol. 2007, 148, 478–485. [Google Scholar] [CrossRef]
- Mehler, P.S.; Eckel, R.H.; Donahoo, W.T. Leptin levels in restricting and purging anorectics. Int. J. Eat. Disord. 1999, 26, 189–194. [Google Scholar] [CrossRef]
- Komorowska-Pietrzykowska, R.; Rajewski, A.; Sobieska, M.; Wiktorowicz, K.P. Serum concentrations of interleukin 4 and interleukin 10 in patients suffering from anorexia nervosa. Eur. Neuropsychopharmacol. 2006, 16, S534. [Google Scholar] [CrossRef]
- Corcos, M.; Guilbaud, O.; Chaouat, G.; Cayol, V.; Speranza, M.; Chambry, J.; Paterniti, S.; Moussa, M.; Flament, M.; Jeammet, P. Cytokines and anorexia nervosa. Psychosom. Med. 2001, 63, 502–504. [Google Scholar] [CrossRef]
- Nova, E.; Gomez-Martinez, S.; Morande, G.; Marcos, A. Cytokine production by blood mononuclear cells from in-patients with anorexia nervosa. Br. J. Nutr. 2002, 88, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Pisetsky, D.S.; Trace, S.E.; Brownley, K.A.; Hamer, R.M.; Zucker, N.L.; Roux-Lombard, P.; Dayer, J.M.; Bulik, C.M. The expression of cytokines and chemokines in the blood of patients with severe weight loss from anorexia nervosa: An exploratory study. Cytokine 2014, 69, 110–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brambilla, F.; Bellodi, L.; Brunetta, M.; Perna, G. Plasma concentrations of interleukin-1b, interleukin-6 and tumor necrosis factor-alpha in anorexia nervosa and bulimia nervosa. Psychoneuroendocrinology 1998, 23, 439–447. [Google Scholar] [CrossRef]
- Kahl, K.G.; Kruse, N.; Rieckmann, P.; Schmidt, M.H. Cytokine mRNA expression patterns in the disease course of female adolescents with anorexia nervosa. Psychoneuroendocrinology 2004, 29, 13–20. [Google Scholar] [CrossRef]
- Raymond, N.C.; Dysken, M.; Bettin, K.; Eckert, E.D.; Crow, S.J.; Markus, K.; Pomeroy, C. Cytokine production in patients with anorexia nervosa, bulimia nervosa, and obesity. Int. J. Eat. Disord. 2000, 28, 293–302. [Google Scholar] [CrossRef]
- Solmi, M.; Veronese, N.; Favaro, A.; Santonastaso, P.; Manzato, E.; Sergi, G.; Correll, C.U. Inflammatory cytokines and anorexia nervosa: A meta-analysis of cross-sectional and longitudinal studies. Psychoneuroendocrinology 2015, 51, 237–252. [Google Scholar] [CrossRef]
- Dalton, B.; Bartholdy, S.; Robinson, L.; Solmi, M.; Ibrahim, M.A.A.; Breen, G.; Schmidt, U.; Himmerich, H. A meta-analysis of cytokine concentrations in eating disorders. J. Psychiatry Res. 2018, 103, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Nakai, Y.; Hamagaki, S.; Takagi, R.; Taniguchi, A.; Kurimoto, F. Plasma concentrations of tumor necrosis factor-alpha (TNF-alpha) and soluble TNF receptors in patients with anorexia nervosa. J. Clin. Endocrinol. Metab. 1999, 84, 1226–1228. [Google Scholar] [CrossRef]
- Vaisman, N.; Schattner, A.; Hahn, T. Tumor necrosis factor production during starvation. Am. J. Med. 1989, 87, 115. [Google Scholar] [CrossRef]
- Chapple, I.L.C. Reactive oxygen species and antioxidants in inflammatory diseases. J. Clin. Periodontol. 1997, 24, 287–296. [Google Scholar] [CrossRef]
- Rosen, G.M.; Pou, S.; Ramos, C.L.; Cohen, M.S.; Britigan, B.E. Free radicals and phagocytic cells. FASEB J. 1995, 9, 200–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higdon, A.; Diers, A.R.; Oh, J.Y.; Landar, A.; Darley-Usmar, V.M. Cell signaling by reactive lipid species: New concepts and molecular mechanisms. Biochem. J. 2012, 442, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Solmi, M.; Veronese, N.; Manzato, E.; Sergi, G.; Favaro, A.; Santonastaso, P.; Correll, C.U. Oxidative stress and antioxidant levels in patients with anorexia nervosa: A systematic review and exploratory meta-analysis. Int. J. Eat. Disord. 2015, 48, 826–841. [Google Scholar] [CrossRef] [PubMed]
