Comparison of Renal Function Estimation Formulae for Dosing Direct Oral Anticoagulants in Patients with Atrial Fibrillation
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Agreement between Different eGFR Calculation Methods
3.3. Comparison of Drug Indications
3.4. Clinical Effectiveness and Safety of On-Label Use According to Different Formulae
4. Discussion
4.1. Main Findings
4.2. Dose Criteria in DOAC Labels
4.3. Performance of Formulae in Estimating Renal Function
4.4. Clinical Use of the Cockcroft-Gault Formula for Dosing DOAC
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Drug | Dosage and Administration * |
---|---|
Dabigatran | 150 mg twice daily 110 mg twice daily 30≤ serum creatinine clearance (CrCl) <50 mL/min Body weight ≤50 kg Age ≥75 years Concomitant potent P-glycoprotein inhibitor therapy† |
Rivaroxaban | 20 mg once daily 15 mg once daily 15≤ serum CrCl <50 mL/min |
Apixaban | 5 mg twice daily 2.5 mg twice daily any 2 of age ≥80 years, body weight ≤60 kg, or serum creatinine ≥1.5 mg/dL 15≤ serum CrCl <30 mL/min |
Edoxaban | 60 mg once daily 30 mg once daily 15≤ serum CrCl <50 mL/min Body weight ≤60 kg Concomitant potent P-glycoprotein inhibitor therapy‡ |
By CG | By CKD-EPI | p | By MDRD | p | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduced | Standard | Reduced | Standard | |||||||||
On | Off | On | Off | On | Off | On | Off | |||||
All DOACs | Reduced | On | 635 | 142 | 0 | 0 | <0.05 | 633 | 144 | 0 | 0 | <0.05 |
Off | 12 | 721 | 0 | 0 | 12 | 721 | 0 | 0 | ||||
Standard | On | 0 | 0 | 1863 | 10 | 0 | 0 | 1861 | 12 | |||
Off | 0 | 0 | 62 | 164 | 0 | 0 | 62 | 164 | ||||
Dabigatran | Reduced | On | 169 | 16 | 0 | 0 | <0.05 | 169 | 16 | 0 | 0 | <0.05 |
Off | 6 | 114 | 0 | 0 | 6 | 114 | 0 | 0 | ||||
Standard | On | 0 | 0 | 476 | 2 | 0 | 0 | 476 | 2 | |||
Off | 0 | 0 | 14 | 52 | 0 | 0 | 14 | 52 | ||||
Rivaroxaban | Reduced | On | 58 | 79 | 0 | 0 | <0.05 | 57 | 80 | 0 | 0 | <0.05 |
Off | 2 | 182 | 0 | 0 | 2 | 182 | 0 | 0 | ||||
Standard | On | 0 | 0 | 257 | 2 | 0 | 0 | 256 | 3 | |||
Off | 0 | 0 | 28 | 17 | 0 | 0 | 28 | 17 | ||||
Apixaban | Reduced | On | 89 | 8 | 0 | 0 | <0.05 | 89 | 8 | 0 | 0 | <0.05 |
Off | 0 | 218 | 0 | 0 | 0 | 218 | 0 | 0 | ||||
Standard | On | 0 | 0 | 636 | 0 | 0 | 0 | 636 | 0 | |||
Off | 0 | 0 | 3 | 9 | 0 | 0 | 3 | 9 | ||||
Edoxaban | Reduced | On | 319 | 39 | 0 | 0 | <0.05 | 318 | 40 | 0 | 0 | <0.05 |
Off | 4 | 207 | 0 | 0 | 4 | 207 | 0 | 0 | ||||
Standard | On | 0 | 0 | 494 | 6 | 0 | 0 | 493 | 7 | |||
Off | 0 | 0 | 17 | 86 | 0 | 0 | 17 | 86 |
References
- Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J.; et al. Dabigatran versus warfarin in patients with atrial fibrillation. New Engl. J. Med. 2009, 361, 1139–1151. [Google Scholar] [CrossRef]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.J.; Piccini, J.P.; et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. New Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef]
