Transoral Robot-Assisted Surgery in Supraglottic and Oropharyngeal Squamous Cell Carcinoma: Laser Versus Monopolar Electrocautery
Abstract
:1. Introduction
2. Materials and Methods
- All patients consecutively scheduled for TORS with laser (TY- or CO2- laser) or EC, performed by the same surgeon team (M.B. and A.O.).
- cT1/T2 oropharyngeal and supraglottic squamous cell carcinomas, cN0/2 (according to the American Joint Committee on Cancer (AJCC) Cancer Staging Manual 8th edition) [10].
- cM0 at oncological staging including panendoscopic biopsies of the upper aerodigestive tract, head and neck/chest Computed Tomography (CT) scan, and Magnetic Resonance Imaging (MRI) as needed.
- -
- An Intuitive da Vinci S System (Intuitive Surgical, Inc., Sunnyvale, CA, USA);
- -
- An Intuitive Surgical® Endo Wrist Introducer, 5Fr, to hold and position the thulium surgical laser fibres (Revolix Jr, LISA Laser, Katlenburg-Lindau, Germany). The power setting of a 2 µm continuous-wave TY ranged between 5.0 and 8.5 W during respectively margin incision and lesion removal;
- -
- Flexible CO2 Laser Fibre (OmniGuide Surgical, Lexington, MA, USA) inserted in a flexible metal carrier (grasped with Maryland atraumatic forceps). The CO2 laser power was set to 14 W for dissection and 7 W for coagulation;
- -
- A 5-mm monopolar EC (Intuitive Surgical, Erbotom ICC 350 ERBE Elektromedizin GmbH, Tübingen, Germany);
- -
- A 5-mm Maryland forceps (EndoWrist; Intuitive Surgical, Inc);
- -
- A Feyh-Kastenbauer retractor (Gyrus Medical Inc., Maple Grove, MN, USA).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- O’Malley, B.W.; Weinstein, G.S.; Snyder, Wand Hockstein, N.G. Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 2006, 116, 1465–1472. [Google Scholar]
- Sinclair, C.F.; McColloch, N.L.; Carroll, W.R.; Rosenthal, E.L.; Desmond, R.A.; Magnuson, J.S. Patient-perceived and objective functional outcomes following transoral robotic surgery for early oropharyngeal carcinoma. Arch. Otolaryngol. Head Neck Surg. 2011, 137, 1112–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, S.M.; Moore, E.J.; Koch, C.A.; Price, D.L.; Kasperbauer, J.L.; Olsen, K.D. Transoral robotic surgery for supraglottic squamous cell carcinoma. Am. J. Otolaryngol. Head Neck Med. Surg. 2012, 33, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.K.; Schuler, P.J.; Bankfalvi, A.; Greve, J.; Heusgen, L.; Lang, S.; Mattheis, S. Comparative analysis of resection tools suited for transoral robot-assisted surgery. Eur. Arch. OtoRhinoLaryngol. 2014, 271, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Liboon, J.; Funkhouser, W.; Terris, D.J. A Comparison of Mucosal Incisions Made by Scalpel, CO2 Laser, Electrocautery, and Constant-Voltage Electrocautery. Otolaryngol Head Neck Surg 1997, 5, 379–385. [Google Scholar] [CrossRef]
