New Targeted Gold Nanorods for the Treatment of Glioblastoma by Photodynamic Therapy
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
- Fmoc-K(Pyro)-OH
- Peptide synthesis
- Gold nanorods
- In vitro studies
2.2. Preparation of the Gold Nanorods (AuNRs)
2.2.1. Synthesis of the CTAB-Capped AuNRs (AuNRs@CTAB)
2.2.2. PEGylation of AuNRs (AuNRs@PEG)
- Fluorescamine-Based Assays
- Ninhydrin-Based Assays
2.2.3. Thiolation of the AuNRs@PEG
2.3. Synthesis of the MI-K(Pyro)DKPPR
2.3.1. Synthesis of Pyro-OSu
2.3.2. Synthesis of Fmoc-K(Pyro)-OH
2.3.3. Synthesis of H-DKPPR-Wang Peptide
2.3.4. Synthesis of Fmoc-K(Pyro)DKPPR-Wang Peptide
2.3.5. Synthesis of MI-K(Pyro)DKPPR-OH
2.4. Coupling of the MI-K(Pyro)DKPPR-OH Conjugate to the AuNRs@PEG-SH
2.5. Physico-Chemical and Photophysical Characterizations
2.6. Estimation of the PS or Peptide Loading
2.7. Affinity to NPR-1
2.8. In Vitro Studies
2.8.1. Cell Culture Conditions
2.8.2. Photodynamic Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Characterization of the AuNRs@PEG
3.2. Synthesis and Characterization of Peptide Derivatives and Hybrid AuNRs
3.2.1. Photophysical Properties
3.2.2. Estimation of Pyro Concentration in the MI-K(Pyro)DKPPR-OH and Hybridized AuNRs
3.3. Affinity to Recombinant NRP-1 Protein
3.4. Photodynamic Activity
3.4.1. Cytotoxicity
3.4.2. Phototoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 12 September 2018).
- Taquet, J.P.; Frochot, C.; Manneville, V.; Barberi-Heyob, M. Phthalocyanines covalently bound to biomolecules for a targeted photodynamic therapy. Curr. Med. Chem. 2007, 14, 1673–1687. [Google Scholar] [CrossRef] [PubMed]
- Perrier, M.; Gary-Bobo, M.; Lartigue, L.; Brevet, D.; Morère, A.; Garcia, M.; Maillard, P.; Raehm, L.; Guari, Y.; Larionova, J.; et al. Mannose-functionalized porous silica-coated magnetic nanoparticles for two-photon imaging or PDT of cancer cells. J. Nanopart. Res. 2013, 15, 1602. [Google Scholar] [CrossRef]
- Colombeau, L.; Acherar, S.; Baros, F.; Arnoux, P.; Gazzali, A.M.; Zaghdoudi, K.; Toussaint, M.; Vanderesse, R.; Frochot, C. Inorganic nanoparticles for photodynamic therapy. In Light-Responsive Nanostructured Systems for Applications in Nanomedicine; Sortino, S., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 370, pp. 113–134. [Google Scholar]
- Vanderesse, R.; Frochot, C.; Barberi-Heyob, M.; Richeter, S.; Raehm, L.; Durand, J.O. Nanoparticles for photodynamic therapy applications. In Intracellular Delivery: Fundamentals and Applications; Prokop, A., Ed.; Springer Nature Switzerland AG: Basel, Switzerland, 2011; Volume 5, pp. 511–565. [Google Scholar]
- Jiang, X.-J.; Yeung, S.-L.; Lo, P.-C.; Fong, W.-P.; Ng, D.K.P. Phthalocyanine—Polyamine conjugates as highly efficient photosensitizers for photodynamic therapy. J. Med. Chem. 2011, 54, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wacker, M.; Hackbarth, S.; Ludwig, C.; Langer, K.; Roder, B. Photophysical evaluation of mTHPC-loaded HSA nanoparticles as novel PDT delivery systems. J. Photochem. Photobiol. B 2010, 101, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Larue, L.; Ben Mihoub, A.; Youssef, Z.; Colombeau, L.; Acherar, S.; Andre, J.C.; Arnoux, P.; Baros, F.; Vermandel, M.; Frochot, C. Using X-rays in photodynamic therapy: An overview. Photochem. Photobiol. Sci. 2018, 17, 1612–1650. [Google Scholar] [CrossRef] [PubMed]