- Granger, C.B.; Alexander, J.H.; McMurray, J.J.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Avezum, A.; et al. Apixaban versus warfarin in patients with atrial fibrillation. New Engl. J. Med. 2011, 365, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, R.P.; Ruff, C.T.; Braunwald, E.; Murphy, S.A.; Wiviott, S.D.; Halperin, J.L.; Waldo, A.L.; Ezekowitz, M.D.; Weitz, J.I.; Spinar, J.; et al. Edoxaban versus warfarin in patients with atrial fibrillation. New Engl. J. Med. 2013, 369, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, B.A.; Gao, H.; Shrader, P.; Pieper, K.; Thomas, L.; Camm, A.J.; Ezekowitz, M.D.; Fonarow, G.C.; Gersh, B.J.; Goldhaber, S.; et al. International trends in clinical characteristics and oral anticoagulation treatment for patients with atrial fibrillation: Results from the GARFIELD-AF, ORBIT-AF I, and ORBIT-AF II registries. Am. Heart J. 2017, 194, 132–140. [Google Scholar] [CrossRef] [PubMed]
- DeWald, T.A.; Becker, R.C. The pharmacology of novel oral anticoagulants. J. Thromb. Thrombolysis 2014, 37, 217–233. [Google Scholar] [CrossRef]
- Steffel, J.; Verhamme, P.; Potpara, T.S.; Albaladejo, P.; Antz, M.; Desteghe, L.; Haeusler, K.G.; Oldgren, J.; Reinecke, H.; Roldan-Schilling, V.; et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur. Heart J. 2018, 39, 1330–1393. [Google Scholar] [CrossRef]
- Verhave, J.C.; Fesler, P.; Ribstein, J.; du Cailar, G.; Mimran, A. Estimation of renal function in subjects with normal serum creatinine levels: Influence of age and body mass index. Am. J. Kidney Dis. 2005, 46, 233–241. [Google Scholar] [CrossRef]
- Stevens, L.A.; Coresh, J.; Feldman, H.I.; Greene, T.; Lash, J.P.; Nelson, R.G.; Rahman, M.; Deysher, A.E.; Zhang, Y.L.; Schmid, C.H.; et al. Evaluation of the modification of diet in renal disease study equation in a large diverse population. J. Am. Soc. Nephrol. JASN 2007, 18, 2749–2757. [Google Scholar] [CrossRef]
- Inker, L.A.; Astor, B.C.; Fox, C.H.; Isakova, T.; Lash, J.P.; Peralta, C.A.; Kurella Tamura, M.; Feldman, H.I. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am. J. Kidney Dis. 2014, 63, 713–735. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J.B.; Lip, G.Y.; Kamper, A.L.; Hommel, K.; Kober, L.; Lane, D.A.; Lindhardsen, J.; Gislason, G.H.; Torp-Pedersen, C. Stroke and bleeding in atrial fibrillation with chronic kidney disease. New Engl. J. Med. 2012, 367, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, B.A.; Shrader, P.; Thomas, L.; Ansell, J.; Fonarow, G.C.; Gersh, B.J.; Kowey, P.R.; Mahaffey, K.W.; Naccarelli, G.; Reiffel, J.; et al. Off-Label Dosing of Non-Vitamin K Antagonist Oral Anticoagulants and Adverse Outcomes: The ORBIT-AF II Registry. J. Am. Coll. Cardiol. 2016, 68, 2597–2604. [Google Scholar] [CrossRef] [PubMed]
- Schulman, S.; Kearon, C. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J. Thromb. Haemost. JTH 2005, 3, 692–694. [Google Scholar] [CrossRef]
- Bijlsma, M.J.; Janssen, F.; Hak, E. Estimating time-varying drug adherence using electronic records: Extending the proportion of days covered (PDC) method. Pharmacoepidemiol. Drug Saf. 2016, 25, 325–332. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Hallgren, K.A. Computing Inter-Rater Reliability for Observational Data: An Overview and Tutorial. Tutor. Quant. Methods Psychol. 2012, 8, 23–34. [Google Scholar] [CrossRef]
- Firth, D. Bias Reduction of Maximum-Likelihood-Estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Eriksson, B.I.; Dahl, O.E.; Ahnfelt, L.; Kalebo, P.; Stangier, J.; Nehmiz, G.; Hermansson, K.; Kohlbrenner, V. Dose escalating safety study of a new oral direct thrombin inhibitor, dabigatran etexilate, in patients undergoing total hip replacement: BISTRO I. J. Thromb. Haemost. JTH 2004, 2, 1573–1580. [Google Scholar] [CrossRef]