- Durmus, K.; Kucur, C.; Uysal, I.O.; Dziegielewski, P.T.; Ozer, E. Feasibility and clinical outcomes of transoral robotic surgery and transoral robot-assisted carbon dioxide laser for hypopharyngeal carcinoma. J. Craniofac. Surg. 2015, 26, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Benazzo, M.; Canzi, P.; Occhini, A. Transoral robotic surgery with laser for head and neck cancers: A feasibility study. Orl 2012, 74, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Van Abel, K.M.; Moore, E.J.; Carlson, M.L.; Davidson, J.A.; Garcia, J.J.; Olsen, S.M.; Olsen, K.D. Transoral robotic surgery using the thulium:YAG laser—A Prospective Study. Arch. Otolaryngol. Head Neck Surg. 2012, 138, 158–166. [Google Scholar] [CrossRef] [Green Version]
- Karaman, M.; Gün, T.; Temelkuran, B.; Aynacı, E.; Kaya, C.; Tekin, A.M. Comparison of fiber delivered CO2 laser and electrocautery in transoral robot assisted tongue base surgery. Eur. Arch. OtoRhinoLaryngol. 2017, 274, 2273–2279. [Google Scholar] [CrossRef]
- Amin, M.; Edge, S.; Greene, F. AJCC Cancer Staging Manual, 8th ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Solares, C.A.; Strome, M. Transoral Robot-Assisted CO2 Laser Supraglottic Laryngectomy: Experimental and Clinical Data. Laryngoscope 2007, 117, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Hutcheson, K.A.; Holsinger, F.C.; Kupferman, M.E.; Lewin, J.S. Functional outcomes after TORS for oropharyngeal cancer: A systematic review. Eur. Arch. OtoRhinoLaryngol. 2014, 272, 463–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mercante, G.; Ruscito, P.; Pellini, R.; Cristalli, G.; Spriano, G. Transoral robotic surgery (TORS) for tongue base tumours. Acta Otorhinolaryngol. Ital. 2013, 33, 230–235. [Google Scholar] [PubMed]
- Remacle, M.; Matar, N.; Lawson, G.; Bachy, V.; Delos, M.; Nollevaux, M.C. Combining a new CO 2 laser wave guide with transoral robotic surgery: A feasibility study on four patients with malignant tumors. Eur. Arch. OtoRhinoLaryngol. 2012, 269, 1833–1837. [Google Scholar] [CrossRef] [PubMed]
Patient No. | Robotic Resection Tool | Years | Sex | Tumour Subsites | Histology | cTNM (AJCC) | Neck Dissection | Preceding Months | Subsites | Histology | TNM (AJCC) | Therapy | IID cm |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | TY | 62 | F | Epiglottis | SCC G2 | c T1N0M0 | 4.3 | ||||||
2 | TY | 54 | F | Epiglottis | SCC G1 | c T1N2cM0 | L,R, II-III-IV | 4.0 | |||||
3 | TY | 48 | M | L, lateral oropharyngeal wall | SCC G3 | c T1N0M0 | L, I-II-III-IV | 24 | L tonsil and L tongue base | SCC G3 | pT2N0M0 | RT-CH | 4.5 |
4 | TY | 55 | M | R, tongue base | SCC G2 | c T1N0M0 | L,R, I-II-III-IV | 24 | L, hypopharynx | SCC G3 | pT2N1M0 | RT-CH | 4.0 |
5 | TY | 68 | F | R, tongue base | SCC G2 | c T1N1M0 | R,L, I-II-III-IV | 4.5 | |||||
6 | TY | 56 | F | L, tongue base | SCC G2 | c T1N0M0 | R, I-II-III-IV | 24 | L neck | SCC G2 | pTxN1M0 | L ND | 3.5 |
7 | TY | 65 | F | L, tongue base | SCC G2 | c T2N0M0 | 24 | L, submandibular gland | Adenoid-cystic ca | pT1N0M0 | L, Scialoadenectomy, ND | 4.0 | |