- Vignini, A.; Canibus, P.; Nanetti, L.; Montecchiani, G.; Faloia, E.; Cester, A.M.; Boscaro, M.; Mazzanti, L. Lipoproteins obtained from anorexia nervosa patients induce higher oxidative stress in U373MG astrocytes through nitric oxide production. Neuromol. Med. 2008, 10, 17–23. [Google Scholar] [CrossRef]
- Vannacci, A.; Ravaldi, C.; Giannini, L.; Rotella, C.M.; Masini, E.; Faravelli, C.; Ricca, V. Increased nitric oxide production in eating disorders. Neurosci. Lett. 2006, 399, 230–233. [Google Scholar] [CrossRef]
- Vignini, A.; D’Angelo, M.; Nanetti, L.; Camilloni, M.A.; Cester, A.M.; Faloia, E.; Salvolini, E.; Mazzanti, L. Anorexia nervosa: A role for L-arginine supplementation in cardiovascular risk factors? Int. J. Eat. Disord. 2010, 43, 464–471. [Google Scholar] [CrossRef]
- Paszynska, E.; Tyszkiewicz-Nwafor, M.; Slopien, A.; Dmitrzak-Weglarz, M.; Dutkiewicz, A.; Grzelak, T. Study of salivary and serum vaspin and total antioxidants in anorexia nervosa. Clin. Oral Investig. 2018, 22, 2837–2845. [Google Scholar] [CrossRef] [Green Version]
- Moyano, D.; Sierra, C.; Brandi, N.; Artuch, R.; Mira, A.; Garcia-Tornel, S.; Vilaseca, M.A. Antioxidant status in anorexia nervosa. Int. J. Eat. Disord. 1999, 25, 99–103. [Google Scholar] [CrossRef]
- Bohm, M.; Papezova, H.; Hansikova, H.; Wenchich, L.; Zeman, J. Activities of respiratory chain complexes in isolated platelets in females with anorexia nervosa. Int. J. Eat. Disord. 2007, 40, 659–663. [Google Scholar] [CrossRef]
- Victor, V.M.; Rovira-Llopis, S.; Saiz-Alarcon, V.; Sanguesa, MC.; Rojo-Bofill, L.; Banuls, C.; Falcon, R.; Castello, R.; Rojo, L.; Rocha, M.; et al. Altered mitochondrial function and oxidative stress in leukocytes of anorexia nervosa patients. PLoS ONE 2014, 9, e106463. [Google Scholar] [CrossRef]
- Tajiri, K.; Shimizu, Y.; Tsuneyama, K.; Sugiyama, T. A case report of oxidative stress in a patient with anorexia nervosa. Int. J. Eat. Disord. 2006, 39, 616–618. [Google Scholar] [CrossRef] [PubMed]
- Caspar-Bauguil, S.C.; Montastier, E.; Galinon, F.; Frisch-Benarous, D.; Salvayre, R.; Ritz, P. Anorexia nervosa patients display a deficit in membrane long chain poly-unsaturated fatty acids. Clin. Nutr. 2012, 31, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Holman, R.T.; Adams, C.E.; Nelson, R.A.; Grater, S.J.E.; Jaskiewicz, J.A.; Johnson, S.B.; Erdman, J.W. Patients with anorexia nervosa demonstrate deficiencies of selected essential fatty acids, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids. J. Nutr. 1995, 125, 901–907. [Google Scholar] [PubMed]
- Langan, S.M.; Farrell, P.M. Vitamin E, vitamin A and essential fatty acid status of patients hospitalized for anorexia nervosa. Am. J. Clin. Nutr. 1985, 41, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Davis, T.A.; Gao, L.; Yin, H.; Morrow, J.; Porter, N.A. In vivo and in vitro lipid peroxidation of arachidonate esters: The effect of fish oil omega-3 lipids on product distribution. J. Am. Chem. Soc. 2006, 128, 14897–14904. [Google Scholar] [CrossRef]
- Omidi, A.; Namazi, F.; Jabire, S.; Afsar, M.; Honarmand, M.; Nazifi, S. The effects of starvation and refeeding on oxidative stress parameters (MDA, SOD, GPx), lipid profile, thyroid hormones and thyroid histopathology in male Wistar rats. Int. Arch. Med. 2016, 9. [Google Scholar] [CrossRef]
