Variation of Genes Encoding Tryptophan Catabolites Pathway Enzymes in Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Selection of Single-Nucleotide Polymorphisms
- a minor allele frequency of 0.05 or greater in the European population
- location at the regulatory region of genes, i.e., the 5′ near a gene, the 5′ UTR, the 3′ UTR and intron. All studied polymorphisms are presented in Table 2.
2.3. DNA Isolation
2.4. Statistical Analysis
3. Results
3.1. Single Nucleotide Polymorphisms of the Genes Encoding TRYCATs Enzymes (TPH1, TPH2, KAT1, KAT2 and IDO1) as the Risk of Stroke Occurrence
3.2. Haplotypes and DD Prevalence
3.3. Gene-Gene Interactions and the Risk of Stroke
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mendis, S.; Lindholm, L.H.; Anderson, S.G.; Alwan, A.; Koju, R.; Onwubere, B.J.; Kayani, A.M.; Abeysinghe, N.; Duneas, A.; Tabagari, S.; et al. Total cardiovascular risk approach to improve the efficiency of cardiovascular prevention in resource constraint settings. J. Clin. Epidemiol. 2011, 64, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Organisation, W.H. Cerebrovascular Disorders (Offset Publications); World Health Organization: Geneva, Switzerland, 1978; ISBN 92-4-170043-2. [Google Scholar]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation 2017, 135, 146–603. [Google Scholar] [CrossRef] [PubMed]
- Barker-Collo, S.; Bennett, D.A.; Krishnamurthi, R.V.; Parmar, P.; Feigin, V.L.; Naghavi, M.; Forouzanfar, M.H.; Johnson, C.O.; Nguyen, G.; Mensah, G.A.; et al. Sex Differences in Stroke Incidence, Prevalence, Mortality and Disability-Adjusted Life Years: Results from the Global Burden of Disease Study 2013. Neuroepidemiology 2015, 45, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Polyzos, K.A.; Ketelhuth, D.F. The role of the kynurenine pathway of tryptophan metabolism in cardiovascular disease. An emerging field. Hamostaseologie 2015, 35, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Mangge, H.; Stelzer, I.; Reininghaus, E.Z.; Weghuber, D.; Postolache, T.T.; Fuchs, D. Disturbed tryptophan metabolism in cardiovascular disease. Curr. Med. Chem. 2014, 21, 1931–1937. [Google Scholar] [CrossRef] [PubMed]
- Stone, T.W.; Forrest, C.M.; Stoy, N.; Darlington, L.G. Involvement of kynurenines in Huntington’s disease and stroke-induced brain damage. J. Neural Transm. 2012, 119, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Darlington, L.G.; Mackay, G.M.; Forrest, C.M.; Stoy, N.; George, C.; Stone, T.W. Altered kynurenine metabolism correlates with infarct volume in stroke. Eur. J. Neurosci. 2007, 26, 2211–2221. [Google Scholar] [CrossRef]
- Slominski, A.; Semak, I.; Pisarchik, A.; Sweatman, T.; Szczesniewski, A.; Wortsman, J. Conversion of L-tryptophan to serotonin and melatonin in human melanoma cells. FEBS Lett. 2002, 511, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Swartz, K.J.; During, M.J.; Freese, A.; Beal, M.F. Cerebral synthesis and release of kynurenic acid: An endogenous antagonist of excitatory amino acid receptors. J. Neurosci. 1990, 10, 2965–2973. [Google Scholar] [CrossRef]
- Mo, X.; Pi, L.; Yang, J.; Xiang, Z.; Tang, A. Serum indoleamine 2,3-dioxygenase and kynurenine aminotransferase enzyme activity in patients with ischemic stroke. J. Clin. Neurosci. 2014, 21, 482–486. [Google Scholar] [CrossRef]
