Deciphering the Biological Mechanisms Underlying the Genome-Wide Associations between Computerized Device Use and Psychiatric Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Data
2.2. Genetic Correlation
2.3. Genetic Instrument Selection
2.4. Mendelian Randomization
2.5. Enrichment Analyses
3. Results
3.1. Genetic Correlation between Computerized Device Use and Psychiatric Disorders
3.2. Mendelian Randomization
3.3. Genetic Similarities and Differences between Computerized Device Use and Psychiatric Disorders
3.3.1. Schizophrenia and CompGaming
3.3.2. ADHD and PhoneUse
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Papp, D.S.; Alberts, D.S.; Tuyahov, A. Historical impacts of information technologies: An overview. In The Information Age: An Anthology on Its Impact and Consequences; Alberts, D.S., Papp, D.S., Eds.; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2012; pp. 13–35. [Google Scholar]
- Byun, Y.H.; Ha, M.; Kwon, H.J.; Hong, Y.C.; Leem, J.H.; Sakong, J.; Kim, S.Y.; Lee, C.G.; Kang, D.; Choi, H.D.; et al. Mobile phone use, blood lead levels, and attention deficit hyperactivity symptoms in children: A longitudinal study. PLoS ONE 2013, 8, e59742. [Google Scholar] [CrossRef]
- Fernandez, C.; de Salles, A.A.; Sears, M.E.; Morris, R.D.; Davis, D.L. Absorption of wireless radiation in the child versus adult brain and eye from cell phone conversation or virtual reality. Environ. Res. 2018, 167, 694–699. [Google Scholar] [CrossRef]
- Forouharmajd, F.; Pourabdian, S.; Ebrahimi, H. Evaluating temperature changes of brain tissue due to induced heating of cell phone waves. Int. J. Prev. Med. 2018, 9, 40. [Google Scholar]
- Pisano, S.; Muratori, P.; Senese, V.P.; Gorga, C.; Siciliano, M.; Carotenuto, M.; Iuliano, R.; Bravaccio, C.; Signoriello, S.; Gritti, A.; et al. Phantom phone signals in youths: Prevalence, correlates and relation to psychopathology. PLoS ONE 2019, 14, e0210095. [Google Scholar] [CrossRef]
- You, Z.; Zhang, Y.; Zhang, L.; Xu, Y.; Chen, X. How does self-esteem affect mobile phone addiction? The mediating role of social anxiety and interpersonal sensitivity. Psychiatry Res. 2019, 271, 526–531. [Google Scholar] [CrossRef]
- Zheng, F.; Gao, P.; He, M.; Li, M.; Wang, C.; Zeng, Q.; Zhou, Z.; Yu, Z.; Zhang, L. Association between mobile phone use and inattention in 7102 chinese adolescents: A population-based cross-sectional study. BMC Public Health 2014, 14, 1022. [Google Scholar] [CrossRef]
- Wayne, N.L.; Miller, G.A. Impact of gender, organized athletics, and video gaming on driving skills in novice drivers. PLoS ONE 2018, 13, e0190885. [Google Scholar] [CrossRef]
- Stenseng, F.; Hygen, B.W.; Wichstrom, L. Time spent gaming and psychiatric symptoms in childhood: Cross-sectional associations and longitudinal effects. Eur. Child Adolesc. Psychiatry 2019, 1–9. [Google Scholar] [CrossRef]
- Matar Boumosleh, J.; Jaalouk, D. Depression, anxiety, and smartphone addiction in university students—A cross sectional study. PLoS ONE 2017, 12, e0182239. [Google Scholar] [CrossRef]
- Suenderhauf, C.; Walter, A.; Lenz, C.; Lang, U.E.; Borgwardt, S. Counter striking psychosis: Commercial video games as potential treatment in schizophrenia? A systematic review of neuroimaging studies. Neurosci. Biobehav. Rev. 2016, 68, 20–36. [Google Scholar] [CrossRef]
- Ebrahim, S.; Davey Smith, G. Mendelian randomization: Can genetic epidemiology help redress the failures of observational epidemiology? Hum. Genet. 2008, 123, 15–33. [Google Scholar] [CrossRef]