- Kubitza, D.; Becka, M.; Voith, B.; Zuehlsdorf, M.; Wensing, G. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. Clin. Pharmacol. Ther. 2005, 78, 412–421. [Google Scholar] [CrossRef]
- Frost, C.; Wang, J.; Nepal, S.; Schuster, A.; Barrett, Y.C.; Mosqueda-Garcia, R.; Reeves, R.A.; LaCreta, F. Apixaban, an oral, direct factor Xa inhibitor: Single dose safety, pharmacokinetics, pharmacodynamics and food effect in healthy subjects. Br. J. Clin. Pharmacol. 2013, 75, 476–487. [Google Scholar] [CrossRef] [PubMed]
- Yin, O.Q.; Miller, R. Population pharmacokinetics and dose-exposure proportionality of edoxaban in healthy volunteers. Clin. Drug. Investig. 2014, 34, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.E.; Giugliano, R.P.; Patel, M.R.; Abramson, S.; Jardine, M.; Zhao, S.; Perkovic, V.; Maddux, F.W.; Piccini, J.P. Nonvitamin K Anticoagulant Agents in Patients With Advanced Chronic Kidney Disease or on Dialysis With AF. J. Am. Coll. Cardiol. 2016, 67, 2888–2899. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, M.; Anastasio, P.; De Santo, N.G. Relationship of gender, age, and body mass index to errors in predicted kidney function. Nephrol. Dial. Transplant. 2005, 20, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Coresh, J.; Stevens, L.A. Kidney function estimating equations: Where do we stand? Curr. Opin. Nephrology Hypertens. 2006, 15, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Michels, W.M.; Grootendorst, D.C.; Verduijn, M.; Elliott, E.G.; Dekker, F.W.; Krediet, R.T. Performance of the Cockcroft-Gault, MDRD, and new CKD-EPI formulas in relation to GFR, age, and body size. Clin. J. Am. Soc. Nephrol. 2010, 5, 1003–1009. [Google Scholar] [CrossRef]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
- Ma, Y.C.; Zuo, L.; Chen, J.H.; Luo, Q.; Yu, X.Q.; Li, Y.; Xu, J.S.; Huang, S.M.; Wang, L.N.; Huang, W.; et al. Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J. Am. Soc. Nephrol. JASN 2006, 17, 2937–2944. [Google Scholar] [CrossRef]
- Matsuo, S.; Imai, E.; Horio, M.; Yasuda, Y.; Tomita, K.; Nitta, K.; Yamagata, K.; Tomino, Y.; Yokoyama, H.; Hishida, A. Revised equations for estimated GFR from serum creatinine in Japan. Am. J. Kidney Dis. 2009, 53, 982–992. [Google Scholar] [CrossRef]
- Lee, C.S.; Cha, R.H.; Lim, Y.H.; Kim, H.; Song, K.H.; Gu, N.; Yu, K.S.; Lim, C.S.; Han, J.S.; Kim, S.; et al. Ethnic coefficients for glomerular filtration rate estimation by the Modification of Diet in Renal Disease study equations in the Korean population. J. Korean Med. Sci. 2010, 25, 1616–1625. [Google Scholar] [CrossRef]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef]
- McIntosh, J.F.; Moller, E.; Van Slyke, D.D. STUDIES OF UREA EXCRETION. III: The Influence of Body Size on Urea Output. J. Clin. Investig. 1928, 6, 467–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolin, H.A., 3rd; Hall, P.M.; Wei, R. Inaccuracy of estimated creatinine clearance for prediction of iothalamate glomerular filtration rate. Am. J. Kidney Dis. 1984, 4, 48–54. [Google Scholar] [CrossRef]
- Sampson, M.J.; Drury, P.L. Accurate estimation of glomerular filtration rate in diabetic nephropathy from age, body weight, and serum creatinine. Diabetes Care 1992, 15, 609–612. [Google Scholar] [CrossRef] [PubMed]