- Munn, D.H.; Mellor, A.L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013, 34, 137–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemp, J.A.; Foster, A.C.; Leeson, P.D.; Priestley, T.; Tridgett, R.; Iversen, L.L.; Woodruff, G.N. 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. Proc. Natl. Acad. Sci. USA 1988, 85, 6547–6550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessler, M.; Terramani, T.; Lynch, G.; Baudry, M. A glycine site associated with N-methyl-D-aspartic acid receptors: Characterization and identification of a new class of antagonists. J. Neurochem. 1989, 52, 1319–1328. [Google Scholar] [CrossRef] [PubMed]
- Cuartero, M.I.; Ballesteros, I.; de la Parra, J.; Harkin, A.L.; Abautret-Daly, A.; Sherwin, E.; Fernández-Salguero, P.; Corbí, A.L.; Lizasoain, I.; Moro, M.A. L-kynurenine/aryl hydrocarbon receptor pathway mediates brain damage after experimental stroke. Circulation 2014, 130, 2040–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujigaki, H.; Saito, K.; Fujigaki, S.; Takemura, M.; Sudo, K.; Ishiguro, H.; Seishima, M. The signal transducer and activator of transcription 1α and interferon regulatory factor 1 are not essential for the induction of indoleamine 2,3-dioxygenase by lipopolysaccharide: Involvement of p38 mitogen-activated protein kinase and nuclear factor-kappaB pathways, and synergistic effect of several proinflammatory cytokines. J. Biochem. 2006, 139, 655–662. [Google Scholar] [CrossRef]
- Wichers, M.C.; Koek, G.H.; Robaeys, G.; Verkerk, R.; Scharpé, S.; Maes, M. IDO and interferon-alpha-induced depressive symptoms: A shift in hypothesis from tryptophan depletion to neurotoxicity. Mol. Psychiatry 2005, 10, 538–544. [Google Scholar] [CrossRef] [Green Version]
- Gulaj, E.; Pawlak, K.; Bien, B.; Pawlak, D. Kynurenine and its metabolites in Alzheimer’s disease patients. Adv. Med. Sci. 2010, 55, 204–211. [Google Scholar] [CrossRef]
- Levin, S.G.; Godukhin, O.V. Anti-inflammatory cytokines, TGF-β1 and IL-10, exert anti-hypoxic action and abolish posthypoxic hyperexcitability in hippocampal slice neurons: Comparative aspects. Exp. Neurol 2011, 232, 329–332. [Google Scholar] [CrossRef]
- Segev-Amzaleg, N.; Trudler, D.; Frenkel, D. Preconditioning to mild oxidative stress mediates astroglial neuroprotection in an IL-10-dependent manner. Brain Behav. Immun. 2013, 30, 176–185. [Google Scholar] [CrossRef]
- Ormstad, H.; Verkerk, R.; Amthor, K.F.; Sandvik, L. Activation of the kynurenine pathway in the acute phase of stroke and its role in fatigue and depression following stroke. J. Mol. Neurosci. 2014, 54, 181–187. [Google Scholar] [CrossRef]
- Wigner, P.; Czarny, P.; Synowiec, E.; Bijak, M.; Białek, K.; Talarowska, M.; Galecki, P.; Szemraj, J.; Sliwinski, T. Association between single nucleotide polymorphisms of TPH1 and TPH2 genes, and depressive disorders. J. Cell Mol. Med. 2018, 22, 1778–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernstrom, J.D. Role of precursor availability in control of monoamine biosynthesis in brain. Physiol. Rev. 1983, 63, 484–546. [Google Scholar] [CrossRef] [PubMed]