- Lawlor, D.A.; Harbord, R.M.; Sterne, J.A.; Timpson, N.; Davey Smith, G. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat. Med. 2008, 27, 1133–1163. [Google Scholar] [CrossRef]
- Polimanti, R.; Amstadter, A.B.; Stein, M.B.; Almli, L.M.; Baker, D.G.; Bierut, L.J.; Bradley, B.; Farrer, L.A.; Johnson, E.O.; King, A.; et al. A putative causal relationship between genetically determined female body shape and posttraumatic stress disorder. Genome Med. 2017, 9, 99. [Google Scholar] [CrossRef]
- Sullivan, P.F.; Agrawal, A.; Bulik, C.M.; Andreassen, O.A.; Borglum, A.D.; Breen, G.; Cichon, S.; Edenberg, H.J.; Faraone, S.V.; Gelernter, J.; et al. Psychiatric genomics: An update and an agenda. Am. J. Psychiatry 2018, 175, 15–27. [Google Scholar] [CrossRef]
- Bycroft, C.; Freeman, C.; Petkova, D.; Band, G.; Elliott, L.T.; Sharp, K.; Motyer, A.; Vukcevic, D.; Delaneau, O.; O’Connell, J.; et al. The uk biobank resource with deep phenotyping and genomic data. Nature 2018, 562, 203–209. [Google Scholar] [CrossRef]
- Demontis, D.; Walters, R.K.; Martin, J.; Mattheisen, M.; Als, T.D.; Agerbo, E.; Baldursson, G.; Belliveau, R.; Bybjerg-Grauholm, J.; Baekvad-Hansen, M.; et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 2019, 51, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Walters, R.K.; Polimanti, R.; Johnson, E.C.; McClintick, J.N.; Adams, M.J.; Adkins, A.E.; Aliev, F.; Bacanu, S.A.; Batzler, A.; Bertelsen, S.; et al. Transancestral gwas of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat. Neurosci. 2018, 21, 1656–1669. [Google Scholar] [CrossRef]
- Duncan, L.; Yilmaz, Z.; Gaspar, H.; Walters, R.; Goldstein, J.; Anttila, V.; Bulik-Sullivan, B.; Ripke, S.; Thornton, L.; Hinney, A.; et al. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am. J. Psychiatry 2017, 174, 850–858. [Google Scholar] [CrossRef]
- Grove, J.; Ripke, S.; Als, T.D.; Mattheisen, M.; Walters, R.K.; Won, H.; Pallesen, J.; Agerbo, E.; Andreassen, O.A.; Anney, R.; et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 2019, 51, 431–444. [Google Scholar] [CrossRef]
- Stahl, E.A.; Breen, G.; Forstner, A.J.; McQuillin, A.; Ripke, S.; Trubetskoy, V.; Mattheisen, M.; Wang, Y.; Coleman, J.R.I.; Gaspar, H.A.; et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 2019, 51, 793–803. [Google Scholar] [CrossRef]
- Wray, N.R.; Ripke, S.; Mattheisen, M.; Trzaskowski, M.; Byrne, E.M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.M.F.; et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 2018, 50, 668–681. [Google Scholar] [CrossRef] [PubMed]
- Duncan, L.E.; Ratanatharathorn, A.; Aiello, A.E.; Almli, L.M.; Amstadter, A.B.; Ashley-Koch, A.E.; Baker, D.G.; Beckham, J.C.; Bierut, L.J.; Bisson, J.; et al. Largest gwas of ptsd (n 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol. Psychiatry 2018, 23, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Bulik-Sullivan, B.; Finucane, H.K.; Anttila, V.; Gusev, A.; Day, F.R.; Loh, P.R.; Duncan, L.; Perry, J.R.; Patterson, N.; Robinson, E.B.; et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015, 47, 1236–1241. [Google Scholar] [CrossRef]
- Bulik-Sullivan, B.K.; Loh, P.R.; Finucane, H.K.; Ripke, S.; Yang, J.; Patterson, N.; Daly, M.J.; Price, A.L.; Neale, B.M. Ld score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 2015, 47, 291–295. [Google Scholar] [CrossRef]
- Pierce, B.L.; Burgess, S. Efficient design for mendelian randomization studies: Subsample and 2-sample instrumental variable estimators. Am. J. Epidemiol. 2013, 178, 1177–1184. [Google Scholar] [CrossRef]