- Dooley, M.J.; Poole, S.G. Poor correlation between body surface area and glomerular filtration rate. Cancer Chemother. Pharmacol. 2000, 46, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.T.; Reilly, S.L. Fallacy of indexing renal and systemic hemodynamic measurements for body surface area. Am. J. Physiol. 1995, 268, R978–R988. [Google Scholar] [CrossRef] [PubMed]
- Delanaye, P.; Radermecker, R.P.; Rorive, M.; Depas, G.; Krzesinski, J.M. Indexing glomerular filtration rate for body surface area in obese patients is misleading: Concept and example. Nephrolo. Dial. Transplant. 2005, 20, 2024–2028. [Google Scholar] [CrossRef] [Green Version]
- Liesenfeld, K.H.; Lehr, T.; Dansirikul, C.; Reilly, P.A.; Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Wallentin, L.; Haertter, S.; Staab, A. Population pharmacokinetic analysis of the oral thrombin inhibitor dabigatran etexilate in patients with non-valvular atrial fibrillation from the RE-LY trial. J. Thromb. Haemost. JTH 2011, 9, 2168–2175. [Google Scholar] [CrossRef]
- Upreti, V.V.; Wang, J.; Barrett, Y.C.; Byon, W.; Boyd, R.A.; Pursley, J.; LaCreta, F.P.; Frost, C.E. Effect of extremes of body weight on the pharmacokinetics, pharmacodynamics, safety and tolerability of apixaban in healthy subjects. Br. J. Clin. Pharmacol. 2013, 76, 908–916. [Google Scholar] [CrossRef]
- Yin, O.Q.; Tetsuya, K.; Miller, R. Edoxaban population pharmacokinetics and exposure-response analysis in patients with non-valvular atrial fibrillation. Eur. J. Clin. Pharmacol. 2014, 70, 1339–1351. [Google Scholar] [CrossRef]
- Kubitza, D.; Becka, M.; Zuehlsdorf, M.; Mueck, W. Body weight has limited influence on the safety, tolerability, pharmacokinetics, or pharmacodynamics of rivaroxaban (BAY 59-7939) in healthy subjects. J. Clin. Pharmacol. 2007, 47, 218–226. [Google Scholar] [CrossRef] [PubMed]
Warfarin (N = 2659) | Direct Oral Anticoagulant | ||||||
---|---|---|---|---|---|---|---|
On-Label by CG | On-Label by CKD-EPI | On-Label by MDRD | |||||
Reduced Dose (n = 777) | Standard Dose (n = 1873) | Reduced Dose (n = 647) | Standard Dose (n = 1925) | Reduced Dose (n = 645) | Standard Dose (n = 1923) | ||
Age, years | 65.3 ± 11.9 | 77.3 ± 8.1 * | 62.4 ± 10.7 * | 77.0 ± 8.5 * | 62.8 ± 10.9 * | 77.0 ± 8.5 * | 62.8 ± 10.9 * |
Female | 820 (30.8) | 474 (61.0) * | 496 (26.5) * | 395 (61.1) * | 522 (27.1) * | 393 (60.9) * | 521 (27.1) * |
Weight, kg | 67.7 ± 12.1 | 56.8 ± 9.7 * | 71.0 ± 11.2 * | 57.1 ± 10.5 * | 70.5 ± 11.3 * | 57.1 ± 10.5 * | 70.5 ± 11.2 * |
Hypertension | 1980 (74.5) | 650 (83.7) * | 1315 (70.2) * | 537 (83.0) * | 1354 (70.3) * | 535 (82.9) * | 1352 (70.3) * |
Diabetes | 717 (27.0) | 239 (30.8) * | 452 (24.1) * | 212 (32.8) * | 463 (24.1) * | 210 (32.6) * | 462 (24.0) * |
Congestive heart failure | 865 (32.5) | 303 (39.0) * | 282 (15.1) * | 249 (38.5) * | 303 (15.7) * | 248 (38.4) * | 302 (15.7) * |
Any prior thromboembolism | 600 (22.6) | 311 (40.0) * | 414 (22.1) | 253 (39.1) * | 443 (23.0) | 252 (39.1) * | 443 (23.0) |
CHA2DS2-VASc score ** | 2.8 ± 1.9 | 4.5 ± 1.6 * | 2.3 ± 1.7 * | 4.4 ± 1.6 * | 2.4 ± 1.7 * | 4.4 ± 1.6 * | 2.4 ± 1.7 * |
Concomitant antiplatelet drug | 296 (11.1) | 70 (9.0) | 65 (3.5) * | 61 (9.4) | 70 (3.6) * | 60 (9.3) | 71 (3.7) * |