- Mayer, L.; Walsh, B.T.; Pierson, R.N., Jr.; Heymsfield, S.B.; Gallagher, D.; Wang, J.; Parides, M.K.; Leibel, R.L.; Warren, M.P.; Killory, E.; et al. Body fat redistribution after weight gain in women with anorexia nervosa. Am. J. Clin. Nutr. 2005, 81, 1286–1291. [Google Scholar] [CrossRef] [Green Version]
- Anoop, M.; Vikram, N.K. Clinical and pathophysiological consequences of abdominal adiposity and abdominal adipose tissue depots. Nutrition 2003, 19, 457–466. [Google Scholar]
- Pappas, C.; Kandaraki, E.A.; Tsirona, S.; Kountouras, D.; Kassi, G.; Diamanti-Kandarakis, E. Postprandial dysmetabolism: Too early or too late? Hormones 2016, 15, 321–344. [Google Scholar] [CrossRef]
- Sies, H.; Stahl, W.; Sevanian, A. Nutritional, dietary and postprandial oxidative stress. J. Nutr. 2005, 1135, 969–972. [Google Scholar] [CrossRef]
- Kumai, M.; Tamai, H.; Fujii, S.; Nakagawa, J.; Aoki, T.T. Glucagon secretion in anorexia nervosa. Am. J. Clin. Nutr. 1988, 47, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Gianaros, P.J.; Manuck, S.B. A stage model of stress and disease. Perspect. Psychol. Sci. 2016, 11, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, D.L.; Lorton, D. Autonomic regulation of cellular immune function. Auton. Neurosci. 2014, 182, 15–41. [Google Scholar] [CrossRef] [PubMed]
- Rohleder, N. Acute and chronic stress induced changes in sensitivity of peripheral inflammatory pathways to the signals of multiple stress systems—2011 Curt Richter Award Winner. Psychoneuroendocrinology 2012, 37, 307–316. [Google Scholar] [CrossRef]
- Cohen, S.; Janicki-Deverts, D.; Doyle, W.J.; Miller, G.E.; Frank, E.; Rabin, B.S.; Turner, R.B. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl. Acad. Sci. USA 2012, 109, 5995–5999. [Google Scholar] [CrossRef] [Green Version]
- Miller, G.E.; Chen, E.; Sze, J.; Marin, T.; Arevalo, J.M.G.; Doll, R.; Ma, R.; Cole, S.W. A functional genomic fingerprint of chronic stress in humans: Blunted glucocorticoid and increased NF-kB signaling. Biol. Psychiatry 2008, 64, 266–272. [Google Scholar] [CrossRef]
- Lorton, D.; Bellinger, D.L. Molecular mechanisms underlying B-adrenergic receptor-mediated cross-talk between sympathetic neurons and immune cells. Int. J. Mol. Sci. 2015, 16, 5635–5665. [Google Scholar] [CrossRef]
- Lefkowitz, R.J. G protein coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J. Biol. Chem. 1998, 273, 18677–18680. [Google Scholar] [CrossRef]
- Daaka, Y.; Luttrell, L.M.; Lefkowitz, R.J. Switching of the coupling of the Beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997, 390, 88–91. [Google Scholar] [CrossRef]
- Het, S.; Vocks, S.; Wolf, J.M.; Hammelstein, P.; Herpertz, S.; Wolf, O.T. Blunted neuroendocrine stress reactivity in young women with eating disorders. J. Psychosom. Res. 2015, 78, 260–267. [Google Scholar] [CrossRef]
- Walsh, B.T.; Roose, S.P.; Katz, J.L.; Dyrenfurth, I.; Wright, L.; Wiele, R.V.; Glassman, A.H. Hypothalamic-pituitary-adrenal-cortical activity in anorexia nervosa and bulimia. Psychoneuroendocrinology 1987, 12, 131–140. [Google Scholar] [CrossRef]
- Kontula, K.; Andersson, L.C.; Huttunen, M.; Pelkonen, R. Reduced level of cellular glucocorticoid receptors in patients with anorexia nervosa. Horm. Metab. Res. 1982, 14, 619–620. [Google Scholar] [CrossRef] [PubMed]
- Lonati-Galligani, M.; Pirke, K.M. Beta2-adrenergic receptor regulation in circulating mononuclear leukocytes in anorexia nervosa and bulimia. Psychiatry Res. 1986, 19, 189–198. [Google Scholar] [CrossRef]