- Howard, D.M.; Adams, M.J.; Clarke, T.K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019, 22, 343–352. [Google Scholar] [CrossRef]
- Pardinas, A.F.; Holmans, P.; Pocklington, A.J.; Escott-Price, V.; Ripke, S.; Carrera, N.; Legge, S.E.; Bishop, S.; Cameron, D.; Hamshere, M.L.; et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 2018, 50, 381–389. [Google Scholar] [CrossRef]
- Euesden, J.; Lewis, C.M.; O’Reilly, P.F. Prsice: Polygenic risk score software. Bioinformatics 2015, 31, 1466–1468. [Google Scholar] [CrossRef]
- Boef, A.G.; Dekkers, O.M.; Vandenbroucke, J.P.; le Cessie, S. Sample size importantly limits the usefulness of instrumental variable methods, depending on instrument strength and level of confounding. J. Clin. Epidemiol. 2014, 67, 1258–1264. [Google Scholar] [CrossRef]
- Crown, W.H.; Henk, H.J.; Vanness, D.J. Some cautions on the use of instrumental variables estimators in outcomes research: How bias in instrumental variables estimators is affected by instrument strength, instrument contamination, and sample size. Value Health 2011, 14, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Polimanti, R.; Gelernter, J.; Stein, D.J. Genetically determined schizophrenia is not associated with impaired glucose homeostasis. Schizophr. Res. 2018, 195, 286–289. [Google Scholar] [CrossRef] [PubMed]
- Polimanti, R.; Kaufman, J.; Zhao, H.; Kranzler, H.R.; Ursano, R.J.; Kessler, R.C.; Stein, M.B.; Gelernter, J. Trauma exposure interacts with the genetic risk of bipolar disorder in alcohol misuse of us soldiers. Acta Psychiatr. Scand. 2018, 137, 148–156. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Bowden, J.; Del Greco, M.F.; Minelli, C.; Davey Smith, G.; Sheehan, N.; Thompson, J. A framework for the investigation of pleiotropy in two-sample summary data mendelian randomization. Stat. Med. 2017, 36, 1783–1802. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, F.P.; Davey Smith, G.; Bowden, J. Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 2017, 46, 1985–1998. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Wang, J.; Hemani, G.; Bowden, J.; Small, D.S. Statistical inference in two-sample summary data mendelian randomization using robust adjusted profile score. arXiv 2018, arXiv:1801.09652. [Google Scholar]
- Burgess, S.; Bowden, J.; Fall, T.; Ingelsson, E.; Thompson, S.G. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology 2017, 28, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Verbanck, M.; Chen, C.Y.; Neale, B.; Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat. Genet. 2018, 50, 693–698. [Google Scholar] [CrossRef]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The mr-base platform supports systematic causal inference across the human phenome. Elife 2018, 7, e34408. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Multivariable mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 2015, 181, 251–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yavorska, O.O.; Burgess, S. Mendelianrandomization: An r package for performing mendelian randomization analyses using summarized data. Int. J. Epidemiol. 2017, 46, 1734–1739. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, L.J.; Price, A.L. Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat. Genet. 2018, 50, 1728–1734. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, C.A.; Mooij, J.M.; Heskes, T.; Posthuma, D. Magma: Generalized gene-set analysis of gwas data. PLoS Comput. Biol. 2015, 11, e1004219. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Taskesen, E.; van Bochoven, A.; Posthuma, D. Functional mapping and annotation of genetic associations with fuma. Nat. Commun. 2017, 8, 1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muniz Carvalho, C.; Wendt, F.; Maihofer, A.; Stein, D.; Stein, M.; Sumner, J.; Hemmings, S.; Nievergelt, C.; Koenen, K.; Gelernter, J.; et al. Dissecting the association of c-reactive protein levels with ptsd, traumatic events, and social support. medRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Muniz Carvalho, C.; Wendt, F.R.; Stein, D.J.; Stein, M.B.; Gelernter, J.; Belangero, S.I.; Polimanti, R. Metabolome-wide mendelian randomization analysis of emotional and behavioral responses to traumatic stress. bioRxiv 2019, bioRxiv:545442. [Google Scholar]
- Polimanti, R.; Ratanatharathorn, A.; Maihofer, A.X.; Choi, K.W.; Stein, M.B.; Morey, R.A.; Logue, M.W.; Nievergelt, C.M.; Stein, D.J.; Koenen, K.C.; et al. Association of economic status and educational attainment with posttraumatic stress disorder: A mendelian randomization study. JAMA Netw. Open 2019, 2, e193447. [Google Scholar] [CrossRef]
- Breiderhoff, T.; Christiansen, G.B.; Pallesen, L.T.; Vaegter, C.; Nykjaer, A.; Holm, M.M.; Glerup, S.; Willnow, T.E. Sortilin-related receptor sorcs3 is a postsynaptic modulator of synaptic depression and fear extinction. PLoS ONE 2013, 8, e75006. [Google Scholar] [CrossRef]
- Flores, A.; Valls-Comamala, V.; Costa, G.; Saravia, R.; Maldonado, R.; Berrendero, F. The hypocretin/orexin system mediates the extinction of fear memories. Neuropsychopharmacology 2014, 39, 2732–2741. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.S.; Reader, R.H.; Hoischen, A.; Veltman, J.A.; Simpson, N.H.; Francks, C.; Newbury, D.F.; Fisher, S.E. Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Sci. Rep. 2017, 7, 46105. [Google Scholar] [CrossRef]
- Xu, S.; Liu, P.; Chen, Y.; Chen, Y.; Zhang, W.; Zhao, H.; Cao, Y.; Wang, F.; Jiang, N.; Lin, S.; et al. Foxp2 regulates anatomical features that may be relevant for vocal behaviors and bipedal locomotion. Proc. Natl. Acad. Sci. USA 2018, 115, 8799–8804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, A.M. Computer and video game addiction-a comparison between game users and non-game users. Am. J. Drug Alcohol Abus. 2010, 36, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Walters, R.K.; Demontis, D.; Mattheisen, M.; Lee, S.H.; Robinson, E.; Brikell, I.; Ghirardi, L.; Larsson, H.; Lichtenstein, P.; et al. A genetic investigation of sex bias in the prevalence of attention-deficit/hyperactivity disorder. Biol. Psychiatry 2018, 83, 1044–1053. [Google Scholar] [CrossRef] [Green Version]
- Jost, L.; Fuchs, M.; Loeffler, M.; Thiery, J.; Kratzsch, J.; Berger, T.; Engel, C. Associations of sex hormones and anthropometry with the speaking voice profile in the adult general population. J. Voice 2018, 32, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Perez-Pouchoulen, M.; Toledo, R.; Garcia, L.I.; Perez-Estudillo, C.A.; Coria-Avila, G.A.; Hernandez, M.E.; Carrillo, P.; Manzo, J. Androgen receptors in purkinje neurons are modulated by systemic testosterone and sexual training in a region-specific manner in the male rat. Physiol. Behav. 2016, 156, 191–198. [Google Scholar] [CrossRef]
- Mehta, P.H.; Welker, K.M.; Zilioli, S.; Carre, J.M. Testosterone and cortisol jointly modulate risk-taking. Psychoneuroendocrinology 2015, 56, 88–99. [Google Scholar] [CrossRef]