- Verhille, M.; Couleaud, P.; Vanderesse, R.; Brault, D.; Barberi-Heyob, M.; Frochot, C. Modulation of photosensitization processes for an improved targeted photodynamic therapy. Curr. Med. Chem. 2010, 17, 3925–3943. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic Therapy. J. Natl. Cancer Inst. 1998, 90, 889–905. [Google Scholar] [CrossRef] [Green Version]
- Mbakidi, J.P.; Drogat, N.; Granet, R.; Ouk, T.-S.; Ratinaud, M.-H.; Rivière, E.; Verdier, M.; Sol, V. Hydrophilic chlorin-conjugated magnetic nanoparticles—Potential anticancer agent for the treatment of melanoma by PDT. Bioorg. Med. Chem. Lett. 2013, 23, 2486–2490. [Google Scholar] [CrossRef]
- Stallivieri, A.; Baros, F.; Arnoux, P.; Vanderesse, R.; Barberi-Heyob, M.; Frochot, C. Production of singlet oxygen by nanoparticle-bound photosensitizers. In Singlet Oxygen: Applications in Biosciences and Nanosciences, Vol 1; Nonell, S., Flors, C., Eds.; Royal Society of Chemistry: Cambridge, UK, 2016; Volume 13, pp. 209–223. [Google Scholar]
- Anderski, J.; Mahlert, L.; Sun, J.; Birnbaum, W.; Mulac, D.; Schreiber, S.; Herrmann, F.; Kuckling, D.; Langer, K. Light-responsive nanoparticles based on new polycarbonate polymers as innovative drug delivery systems for photosensitizers in PDT. Int. J. Pharm. 2019, 557, 182–191. [Google Scholar] [CrossRef]
- Alexeree, S.M.I.; Sliem, M.A.; El-Balshy, R.M.; Amin, R.M.; Harith, M.A. Exploiting biosynthetic gold nanoparticles for improving the aqueous solubility of metal-free phthalocyanine as biocompatible PDT agent. Mater. Sci. Eng. C 2017, 76, 727–734. [Google Scholar] [CrossRef]
- Gamaleia, N.F.; Shton, I.O. Gold mining for PDT: Great expectations from tiny nanoparticles. Photodiagn. Photodyn. Ther. 2015, 12, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Roeder, B.; Hackbarth, S.; Korth, O.; Herter, R.; Hanke, T. Photophysical Properties of Pheophorbide-A in Different Carrier-Systems; Ehrenberg, B., Jori, G., Moan, J., Katzir, A., Eds.; BiOS Europe ‘95: Barcfelona, Spain, 1996; pp. 179–186. [Google Scholar]
- Qin, J.L.; Peng, H.S.; Ping, J.T.; Geng, Z.X. Facile synthesis of dual-functional nanoparticles co-loaded with ZnPc/Fe3O4 for PDT and magnetic resonance imaging. Mater. Res. Bull. 2019, 114, 90–94. [Google Scholar] [CrossRef]
- Roblero-Bartolon, G.V.; Ramon-Gallegos, E. Use of nanoparticles (NP) in photodynamic therapy (PDT) against cancer]. Gac. Med. Mex. 2015, 151, 85–98. [Google Scholar] [PubMed]