- Monti, J.M. Serotonin control of sleep-wake behavior. Sleep Med. Rev. 2011, 15, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Eilertsen, G.; Ormstad, H.; Kirkevold, M. Experiences of poststroke fatigue: Qualitative meta-synthesis. J. Adv. Nurs. 2013, 69, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Martín, F.J.; Fernández-Salguero, P.M.; Merino, J.M. Aryl hydrocarbon receptor-dependent induction of apoptosis by 2,3,7,8-tetrachlorodibenzo-p-dioxin in cerebellar granule cells from mouse. J. Neurochem. 2011, 118, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Bennett, P.J.; McMahon, W.M.; Watabe, J.; Achilles, J.; Bacon, M.; Coon, H.; Grey, T.; Keller, T.; Tate, D.; Tcaciuc, I.; et al. Tryptophan hydroxylase polymorphisms in suicide victims. Psychiatric Genet. 2000, 10, 13–17. [Google Scholar] [CrossRef]
- Mann, J.J.; Arango, V.; Underwood, M.D. Serotonin and suicidal behavior. Ann. N. Y. Acad. Sci. 1990, 600, 476–484. [Google Scholar] [CrossRef]
- Nielsen, D.A.; Jenkins, G.L.; Stefanisko, K.M.; Jefferson, K.K.; Goldman, D. Sequence, splice site and population frequency distribution analyses of the polymorphic human tryptophan hydroxylase intron 7. Brain Res. Mol. Brain Res. 1997, 45, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Spurlock, D. Do no harm: Progression policies and high-stakes testing in nursing education. J. Nurs. Educ. 2006, 45, 297–302. [Google Scholar] [CrossRef]
- Gizatullin, R.; Zaboli, G.; Jönsson, E.G.; Asberg, M.; Leopardi, R. Haplotype analysis reveals tryptophan hydroxylase (TPH) 1 gene variants associated with major depression. Biol. Psychiatry 2006, 59, 295–300. [Google Scholar] [CrossRef]
- Beden, O.; Senol, E.; Atay, S.; Ak, H.; Altintoprak, A.E.; Kiyan, G.S.; Petin, B.; Yaman, U.; Aydin, H.H. TPH1 A218 allele is associated with suicidal behavior in Turkish population. Leg. Med. 2016, 21, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Shiroiwa, K.; Hishimoto, A.; Mouri, K.; Fukutake, M.; Supriyanto, I.; Nishiguchi, N.; Shirakawa, O. Common genetic variations in TPH1/TPH2 genes are not associated with schizophrenia in Japanese population. Neurosci. Lett. 2010, 472, 194–198. [Google Scholar] [CrossRef]
- Chen, D.; Liu, F.; Yang, C.; Liang, X.; Shang, Q.; He, W.; Wang, Z. Association between the TPH1 A218C polymorphism and risk of mood disorders and alcohol dependence: Evidence from the current studies. J. Affect. Disord. 2012, 138, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Côté, F.; Schussler, N.; Boularand, S.; Peirotes, A.; Thévenot, E.; Mallet, J.; Vodjdani, G. Involvement of NF-Y and Sp1 in basal and cAMP-stimulated transcriptional activation of the tryptophan hydroxylase (TPH ) gene in the pineal gland. J. Neurochem. 2002, 81, 673–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yablanski, V.; Nikolova, S.; Vlaev, E.; Savov, A.; Kremensky, I. Association Study between Promoter Polymorphism of TPH1 and Progression of Idiopathic Scoliosis. J. Biomark. 2016, 2016, 5318239. [Google Scholar] [CrossRef]
- Xu, X.M.; Ding, M.; Pang, H.; Wang, B.J. TPH2 gene polymorphisms in the regulatory region are associated with paranoid schizophrenia in Northern Han Chinese. Genet. Mol. Res. 2014, 13, 1497–1507. [Google Scholar] [CrossRef]