- Richardson, T.G.; Harrison, S.; Hemani, G.; Davey Smith, G. An atlas of polygenic risk score associations to highlight putative causal relationships across the human phenome. Elife 2019, 8, e43657. [Google Scholar] [CrossRef]
Trait | UKB Questionnaire Entry | Abbreviation | Sample Size | Heritability % (se) | Cohort | Phenotype Description/Reference to Original Work |
---|---|---|---|---|---|---|
Length of mobile phone use (UKB ID: 1110) | For approximately how many years have you been using a mobile phone at least once per week to make or receive calls? | PhoneLength | 356,618 | 5.35 (0.26) | UKB | |
Weekly usage of mobile phone in last 3 months (UKB ID: 1120) | Over the last three months, on average how much time per week did you spend making or receiving calls on a mobile phone? | PhoneUse | 301,157 | 4.82 (0.25) | UKB | |
Hands-free device/speakerphone use with mobile phone in last 3 months (UKB ID: 1130) | Over the last three months, how often have you used a hands-free device/speakerphone when making or receiving calls on your mobile? | HandsFree | 302,733 | 7.15 (1.47) | UKB | |
Differences in mobile phone use compared to two years previously (UKB ID: 1140) | Is there any difference between your mobile phone use now compared to two years ago? | PhoneDifference | 298,239 | 5.44 (1.30) | UKB | |
Plays computer games (UKB ID: 2237) | Do you play computer games? | CompGaming | 360,817 | 7.28 (0.29) | UKB | |
Attention Deficit Hyperactivity Disorder | - | ADHD | 19,099 cases, 34,194 controls | 22.81 (1.48) | PGC/iPSYCH | [17] |
Alcohol Dependence | - | AD | 8,485 cases, 23,080 controls | 5.08 (1.16) | PGC | [18] |
Autism Spectrum Disorder | - | ASD | 18,382 cases, 27,969 controls | 19.41 (1.68) | PGC/iPSYCH | [20] |
Schizophrenia | - | SCZ | 36,989 cases, 113,075 controls | 23.22 (0.92) | PGC | [24] |
Post-traumatic Stress Disorder | - | PTSD | 13,638 cases, 15,548 controls | 4.86 (2.15) | PGC | [23] |
Anorexia Nervosa | - | AN | 3,495 cases, 10,982 controls | 24.03 (3.82) | PGC | [19] |
Major Depressive Disorder | - | MDD | 59,851 cases, 113,154 controls | 7.61 (0.44) | PGC | [22] |
Bipolar Disorder | - | BIP | 20,352 cases, 31,358 controls | 4.32 (12) | PGC | [21] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wendt, F.R.; Muniz Carvalho, C.; Pathak, G.A.; Gelernter, J.; Polimanti, R. Deciphering the Biological Mechanisms Underlying the Genome-Wide Associations between Computerized Device Use and Psychiatric Disorders. J. Clin. Med. 2019, 8, 2040. https://doi.org/10.3390/jcm8122040
Wendt FR, Muniz Carvalho C, Pathak GA, Gelernter J, Polimanti R. Deciphering the Biological Mechanisms Underlying the Genome-Wide Associations between Computerized Device Use and Psychiatric Disorders. Journal of Clinical Medicine. 2019; 8(12):2040. https://doi.org/10.3390/jcm8122040
Chicago/Turabian StyleWendt, Frank R, Carolina Muniz Carvalho, Gita A. Pathak, Joel Gelernter, and Renato Polimanti. 2019. "Deciphering the Biological Mechanisms Underlying the Genome-Wide Associations between Computerized Device Use and Psychiatric Disorders" Journal of Clinical Medicine 8, no. 12: 2040. https://doi.org/10.3390/jcm8122040
APA StyleWendt, F. R., Muniz Carvalho, C., Pathak, G. A., Gelernter, J., & Polimanti, R. (2019). Deciphering the Biological Mechanisms Underlying the Genome-Wide Associations between Computerized Device Use and Psychiatric Disorders. Journal of Clinical Medicine, 8(12), 2040. https://doi.org/10.3390/jcm8122040