- Sun, X.; Sun, J.; Lv, J.; Dong, B.; Liu, M.; Liu, J.; Sun, L.; Zhang, G.; Zhang, L.; Huang, G.; et al. Ce6-C6-TPZ co-loaded albumin nanoparticles for synergistic combined PDT-chemotherapy of cancer. J. Mat. Chem. B 2019, 7, 5797–5807. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.; Hong, S.H.; Son, J.; Yoo, J.; Park, C.; Choi, Y.; Koo, H. Recent advances in nanoparticle carriers for photodynamic therapy. Quant. Imag. Med. Surg. 2018, 8, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Chouikrat, R.; Seve, A.; Vanderesse, R.; Benachour, H.; Barberi-Heyob, M.; Richeter, S.; Raehm, L.; Durand, J.O.; Verelst, M.; Frochot, C. Non polymeric nanoparticles for photodynamic therapy applications: Recent developments. Curr. Med. Chem. 2012, 19, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Ben Mihoub, A.; Larue, L.; Moussaron, A.; Youssef, Z.; Colombeau, L.; Baros, F.; Frochot, C.; Vanderesse, R.; Acherar, S. Use of cyclodextrins in anticancer photodynamic therapy treatment. Molecules 2018, 23, 1936. [Google Scholar] [CrossRef] [Green Version]
- Youssef, Z.; Vanderesse, R.; Colombeau, L.; Baros, F.; Roques-Carmes, T.; Frochot, C.; Wahab, H.; Toufaily, J.; Hamieh, T.; Acherar, S.; et al. The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy. Cancer Nanotechnol. 2017, 8, 6. [Google Scholar] [CrossRef]
- Bharathiraja, S.; Manivasagan, P.; Moorthy, M.S.; Bui, N.Q.; Jang, B.; Phan, T.T.V.; Jung, W.K.; Kim, Y.M.; Lee, K.D.; Oh, J. Photo-based PDT/PTT dual model killing and imaging of cancer cells using phycocyanin-polypyrrole nanoparticles. Eur. J. Pharm. Biopharm. 2018, 123, 20–30. [Google Scholar] [CrossRef]
- Huang, X.Q.; Chen, G.J.; Pan, J.L.; Chen, X.; Huang, N.; Wang, X.; Liu, J. Effective PDT/PTT dual-modal phototherapeutic killing of pathogenic bacteria by using ruthenium nanoparticles. J. Mat. Chem. B 2016, 4, 6258–6270. [Google Scholar] [CrossRef]
- Ji, C.W.; Yuan, A.; Xu, L.; Zhang, F.F.; Zhang, S.W.; Zhao, X.Z.; Liu, G.X.; Chen, W.; Guo, H.Q. Activatable photodynamic therapy for prostate cancer by NIR dye/photosensitizer loaded albumin nanoparticles. J. Biomed. Nanotechnol. 2019, 15, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Li, P.S.; Liu, L.; Lu, Q.L.; Yang, S.; Yang, L.F.; Cheng, Y.; Wang, Y.D.; Wang, S.Y.; Song, Y.L.; Tan, F.P.; et al. Ultrasmall MoS2 nanodots-doped biodegradable SiO2 nanoparticles for clearable FL/CT/MSOT imaging-guided PTT/PDT combination tumor therapy. ACS Appl. Mater. Interfaces 2019, 11, 5771–5781. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.K.; Zhang, Y.F.; Wang, J.; Yuan, A.; Sun, M.J.; Wu, J.H.; Hu, Y.Q. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci. Rep. 2016, 6, 27421. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Yang, K.; Ding, X.C.; Li, H.J.; Xu, Y.Q.; Liu, F.Y.; Sun, S.G. In situ formation of homogeneous tellurium nanodots in paclitaxel-loaded MgAl layered double hydroxide gated mesoporous silica nanoparticles for synergistic chemo/PDT/PTT trimode combinatorial therapy. Inorg. Chem. 2019, 58, 2987–2996. [Google Scholar] [CrossRef]
- Peng, C.-A.; Wang, C.-H. Anti-neuroblastoma activity of gold nanorods bound with GD2 monoclonal antibody under near-infrared laser irradiation. Cancers (Basel) 2011, 3, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Stuchinskaya, T.; Moreno, M.; Cook, M.J.; Edwards, D.R.; Russell, D.A. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem. Photobiol. Sci. 2011, 10, 822–831. [Google Scholar] [CrossRef] [Green Version]
- Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 2006, 114, 343–347. [Google Scholar] [CrossRef]
- Aydogan, B.; Li, J.; Rajh, T.; Chaudhary, A.; Chmura, S.J.; Pelizzari, C.; Wietholt, C.; Kurtoglu, M.; Redmond, P. AuNP-DG: Deoxyglucose-labeled gold nanoparticles as X-ray computed tomography contrast agents for cancer imaging. Mol. Imaging Biol. 2010, 12, 463–467. [Google Scholar] [CrossRef]
- Bouche, M.; Puhringer, M.; Iturmendi, A.; Arnirshaghaghi, A.; Tsourkas, A.; Teasdale, I.; Cormode, D.P. Activatable hybrid polyphosphazene-AuNP nanoprobe for ROS detection by bimodal PA/CT imaging. ACS Appl. Mater. Interfaces 2019, 11, 28648–28656. [Google Scholar] [CrossRef]
- Hubert, F.; Testard, F.; Spalla, O. Cetyltrimethylammonium bromide silver bromide complex as the capping agent of gold nanorods. Langmuir 2008, 24, 9219–9222. [Google Scholar] [CrossRef] [Green Version]
- Chanda, N.; Kan, P.; Watkinson, L.D.; Shukla, R.; Zambre, A.; Carmack, T.L.; Engelbrecht, H.; Lever, J.R.; Katti, K.; Fent, G.M.; et al. Radioactive gold nanoparticles in cancer therapy: Therapeutic efficacy studies of GA-(AuNP)-Au-198 nanoconstruct in prostate tumor-bearing mice. Nanomed. Nanotechnol. 2010, 6, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Campagnoli, S.; Wu, H.; Grandi, A.; Parri, M.; De Camilli, E.; Grandi, G.; Viale, G.; Pileri, P.; Grifantini, R.; et al. Negatively charged AuNP modified with monoclonal antibody against novel tumor antigen FAT1 for tumor targeting. J. Exp. Clin. Cancer Res. 2015, 34, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.; Cao, W.H.; Sun, Y.H.; Wei, X.P.; Xu, K.H.; Zhang, H.B.; Tang, B. AuNP flares-capped mesoporous silica nanoplatform for MTH1 detection and inhibition. Biomaterials 2015, 69, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Hung, H.S.; Bau, D.T.; Yeh, C.A.; Kung, M.L. Evaluation of cellular uptake mechanisms for AuNP-collagen-Avemar nanocarrier on transformed and non-transformed cell lines. Colloids Surf. Physicochem. Eng. Asp. 2019, 580, 123791. [Google Scholar] [CrossRef]
- Liaskoni, A.; Angelopoulou, A.; Voulgari, E.; Popescu, M.T.; Tsitsilianis, C.; Avgoustakis, K. Paclitaxel controlled delivery using a pH-responsive functional-AuNP/block-copolymer vesicular nanocarrier composite system. Eur. J. Pharm. Sci. 2018, 117, 177–186. [Google Scholar] [CrossRef]
- Mendoza-Nava, H.; Ferro-Flores, G.; Ramirez, F.D.; Ocampo-Garcia, B.; Santos-Cuevas, C.; Azorin-Vega, E.; Jimenez-Mancilla, N.; Luna-Gutierrez, M.; Isaac-Olive, K. Fluorescent, plasmonic, and radiotherapeutic properties of the Lu-177-dendrimer-AuNP-folate-bombesin nanoprobe located inside cancer cells. Mol. Imaging 2017, 16. [Google Scholar] [CrossRef] [Green Version]
- Shukla, R.; Chanda, N.; Zambre, A.; Upendran, A.; Katti, K.; Kulkarni, R.R.; Nune, S.K.; Casteel, S.W.; Smith, C.J.; Vimal, J.; et al. Laminin receptor specific therapeutic gold nanoparticles ((AuNP)-Au-198-EGCg) show efficacy in treating prostate cancer. Proc. Natl. Acad. Sci. USA 2012, 109, 12426–12431. [Google Scholar] [CrossRef] [Green Version]