- Rotondo, A.; Schuebel, K.; Bergen, A.; Aragon, R.; Virkkunen, M.; Linnoila, M.; Goldman, D.; Nielsen, D. Identification of four variants in the tryptophan hydroxylase promoter and association to behavior. Mol. Psychiatry 1999, 4, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Kwak, S.H.; Park, B.L.; Kim, H.; German, M.S.; Go, M.J.; Jung, H.S.; Koo, B.K.; Cho, Y.M.; Choi, S.H.; Cho, Y.S.; et al. Association of variations in TPH1 and HTR2B with gestational weight gain and measures of obesity. Obesity 2012, 20, 233–238. [Google Scholar] [CrossRef]
- Chen, G.L.; Vallender, E.J.; Miller, G.M. Functional characterization of the human TPH2 5’ regulatory region: Untranslated region and polymorphisms modulate gene expression in vitro. Hum. Genet. 2008, 122, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Scheuch, K.; Lautenschlager, M.; Grohmann, M.; Stahlberg, S.; Kirchheiner, J.; Zill, P.; Heinz, A.; Walther, D.J.; Priller, J. Characterization of a functional promoter polymorphism of the human tryptophan hydroxylase 2 gene in serotonergic raphe neurons. Biol. Psychiatry 2007, 62, 1288–1294. [Google Scholar] [CrossRef]
- Reuter, M.; Ott, U.; Vaitl, D.; Hennig, J. Impaired executive control is associated with a variation in the promoter region of the tryptophan hydroxylase 2 gene. J. Cogn. Neurosci. 2007, 19, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Strobel, A.; Dreisbach, G.; Müller, J.; Goschke, T.; Brocke, B.; Lesch, K.P. Genetic variation of serotonin function and cognitive control. J. Cogn. Neurosci. 2007, 19, 1923–1931. [Google Scholar] [CrossRef]
- Brown, S.M.; Peet, E.; Manuck, S.B.; Williamson, D.E.; Dahl, R.E.; Ferrell, R.E.; Hariri, A.R. A regulatory variant of the human tryptophan hydroxylase-2 gene biases amygdala reactivity. Mol. Psychiatry 2005, 10, 805, 884–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canli, T.; Congdon, E.; Gutknecht, L.; Constable, R.T.; Lesch, K.P. Amygdala responsiveness is modulated by tryptophan hydroxylase-2 gene variation. J. Neural Transm. 2005, 112, 1479–1485. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Lee, H.J.; Yang, J.C.; Hwang, J.A.; Yoon, H.K. A tryptophan hydroxylase 2 gene polymorphism is associated with panic disorder. Behav. Genet. 2009, 39, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Cools, R.; Calder, A.J.; Lawrence, A.D.; Clark, L.; Bullmore, E.; Robbins, T.W. Individual differences in threat sensitivity predict serotonergic modulation of amygdala response to fearful faces. Psychopharmacology 2005, 180, 670–679. [Google Scholar] [CrossRef]
- Milak, M.S.; Ogden, R.T.; Vinocur, D.N.; Van Heertum, R.L.; Cooper, T.B.; Mann, J.J.; Parsey, R.V. Effects of tryptophan depletion on the binding of [11C]-DASB to the serotonin transporter in baboons: Response to acute serotonin deficiency. Biol. Psychiatry 2005, 57, 102–106. [Google Scholar] [CrossRef]
- Hackett, M.L.; Yapa, C.; Parag, V.; Anderson, C.S. Frequency of depression after stroke: A systematic review of observational studies. Stroke 2005, 36, 1330–1340. [Google Scholar] [CrossRef]
- Bergersen, H.; Frøslie, K.F.; Stibrant Sunnerhagen, K.; Schanke, A.K. Anxiety, depression, and psychological well-being 2 to 5 years poststroke. J. Stroke Cerebrovasc. Dis. 2010, 19, 364–369. [Google Scholar] [CrossRef]