- Furtado, M.; Katzman, M.A. Neuroinflammatory pathways in anxiety, posttraumatic stress, and obsessive compulsive disorders. Psychiatry Res. 2015, 229, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Magliozzi, J.R.; Gietzen, D.; Maddock, R.J.; Haack, D.; Doran, A.R.; Goodman, T.; Weiler, P.G. Lymphocyte beta-adrenoceptor density in patients with unipolar depression and normal controls. Biol. Psychiatry 1989, 26, 15–25. [Google Scholar] [CrossRef]
- Yu, B.H.; Dimsdale, J.E.; Mills, P.J. Psychological states and lymphocyte beta-adrenergic receptor responsiveness. Neuropsychopharmacology 1999, 21, 147–152. [Google Scholar] [CrossRef]
- Maddock, R.J.; Carter, C.S.; Magliozzi, J.R.; Gietzen, D.W. Evidence that decreased function of lymphocyte beta-adrenoceptors reflects regulatory and adaptive processes in panic disorder with agoraphobia. Am. J. Psychiatry 1993, 150, 1219–1225. [Google Scholar]
- Wallon, C.; Yang, P.C.; Keita, A.V.; Ericson, A.C.; McKay, D.M.; Sherman, P.M.; Perdue, M.H.; Soderholm, J.D. Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 2008, 57, 50–58. [Google Scholar] [CrossRef]
- Vanuytsel, T.; van Wanrooy, S.; Vanheel, H.; Vanormelingen, C.; Verschueren, S.; Houben, E.; Rasoel, S.S.; Toth, J.; Holvoet, L.; Farre, R.; et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 2014, 63, 1293–1299. [Google Scholar] [CrossRef]
- Soderholm, J.D.; Perdue, M.H. Stress and the gastrointestinal tract. II. Stress and intestinal barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 280, 7–13. [Google Scholar] [CrossRef]
- Maynard, C.L.; Elson, C.O.; Hatton, R.D.; Weaver, C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012, 489, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pryde, S.E.; Duncan, S.H.; Hold, G.L.; Steward, C.S.; Flint, H.J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 2002, 217, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Spasova, D.S.; Surh, C.D. Blowing on embers: Commensal microbiota and our immune system. Front. Immunol. 2014, 5, 318. [Google Scholar] [CrossRef] [PubMed]
- McGuckin, M.A.; Linden, S.K.; Sutton, P.; Florin, T.H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 2011, 9, 265–278. [Google Scholar] [CrossRef]
- Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 2009, 461, 1282–1287. [Google Scholar] [CrossRef]
- Kimura, H.; Sawada, N.; Tobioka, H.; Isomura, H.; Kokai, Y.; Hirata, K.; Mori, M. Bacterial lipopolysaccharide reduced intestinal barrier function and altered localization of 7H6 antigen in IEC-6 rat intestinal crypt cells. J. Cell. Physiol. 1997, 171, 284–290. [Google Scholar] [CrossRef]
- Bruewer, M.; Luegering, A.; Kucharzik, T.; Parkos, C.A.; Madara, J.L.; Hopkins, A.M.; Nusrat, A. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J. Immunol. 2003, 171, 6164–6172. [Google Scholar] [CrossRef]
- Genton, L.; Cani, P.D.; Schrenzel, J. Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. Clin. Nutr. 2015, 34, 341–349. [Google Scholar] [CrossRef]
- Roubalova, R.; Prochazkova, P.; Papezova, H.; Smitka, K.; Bilej, M.; Tlaskalova-Hogenova, H. Anorexia nervosa: Gut-microbiota-immune-brain interactions. Clin. Nutr. 2019. [Google Scholar] [CrossRef]
- Kleiman, S.C.; Watson, H.J.; Bulik-Sullivan, E.C.; Huh, E.Y.; Tarantino, L.M.; Bulik, C.M.; Carroll, I.M. The intestinal microbiota in acute anorexia nervosa and during renourishment: Relationship to depression, anxiety, and eating disorder psychopathology. Psychosom. Med. 2015, 77, 969–981. [Google Scholar] [CrossRef]