- Son, S.; Kim, N.; You, D.G.; Yoon, H.Y.; Yhee, J.Y.; Kim, K.; Kwon, I.C.; Kim, S.H. Antitumor therapeutic application of self-assembled RNAi-AuNP nanoconstructs: Combination of VEGF-RNAi and photothermal ablation. Theranostics 2017, 7, 9–22. [Google Scholar] [CrossRef]
- Pantiushenko, I.V.; Rudakovskaya, P.G.; Starovoytova, A.V.; Mikhaylovskaya, A.A.; Abakumov, M.A.; Kaplan, M.A.; Tsygankov, A.A.; Majouga, A.G.; Grin, M.A.; Mironov, A.F. Development of bacteriochlorophyll a-based near-infrared photosensitizers conjugated to gold nanoparticles for photodynamic therapy of cancer. Biochemistry (Moscow) 2015, 80, 752–762. [Google Scholar] [CrossRef]
- Bhana, S.; O’Connor, R.; Johnson, J.; Ziebarth, J.D.; Henderson, L.; Huang, X. Photosensitizer-loaded gold nanorods for near infrared photodynamic and photothermal cancer therapy. J. Colloid Interface Sci. 2016, 469, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Jang, B.; Park, J.Y.; Tung, C.H.; Kim, I.H.; Choi, Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy In vivo. ACS Nano 2011, 5, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhao, Z.; Lv, Y.; Fan, H.; Bai, H.; Meng, H.; Long, Y.; Fu, T.; Zhang, X.; Tan, W. Gold nanorod-photosensitizer conjugate with extracellular pH-driven tumor targeting ability for photothermal/photodynamic therapy. Nano Res. 2014, 7, 1291–1301. [Google Scholar] [CrossRef]
- Tham, H.P.; Chen, H.; Tan, Y.H.; Qu, Q.; Sreejith, S.; Zhao, L.; Venkatraman, S.S.; Zhao, Y. Photosensitizer anchored gold nanorods for targeted combinational photothermal and photodynamic therapy. Chem. Commun. 2016, 52, 8854–8857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.; Zheng, Y.H.; Lu, X.; Thai, T.; Lee, N.A.; Bach, U.; Gooding, J.J. Biocompatible gold nanorods: One-step surface functionalization, highly colloidal stability, and low cytotoxicity. Langmuir 2015, 31, 4973–4980. [Google Scholar] [CrossRef]
- Wijaya, A.; Hamad-Schifferli, K. Ligand customization and DNA functionalization of gold nanorods via round-trip phase transfer ligand exchange. Langmuir 2008, 24, 9966–9969. [Google Scholar] [CrossRef] [PubMed]
- Tirand, L.; Frochot, C.; Vanderesse, R.; Thomas, N.; Trinquet, E.; Pinel, S.; Viriot, M.-L.; Guillemin, F.; Barberi-Heyob, M. A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells. J. Control. Release 2006, 111, 153–164. [Google Scholar] [CrossRef]
- Kamarulzaman, E.E.; Vanderesse, R.; Gazzali, A.M.; Barberi-Heyob, M.; Boura, C.; Frochot, C.; Shawkataly, O.; Aubry, A.; Wahab, H.A. Molecular modelling, synthesis and biological evaluation of peptide inhibitors as anti-angiogenic agent targeting Neuropilin-1 for anticancer application. J. Biomol. Struct. Dyn. 2017, 35, 26–45. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.; Colombeau, L.; Gries, M.; Peterlini, T.; Mathieu, C.; Thomas, N.; Boura, C.; Frochot, C.; Vanderesse, R.; Lux, F.; et al. Ultrasmall AGuIX theranostic nanoparticles for vascular-targeted interstitial photodynamic therapy of glioblastoma. Int. J. Nanomed. 2017, 12, 7075–7088. [Google Scholar] [CrossRef] [Green Version]