- Morrison, V.; Pollard, B.; Johnston, M.; MacWalter, R. Anxiety and depression 3 years following stroke: Demographic, clinical, and psychological predictors. J. Psychosom. Res. 2005, 59, 209–213. [Google Scholar] [CrossRef]
- Chi, S.; Teng, L.; Song, J.H.; Zhou, C.; Pan, W.H.; Zhao, R.L.; Zhang, C. Tryptophan hydroxylase 2 gene polymorphisms and poststroke anxiety disorders. J. Affect. Disord. 2013, 144, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, R.; Einarsdottir, E.; Riutta, A.; Hagman, S.; Raunio, M.; Mononen, N.; Lehtimäki, T.; Elovaara, I. Melatonin pathway genes are associated with progressive subtypes and disability status in multiple sclerosis among Finnish patients. J. Neuroimmunol. 2012, 250, 106–110. [Google Scholar] [CrossRef] [PubMed]
- de Souza, F.R.; Fontes, F.L.; da Silva, T.A.; Coutinho, L.G.; Leib, S.L.; Agnez-Lima, L.F. Association of kynurenine aminotransferase II gene C401T polymorphism with immune response in patients with meningitis. BMC Med. Genet. 2011, 12, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, L.E.; Boffetta, P.; Karami, S.; Brennan, P.; Stewart, P.S.; Hung, R.; Zaridze, D.; Matveev, V.; Janout, V.; Kollarova, H.; et al. Occupational trichloroethylene exposure and renal carcinoma risk: Evidence of genetic susceptibility by reductive metabolism gene variants. Cancer Res. 2010, 70, 6527–6536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Královicová, J.; Vorechovsky, I. Global control of aberrant splice-site activation by auxiliary splicing sequences: Evidence for a gradient in exon and intron definition. Nucleic Acids Res. 2007, 35, 6399–6413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coutinho, L.G.; Christen, S.; Bellac, C.L.; Fontes, F.L.; Souza, F.R.; Grandgirard, D.; Leib, S.L.; Agnez-Lima, L.F. The kynurenine pathway is involved in bacterial meningitis. J. Neuroinflamm. 2014, 11, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douet, V.; Tanizaki, N.; Franke, A.; Li, X.; Chang, L. Polymorphism of Kynurenine Pathway-Related Genes, Kynurenic Acid, and Psychopathological Symptoms in HIV. J Neuroimmune Pharm. 2016, 11, 549–561. [Google Scholar] [CrossRef]
- Dai, W.; Gupta, S.L. Molecular cloning, sequencing and expression of human interferon-gamma-inducible indoleamine 2,3-dioxygenase cDNA. Biochem. Biophys. Res. Commun. 1990, 168, 1–8. [Google Scholar] [CrossRef]
- Najfeld, V.; Menninger, J.; Muhleman, D.; Comings, D.E.; Gupta, S.L. Localization of indoleamine 2,3-dioxygenase gene (INDO) to chromosome 8p12-->p11 by fluorescent in situ hybridization. Cytogenet. Cell Genet. 1993, 64, 231–232. [Google Scholar] [CrossRef]
- Galvão-de Almeida, A.; Quarantini, L.C.; Sampaio, A.S.; Lyra, A.C.; Parise, C.L.; Paraná, R.; de Oliveira, I.R.; Koenen, K.C.; Miranda-Scippa, A.; Guindalini, C. Lack of association of indoleamine 2,3-dioxygenase polymorphisms with interferon-alpha-related depression in hepatitis C. Brain Behav. Immun. 2011, 25, 1491–1497. [Google Scholar] [CrossRef] [Green Version]
Patients (n = 107) | Control (n = 107) | p | |
---|---|---|---|
Age | 50.1 ± 11.8 | 47.3 ± 8.7 | 0.049 * |