- Borgo, F.; Riva, A.; Benetti, A.; Casiraghi, M.C.; Bertelli, S.; Garbossa, S.; Anselmetti, S.; Scarone, S.; Pontiroli, A.E.; Morace, G.; et al. Microbiota in anorexia nervosa: The triangle between bacterial species, metabolites, and psychological tests. PLoS ONE 2017, 12, e0179739. [Google Scholar] [CrossRef] [PubMed]
- Morita, C.; Tsuji, H.; Hata, T.; Gondo, M.; Takakura, S.; Kawai, K.; Yoshihara, K.; Ogata, K.; Nomoto, K.; Miyazaki, K.; et al. Gut dysbiosis in patients with anorexia nervosa. PLoS ONE 2015, 19, e0145274. [Google Scholar] [CrossRef] [PubMed]
- Morkl, S.; Lackner, S.; Muller, W.; Gorkiewicz, G.; Kashofer, K.; Oberascher, A.; Painold, A.; Holl, A.; Holzer, P.; Meinitzer, A.; et al. Gut microbiota and body composition in anorexia nervosa inpatients in comparison to athletes, overweight, obese, and normal weight controls. Int. J. Eat. Disord. 2017, 50, 1421–1431. [Google Scholar] [CrossRef] [PubMed]
- Monteleone, P.; Carratu, R.; Carteni, M.; Generoso, M.; Lamberti, M.; De Magistris, L.; Brambilla, F.; Colurcio, B.; Secondulfo, M.; Maj, M. Intestinal permeability is decreased in anorexia nervosa. Mol. Psychiatry 2004, 9, 76–80. [Google Scholar] [CrossRef]
- Li, T.; Wu, Y. Paracrine molecules of mesenchymal stem cells for hematopoietic stem cell niche. Bone Marrow Res. 2011, 2011, 353878. [Google Scholar] [CrossRef]
- Marigo, I.; Dazzi, F. The immunomodulatory properties of mesenchymal stem cells. Semin. Immunopathol. 2011, 33, 593–602. [Google Scholar] [CrossRef]
- Shi, Y.; Su, J.; Roberts, A.I.; Shou, P.; Rabson, A.B.; Ren, G. How mesenchymal stem cells interact with tissue immune responses. Trends Immunol. 2012, 33, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, T.; Kohara, H.; Noda, M.; Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006, 25, 977–988. [Google Scholar] [CrossRef]
- Haynesworth, S.E.; Baber, M.A.; Caplan, A.I. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: Effects of dexamethasone and IL-1alpha. J. Cell. Physiol. 1996, 166, 585–592. [Google Scholar] [CrossRef]
- Mendez-Ferrer, S.; Michurina, T.V.; Ferraro, F.; Mazloom, A.R.; MacArthur, B.D.; Lira, S.A.; Scadden, D.T.; Ma’ayan, A.; Enikolopov, G.N.; Frenette, P.S. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010, 12, 829–836. [Google Scholar] [CrossRef]
- Katayama, Y.; Battista, M.; Kao, W.M.; Hidalgo, A.; Peired, A.J.; Thomas, S.A.; Frenette, P.S. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006, 124, 407–421. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Su, J.; Zhang, L.; Zhao, X.; Ling, W.; L’Huillie, A.; Zhang, J.; Lu, Y.; Roberts, A.I.; Ji, W.; et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells 2009, 27, 1954–1962. [Google Scholar] [CrossRef] [PubMed]
- Corcione, A.; Benvenuto, F.; Ferretti, E.; Giunti, D.; Cappiello, V.; Cazzanti, F.; Risso, M.; Gualandi, F.; Mancardi, G.L.; Pistoia, V.; et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006, 107, 367–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, G.G.; Batool, S.; Hastreiter, A.; Sartori, T.; Nogueira-Pedro, A.; Borelli, P.; Fock, R.A. The influence of protein malnutrition on biological and immunomodulatory aspects of bone marrow mesenchymal stem cells. Clin. Nutr. 2017, 36, 1149–1157. [Google Scholar] [CrossRef]
- Laranjeira, P.; Pedrosa, M.; Pedreiro, S.; Gomes, J.; Martinho, A.; Antunes, B.; Ribeiro, T.; Santos, F.; Trindade, H.; Paiva, A. Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naïve, memory, and effector T cells. Stem Cell Res. Ther. 2015, 6, 3. [Google Scholar] [CrossRef]