8 | TY | 58 | M | L, tongue base | SCC G2 | c T2N1M0 | L, II-III-IV | 5.0 | |||||
9 | EC | 48 | M | R, lateral oropharyngeal wall | SCC G2 | c T1N0M0 | 24 | Larynx | SCC G2 | pT2N0M0 | Supraglottic laryngectomy, | 3.5 | |
L,R ND | |||||||||||||
10 | EC | 52 | F | L, tonsil | SCC G2 | c T1N1M0 | L, I-II-III-IV | 5.5 | |||||
11 | EC | 84 | M | L, tonsil | SCC G2 | c T2N2bM0 | L, I-II-III-IV | 4.0 | |||||
12 | EC | 56 | M | R, tongue base | SCC G2 | c T2N2bM0 | R, I-II-III-IV | 4.5 | |||||
13 | EC | 61 | F | R, tonsil | SCC G2 | c T2N1M0 | R,L,I-II-III-IV | 3.5 | |||||
14 | EC | 72 | M | R, tonsil | SCC G2 | cT2N1M0 | R,II-III-IV | 5 | |||||
15 | EC | 77 | M | R, tonsil | SCC G2 | c T1N1M0 | R, II-III-IV | 3.5 | |||||
16 | EC | 55 | F | Epiglottis | SCC G2 | c T2N2aM0 | R,L II-III-IV | 4.3 | |||||
17 | EC | 79 | M | Epiglottis | SCC G2 | c T1N0M0 | 4.0 | ||||||
18 | EC | 72 | F | R, tongue base | SCC G2 | CT1N0M0 | pT1N0M0 | 4.3 | |||||
19 | EC | 52 | F | L, tonsil | SCC G2 | CT1N0M0 | pT1N0M0 | RT | 4.5 | ||||
20 | CO2 | 59 | M | R, tonsil | SCC | cT2N1M0 | R,II-III-IV | pT3N1M0 | 4.3 |
Robotic Resection Tool | Patient No. | SRT min | EBL mL | Tumour Subsites | Oral Diet, Days | Time to Tracheostomy Removal, Days | Time to Discharge Days | Complications | Margins | Postoperative Treatment | pTNM | Follow-Up, Months |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TY | 3 | 55 | 10 | L, lateral oropharyngeal wall | 4 | 7 | 7 | negative | NO | p T1N0M0 | 96 | |
TY | 4 | 40 | 30 | R, tongue base | 5 | 7 | 8 | Day 22: bleeding stopped with electrocautery control | negative | NO | p T1N0M0 | 85 |
TY | 5 | 50 | 10 | R, tongue base | 4 | 5 | 7 | negative | RT | P T1N1M0 | 82 | |
TY | 6 | 35 | 25 | L, tongue base | 6 | 11 | 13 | negative | NO | p T1N0M0 | 78 | |
TY | 7 | 40 | 30 | L, tongue base | 6 | 7 | 9 | negative | NO | p T2N0M0 | 76 | |
TY | 8 | 50 | 40 | L, tongue base | 3 | 6 | 7 | negative | CH-RT | p T2N1M0 | 69 | |
CO2 | 20 | 40 | 20 | R, tonsil | 6 | 7 | 8 | positive | CH-RT | pT3N1M0 | 1 | |
EC | 9 | 50 | 45 | R, lateral oropharyngeal wall | 8 | 12 | 13 | close | CH | P T1N0M0 | 98 | |
EC | 10 | 40 | 35 | L, tonsil | 6 | 7 | 10 | negative | RT-CH | p T1N1M0 | 95 | |
EC | 11 | 50 | 25 | L, tonsil | 5 | 4 | 19 | positive | RT | p T2N2bM0 | 52 | |
EC | 12 | 55 | 35 | R, tongue base | 9 | 13 | 13 | close | CH-RT | p T2N2bM0 | 43 | |
EC | 13 | 40 | 30 | R, tonsil | 9 | 9 | 11 | Intraoperative pharyngotomy Day 12: bleeding stopping with electrocautery control | negative | CH | p T2N1M0 | 70 |
EC | 14 | 45 | 10 | R, tonsil | 2 | 9 | 9 | Day 11: bleeding stopped with electrocautery control | positive | RT | pT2N2aM0 | 57 |
EC | 15 | 40 | 45 | R, tonsil | 5 | 7 | 8 | negative | RT | p T1N1M0 | 54 | |
EC | 18 | 45 | 25 | R, tongue base | 15 | 16 | 20 | positive | open surgery | pT1N0MO | 18 | |
EC | 19 | 35 | 35 | L, tonsil | 9 | 9 | 11 | negative | pT1N0MO | 33 |