Gender (M/F) | 50/57 | 53/54 | 0.7844 |
Hypertension | 83 | 54 | 0.0001 |
Hypercholesterolemia | 77 | 52 | 0.0008 |
Diabetes | 36 | 24 | 0.0941 |
Smoking (current) | 37 | 35 | 0.8850 |
Smoking (former) | 20 | 20 | 0.8608 |
Daily alcohol consumption | 27 | 23 | 0.6279 |
Gene | rs Number | Polymorphism | Localization |
---|---|---|---|
TPH1 | rs1799913 | c.804-7C>A | intron |
rs623580 | c.-1668T>A | near gene 5′ | |
rs1800532 | c.803 + 221C>A | intron | |
rs10488682 | c.-173A>T | near gene 5′ | |
TPH2 | rs7963803 | c.-1449C>A | near gene 5′ |
rs4570625 | c.-844G>T | ||
KAT 1 | rs10988134 | c.*456G>A | UTR-3′ |
KAT 2 | rs1480544 | c.975-7T>C | intron |
IDO 1 | rs3824259 | c.-1849C>A | near gene 5′ |
rs10089084 | c. -1493G>C |
Polymorphism | Assay ID | Location |
---|---|---|
rs1799913 | C___2645661_10 | Chr.11: 18,025,708 on GRCh38 |
rs623580 | C___2645676_10 | Chr.11: 18,042,430 on GRCh38 |
rs1800532 | C___8940793_10 | Chr.11: 18,026,269 on GRCh38 |
rs10488682 | C___2645675_10 | Chr.11: 18,040,935 on GRCh38 |
rs7963803 | C__27855793_30 | Chr.12: 71,937,538 on GRCh38 |
rs4570625 | C____226207_10 | Chr.12: 71,938,143 on GRCh38 |
rs10988134 | C__11840549_10 | Chr.9: 128,833,128 on GRCh38 |
rs1480544 | C___8242555_10 | Chr.4: 170,066,485 on GRCh38 |
rs3824259 | C__27491530_10 | Chr.8: 39,912,074 on GRCh38 |
rs10089084 | C__30475151_10 | Chr.8: 39,912,430 on GRCh38 |
Genotype/Allele | Control (n = 107) | Stroke (n = 107) | Crude OR (95% CI) | p | ||
---|---|---|---|---|---|---|
Number | Frequency | Number | Frequency | |||
c.804-7C > A – TPH1 (rs1799913) | ||||||
C/C | 23 | 0.215 | 35 | 0.327 | 1.775 (0.962–3.277) | 0.066 |
C/A | 57 | 0.533 | 5 | 0.047 | 0.043 (0.016–0.114) | <0.001 |
A/A | 27 | 0.252 | 67 | 0.626 | 4.963 (2.761–8.919) | <0.001 |
χ2 = 5.407; p = 0.020 | ||||||
C | 103 | 0.481 | 75 | 0.350 | 0.678 (0.487–0.944) | 0.021 |
A | 111 | 0.519 | 139 | 0.650 | 1.475 (1.060–2.054) | 0.021 |
c.803+221C > A – TPH1 (rs1800532) | ||||||
C/C | 23 | 0.215 | 41 | 0.383 | 2.269 (1.240–4.150) | 0.008 |
C/A | 83 | 0.776 | 48 | 0.449 | 0.235 (0.130–0.426) | <0.001 |
A/A | 1 | 0.009 | 18 | 0.168 | 21.438 (2.806–163.770) | 0.003 |
χ2 = 0.014; p = 0.907 | ||||||
C | 129 | 0.602 | 130 | 0.607 | 1.028 (0.651–1.623) | 0.907 |
A | 85 | 0.397 | 84 | 0.393 | 0.973 (0.616–1.537) | 0.907 |
c.-173A > T – TPH1 (rs10488682) | ||||||
T/T | 57 | 0.533 | 64 | 0.598 | 1.306 (0.759–2.245) | 0.335 |
A/T | 47 | 0.439 | 40 | 0374 | 0.762 (0.441–1.317) | 0.330 |
A/A | 3 | 0.028 | 3 | 0.028 | 1.000 (0.197–5.069) | 1.000 |
χ2 = 0.753; p = 0.386 | ||||||
T | 161 | 0.752 | 168 | 0.785 | 1.240 (0.762–2.019) | 0.387 |
A | 53 | 0.248 | 46 | 0.215 | 0.806 (0.495–1.313) | 0.387 |
c.-1668T > A – TPH1 (rs623580) | ||||||
T/T | 53 | 0.495 | 22 | 0.206 | 0.264 (0.144–0.482) | <0.001 |
T/A | 45 | 0.421 | 62 | 0.579 | 1.898 (1.103–3.267) | 0.021 |
A/A | 9 | 0.084 | 23 | 0.215 | 2.981 (1.308–6.796) | 0.009 |
χ2 = 21,356; p < 0.001 | ||||||
T | 151 | 0.706 | 106 | 0.495 | 0.373 (0.240–0.581) | <0.001 |
A | 63 | 0.294 | 108 | 0.505 | 2.681 (1.722–4.173) | <0.001 |
c. – 844G > T – TPH2 (rs4570625) | ||||||
G/G | 8 | 0.075 | 78 | 0.729 | 33.284 (14.411–76.874) | <0.001 |
G/T | 97 | 0.907 | 29 | 0.271 | 0.038 (0.018–0.084) | <0.001 |