- Spaggiari, G.M.; Capobianco, A.; Abdelrazik, H.; Becchetti, F.; Mingari, M.C.; Moretta, L. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: Role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008, 111, 1327–1333. [Google Scholar] [CrossRef]
- Krampera, M.; Glennie, S.; Dyson, J.; Scott, D.; Laylor, R.; Simpson, E.; Dazzi, F. Bone marrow mesenchymal stem cells inhibit the response of naïve and memory antigen-specific T cells to their cognate peptide. Blood 2003, 101, 3722–3729. [Google Scholar] [CrossRef]
- Jiang, X.X.; Zhang, Y.; Liu, B.; Zhang, S.X.; Wu, Y.; Yu, X.D.; Mao, N. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005, 105, 4120–4126. [Google Scholar] [CrossRef] [Green Version]
- Chiesa, S.; Mobelli, S.; Morando, S.; Massollo, M.; Marini, C.; Bertoni, A.; Frassoni, F.; Bartolome, S.T.; Sambuceti, G.; Traggiai, E.; et al. Mesenchymal stem cells impair in vivo T-cell priming by dendritic cells. Proc. Natl. Acad. Sci. USA 2011, 108, 17384–17389. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.L.; Tang, K.C.; Patel, A.P.; Bonilla, L.M.; Pierobon, N.; Ponzio, N.M.; Rameshwar, P. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood 2006, 107, 4817–4824. [Google Scholar] [CrossRef]
- Le Blanc, K.; Tammik, L.; Sundberg, B.; Haynesworth, S.E.; Ringden, O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand. J. Immunol. 2003, 57, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Romieu-Mourez, R.; Francois, M.; Boivin, M.N.; Stagg, J.; Galipeau, J. Regulation of MHC class II expression and antigen processing in murine and human mesenchymal stromal cells by IFN-gamma, TGF-beta, and cell density. J. Immunol. 2007, 179, 1549–1558. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Hardouin, P.; Pansini, V.; Cortet, B. Bone marrow fat. Jt. Bone Spine 2014, 81, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Puig, A.; Jimenez-Linan, M.; Lowell, B.B.; Hamann, A.; Hu, E.; Spiegelman, B.; Flier, J.J.; Moller, D.E. Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J. Clin. Investig. 1996, 97, 2553–2561. [Google Scholar] [CrossRef]
- Liu, L.; Shen, W.J.; Ueno, M.; Patel, S.; Kraemer, F.B. Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genom. 2011, 12, 212. [Google Scholar] [CrossRef]
- Shergill, K.K.; Shergill, G.S.; Pillai, H.J. Gelatinous transformation of bone marrow: Rare or underdiagnosed? Autops. Case Rep. 2017, 7, 8–17. [Google Scholar] [CrossRef]
Bone Marrow | T Cell Proliferation | CD4/CD8 Ratio | IL-1 | IL-6 | TNF | |
---|---|---|---|---|---|---|
Anorexia nervosa | Gelatinous Marrow Transformation (GMT) (low adiposity) | Unchanged to increased | High (greater effect on CD8 cells) | Normal to increased | Increased | High (including spontaneous production) |
Primary malnutrition | Increased adiposity without GMT | Decreased | Low (greater effect on CD4 cells) | Low to normal | Decreased | Low (no spontaneous production) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibson, D.; Mehler, P.S. Anorexia Nervosa and the Immune System—A Narrative Review. J. Clin. Med. 2019, 8, 1915. https://doi.org/10.3390/jcm8111915
Gibson D, Mehler PS. Anorexia Nervosa and the Immune System—A Narrative Review. Journal of Clinical Medicine. 2019; 8(11):1915. https://doi.org/10.3390/jcm8111915
Chicago/Turabian StyleGibson, Dennis, and Philip S Mehler. 2019. "Anorexia Nervosa and the Immune System—A Narrative Review" Journal of Clinical Medicine 8, no. 11: 1915. https://doi.org/10.3390/jcm8111915
APA StyleGibson, D., & Mehler, P. S. (2019). Anorexia Nervosa and the Immune System—A Narrative Review. Journal of Clinical Medicine, 8(11), 1915. https://doi.org/10.3390/jcm8111915