Robotic Resection Tool | Patient No. | SRT min | EBL mL | Tumour Subsites | Oral Diet, Days | Time to Tracheostomy Removal, Days | Time to discharge, days | Complications | Margins | Postoperative Treatment | pTNM | Follow-Up, Months |
---|---|---|---|---|---|---|---|---|---|---|---|---|
TY | 1 | 135 | 35 | Epiglottis | 6 | 8 | 15 | negative | NO | pT1N0M0 | 112 | |
TY | 2 | 110 | 20 | Epiglottis | 5 | 7 | 14 | negative | NO | PT1N0M0 | 98 | |
EC | 16 | 130 | 40 | Epiglottis | 10 | 12 | 14 | positive | CH-RT | pT2N1M0 | 66 | |
EC | 17 | 120 | 30 | Epiglottis | 18 | 20 | 24 | Day 7: cardiac arrest | negative | NO | pT1N0M0 | 48 |
Robotic Resection Tool | SRT, min (Mean) | EBL, mL (Mean) | Oral Diet, Days (Mean) | Time to Tracheostomy Removal, Days (Mean) | Time to Discharge, Days (Mean) | Postoperative Complications | Tumour Margins | |||
---|---|---|---|---|---|---|---|---|---|---|
Yes | No | Positive | Negative | Close | ||||||
Laser-TORS (n = 7) | 44.3 ± 7.3 | 23.6 ± 11.1 | 4.9 ± 1.2 | 7.1 ± 1.9 | 8.4 ± 2.1 | 1 | 5 | 1 | 6 | 0 |
EC-TORS (n = 9) | 44.4 ± 6.3 | 31.7 ± 10.9 | 7.5 ± 3.7 | 9.5 ± 3.6 | 12.7 ± 4.2 | 2 | 5 | 3 | 4 | 2 |
Robotic Resection Tool | SRT, min (Mean) | EBL, mL (Mean) | Oral Diet, Days (Mean) | Time to Tracheostomy Removal, Days (Mean) | Time to Discharge, Days (Mean) | Postoperative Complications | Tumour Margins | |||
---|---|---|---|---|---|---|---|---|---|---|
Yes | No | Positive | Negative | Close | ||||||
TY-TORS (n = 2) | 122 | 27.5 | 5.5 | 7.5 | 14.5 | 0 | 2 | 0 | 2 | 0 |
EC-TORS (n = 2) | 125 | 35 | 14 | 16 | 19 | 1 | 1 | 1 | 1 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benazzo, M.; Canzi, P.; Mauramati, S.; Sovardi, F.; Occhini, A.; Maiorano, E.; Trisolini, G.; Morbini, P. Transoral Robot-Assisted Surgery in Supraglottic and Oropharyngeal Squamous Cell Carcinoma: Laser Versus Monopolar Electrocautery. J. Clin. Med. 2019, 8, 2166. https://doi.org/10.3390/jcm8122166
Benazzo M, Canzi P, Mauramati S, Sovardi F, Occhini A, Maiorano E, Trisolini G, Morbini P. Transoral Robot-Assisted Surgery in Supraglottic and Oropharyngeal Squamous Cell Carcinoma: Laser Versus Monopolar Electrocautery. Journal of Clinical Medicine. 2019; 8(12):2166. https://doi.org/10.3390/jcm8122166
Chicago/Turabian StyleBenazzo, Marco, Pietro Canzi, Simone Mauramati, Fabio Sovardi, Antonio Occhini, Eugenia Maiorano, Giuseppe Trisolini, and Patrizia Morbini. 2019. "Transoral Robot-Assisted Surgery in Supraglottic and Oropharyngeal Squamous Cell Carcinoma: Laser Versus Monopolar Electrocautery" Journal of Clinical Medicine 8, no. 12: 2166. https://doi.org/10.3390/jcm8122166
APA StyleBenazzo, M., Canzi, P., Mauramati, S., Sovardi, F., Occhini, A., Maiorano, E., Trisolini, G., & Morbini, P. (2019). Transoral Robot-Assisted Surgery in Supraglottic and Oropharyngeal Squamous Cell Carcinoma: Laser Versus Monopolar Electrocautery. Journal of Clinical Medicine, 8(12), 2166. https://doi.org/10.3390/jcm8122166