Serum creatinine, mg/mL | 1.11 ± 0.75 | 1.09 ± 0.43 | 0.96 ± 0.19 * | 1.11 ± 0.45 | 0.96 ± 0.19 * | 1.11 ± 0.45 | 0.96 ± 0.19 * |
Left ventricular ejection fraction, % | 51.6 ± 10.0 | 51.9 ± 10.0 | 53.2 ± 7.9 * | 52.1 ± 9.9 | 53.1 ± 8.0 * | 52.0 ± 9.9 | 53.1 ± 8.0 * |
Left atrial diameter, mm | 44.6 ± 7.1 | 44.7 ± 7.7 | 43.2 ± 6.4 * | 44.9 ± 8.0 | 43.2 ± 6.5 * | 44.8 ± 8.0 | 43.2 ± 6.5 * |
Drug adherence, % | 92.0 ± 17.0 | 91.9 ± 17.9 | 90.8 ± 19.9 * | 91.4 ± 18.7 | 90.7 ± 20.1 * | 91.4 ± 18.7 | 90.7 ± 20.1 * |
≥80% (adherent) | 2152 (87.6) | 595 (88.1) | 1384 (85.1) * | 492 (87.5) | 1429 (85.2) * | 490 (87.5) | 1426 (85.2) * |
Event Rate (%/year) | Adjusted HR (95% CI) * | P ** | ||
---|---|---|---|---|
DOAC | Warfarin | |||
Thromboembolism | ||||
Concordant (on-label by CG and on-label by CKD-EPI) vs. Warfarin | 1.95 | 1.35 | 0.75 (0.34–1.63) | 0.465 |
Discordant (on-label by CG and off-label by CKD-EPI) vs. Warfarin | 1.90 | 1.35 | 0.80 (0.19–3.41) | 0.759 |
Discordant vs. Concordant (CG and CKD-EPI) | 1.39 (0.29–6.69) | 0.680 | ||
Concordant (on-label by CG and on-label by MDRD) vs. Warfarin | 1.97 | 1.35 | 0.76 (0.35–1.65) | 0.482 |
Discordant (on-label by CG and off-label by MDRD) vs. Warfarin | 1.83 | 1.35 | 0.75 (0.18–3.23) | 0.704 |
Discordant vs. Concordant (CG and MDRD) | 1.21 (0.25–5.82) | 0.811 | ||
Major bleeding | ||||
Concordant (on-label by CG and on-label by CKD-EPI) vs. Warfarin | 1.51 | 2.14 | 0.36 (0.16–0.81) | 0.014 |
Discordant (on-label by CG and off-label by CKD-EPI) vs. Warfarin | 0.00 | 2.14 | 0.59 (0.16–2.18) | 0.432† |
Discordant vs. Concordant (CG and CKD-EPI) | 0.82 (0.08–7.94) | 0.862† | ||
Concordant (on-label by CG and on-label by MDRD) vs. Warfarin | 1.53 | 2.14 | 0.36 (0.16–0.82) | 0.015 |
Discordant (on-label by CG and off-label by MDRD) vs. Warfarin | 0.00 | 2.14 | 0.59 (0.17–2.13) | 0.423† |
Discordant vs. Concordant (CG and MDRD) | 0.67 (0.07–6.35) | 0.730† |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-N.; Choi, J.-I.; Kim, Y.G.; Boo, K.Y.; Kim, D.Y.; Choi, Y.Y.; Choi, H.Y.; Kim, D.-H.; Lee, D.I.; Roh, S.-Y.; et al. Comparison of Renal Function Estimation Formulae for Dosing Direct Oral Anticoagulants in Patients with Atrial Fibrillation. J. Clin. Med. 2019, 8, 2034. https://doi.org/10.3390/jcm8122034
Lee K-N, Choi J-I, Kim YG, Boo KY, Kim DY, Choi YY, Choi HY, Kim D-H, Lee DI, Roh S-Y, et al. Comparison of Renal Function Estimation Formulae for Dosing Direct Oral Anticoagulants in Patients with Atrial Fibrillation. Journal of Clinical Medicine. 2019; 8(12):2034. https://doi.org/10.3390/jcm8122034
Chicago/Turabian StyleLee, Kwang-No, Jong-Il Choi, Yun Gi Kim, Ki Yung Boo, Do Young Kim, Yun Young Choi, Ha Young Choi, Dong-Hyeok Kim, Dae In Lee, Seung-Young Roh, and et al. 2019. "Comparison of Renal Function Estimation Formulae for Dosing Direct Oral Anticoagulants in Patients with Atrial Fibrillation" Journal of Clinical Medicine 8, no. 12: 2034. https://doi.org/10.3390/jcm8122034
APA StyleLee, K. -N., Choi, J. -I., Kim, Y. G., Boo, K. Y., Kim, D. Y., Choi, Y. Y., Choi, H. Y., Kim, D. -H., Lee, D. I., Roh, S. -Y., Shim, J., Kim, J. S., & Kim, Y. -H. (2019). Comparison of Renal Function Estimation Formulae for Dosing Direct Oral Anticoagulants in Patients with Atrial Fibrillation. Journal of Clinical Medicine, 8(12), 2034. https://doi.org/10.3390/jcm8122034