T/T | 2 | 0.019 | 0 | 0 | - | - |
χ2 = 107.455; p < 0.001 | ||||||
G | 113 | 0.528 | 185 | 0.864 | 32.746 (14.191–75.563) | <0.001 |
T | 101 | 0.472 | 29 | 0.136 | 0.031 (0.013–0.071) | <0.001 |
c.-1449C > A – TPH2 (rs7963803) | ||||||
C/C | 65 | 0.607 | 98 | 0.916 | 7.036 (3.208–15.429) | <0.001 |
C/A | 34 | 0.318 | 1 | 0.009 | 0.020 (0.003–0.151) | <0.001 |
A/A | 8 | 0.075 | 8 | 0.075 | 1.000 (0.361–2.770) | 1.000 |
χ2 = 14.794; p < 0.001 | ||||||
C | 164 | 0.766 | 197 | 0.921 | 2.596 (1.525–4.418) | <0.001 |
A | 50 | 0.234 | 17 | 0.079 | 0.385 (0.226–0.656) | <0.001 |
c.*46G > A – KAT1 (rs10988134) | ||||||
A/A | 5 | 0.047 | 1 | 0.009 | 0.192 (0.022–1.676) | 0.136 |
A/G | 35 | 0.327 | 37 | 0.346 | 1.087 (0.617–1.918) | 0.772 |
G/G | 67 | 0.626 | 69 | 0.645 | 1.084 (0.621–1.892) | 0.776 |
χ2 = 0.572; p = 0.450 | ||||||
A | 45 | 0.210 | 39 | 0.182 | 0.826 (0.503–1.356) | 0.450 |
G | 169 | 0.790 | 175 | 0.818 | 1.210 (0.737–1.987) | 0.450 |
c.975-7T > C – KAT2 (rs1480544) | ||||||
C/C | 29 | 0.271 | 72 | 0.673 | 5.533 (3.076–9.954) | <0.001 |
T/C | 59 | 0.551 | 4 | 0.037 | 0.032 (0.011–0.092) | <0.001 |
T/T | 19 | 0.178 | 31 | 0.290 | 1.889 (0.988–3.613) | 0.054 |
χ2 = 6.986; p = 0.008 | ||||||
C | 117 | 0.547 | 148 | 0.692 | 1.576 (1.119–2.219) | 0.009 |
T | 97 | 0.453 | 66 | 0.308 | 0.634 (0.451–0.893) | 0.009 |
c.-1849C > A – IDO1 (rs3824259) | ||||||
C/C | 31 | 0.290 | 25 | 0.234 | 0.747 (0.405–1.379) | 0.351 |
C/A | 47 | 0.439 | 59 | 0.551 | 1.569 (0.915–2.691) | 0.102 |
A/A | 29 | 0.271 | 23 | 0.215 | 0.736 (0.393–1.380) | 0.340 |
χ2 = 214.000; p = 0.429 | ||||||
C | 109 | 0.509 | 109 | 0.509 | 1.000 (0.686–1.458) | 1.000 |
A | 105 | 0.491 | 105 | 0.491 | 1.000 (0.686–1.458) | 1.000 |
c. -1493G > C – IDO1 (rs10089084) | ||||||
G/G | 12 | 0.112 | 44 | 0.411 | 5.529 (2.709–11.284) | <0.001 |
G/C | 55 | 0.514 | 54 | 0.504 | 0.963 (0.564–1.646) | 0.891 |
C/C | 40 | 0.374 | 9 | 0.084 | 0.154 (0.070–0.338) | <0.001 |
χ2 = 40.577; p < 0.001 | ||||||
G | 79 | 0.369 | 142 | 0.664 | 4.016 (2.487–6.484) | <0.001 |
C | 135 | 0.631 | 72 | 0.336 | 0.249 (0.154–0.402) | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wigner, P.; Saluk-Bijak, J.; Synowiec, E.; Miller, E.; Sliwinski, T.; Cichon, N.; Bijak, M. Variation of Genes Encoding Tryptophan Catabolites Pathway Enzymes in Stroke. J. Clin. Med. 2019, 8, 2133. https://doi.org/10.3390/jcm8122133
Wigner P, Saluk-Bijak J, Synowiec E, Miller E, Sliwinski T, Cichon N, Bijak M. Variation of Genes Encoding Tryptophan Catabolites Pathway Enzymes in Stroke. Journal of Clinical Medicine. 2019; 8(12):2133. https://doi.org/10.3390/jcm8122133
Chicago/Turabian StyleWigner, Paulina, Joanna Saluk-Bijak, Ewelina Synowiec, Elzbieta Miller, Tomasz Sliwinski, Natalia Cichon, and Michal Bijak. 2019. "Variation of Genes Encoding Tryptophan Catabolites Pathway Enzymes in Stroke" Journal of Clinical Medicine 8, no. 12: 2133. https://doi.org/10.3390/jcm8122133
APA StyleWigner, P., Saluk-Bijak, J., Synowiec, E., Miller, E., Sliwinski, T., Cichon, N., & Bijak, M. (2019). Variation of Genes Encoding Tryptophan Catabolites Pathway Enzymes in Stroke. Journal of Clinical Medicine, 8(12), 2133. https://doi.org/10.3390/jcm8122133