- Thomas, N.; Pernot, M.; Vanderesse, R.; Becuwe, P.; Kamarulzaman, E.; Da Silva, D.; Francois, A.; Frochot, C.; Guillemin, F.; Barberi-Heyob, M. Photodynamic therapy targeting neuropilin-1: Interest of pseudopeptides with improved stability properties. Biochem. Pharmacol. 2010, 80, 226–235. [Google Scholar] [CrossRef]
- Allain, B.; Jarray, R.; Borriello, L.; Leforban, B.; Dufour, S.; Liu, W.Q.; Pamonsinlapatham, P.; Bianco, S.; Larghero, J.; Hadj-Slimane, R.; et al. Neuropilin-1 regulates a new VEGF-induced gene, Phactr-1, which controls tubulogenesis and modulates lamellipodial dynamics in human endothelial cells. Cell. Signal. 2012, 24, 214–223. [Google Scholar] [CrossRef]
- Cebe-Suarez, S.; Grunewald, F.S.; Jaussi, R.; Li, X.; Claesson-Welsh, L.; Spillmann, D.; Mercer, A.A.; Prota, A.E.; Ballmer-Hofer, K. Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR. FASEB J. 2008, 22, 3078–3086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Wronski, M.A.; Raju, N.; Pillai, R.; Bogdan, N.J.; Marinelli, E.R.; Nanjappan, P.; Ramalingam, K.; Arunachalam, T.; Eaton, S.; Linder, K.E.; et al. Tuftsin binds neuropilin-1 through a sequence similar to that encoded by exon 8 of vascular endothelial growth factor. J. Biol. Chem. 2006, 281, 5702–5710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calavia, P.G.; Bruce, G.; Perez-Garcia, L.; Russell, D.A. Photosensitiser-gold nanoparticle conjugates for photodynamic therapy of cancer. Photochem. Photobiol. Sci. 2018, 17, 1534–1552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.J.; Gao, Y.Q.; Dong, C.M. Polymer/gold hybrid nanoparticles: From synthesis to cancer theranostic applications. RSC Adv. 2015, 5, 13787–13796. [Google Scholar] [CrossRef]
- Bartczak, D.; Sanchez-Elsner, T.; Louafi, F.; Millar, T.M.; Kanaras, A.G. Receptor-mediated interactions between colloidal gold nanoparticles and human umbilical vein endothelial cells. Small 2011, 7, 388–394. [Google Scholar] [CrossRef]
- Kumar, A.; Huo, S.D.; Zhang, X.; Liu, J.; Tan, A.; Li, S.L.; Jin, S.B.; Xue, X.D.; Zhao, Y.Y.; Ji, T.J.; et al. Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(IV) drug for prostate cancer treatment. ACS Nano 2014, 8, 4205–4220. [Google Scholar] [CrossRef]
- Kumar, A.; Ma, H.L.; Zhang, X.; Huang, K.Y.; Jin, S.B.; Liu, J.; Wei, T.; Cao, W.P.; Zou, G.Z.; Liang, X.J. Gold nanoparticles functionalized with therapeutic and targeted peptides for cancer treatment. Biomaterials 2012, 33, 1180–1189. [Google Scholar] [CrossRef]
- Triguero, J.; Flores-Ortega, A.; Zanuy, D.; Aleman, C. Modeling of a C-end rule peptide adsorbed onto gold nanoparticles. J. Pept. Sci. 2018, 24. [Google Scholar] [CrossRef]
- Li, L.; Nurunnabi; Nafiujjaman; Lee, Y.K.; Huh, K.M. GSH-mediated photoactivity of pheophorbide a-conjugated heparin/gold nanoparticle for photodynamic therapy. J. Control. Release 2013, 171, 241–250. [Google Scholar] [CrossRef]
- Jang, B.; Choi, Y. Photosensitizer-conjugated gold nanorods for enzyme-activatable fluorescence imaging and photodynamic therapy. Theranostics 2012, 2, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Srivatsan, A.; Jenkins, S.V.; Jeon, M.; Wu, Z.; Kim, C.; Chen, J.; Pandey, R.K. Gold nanocage-photosensitizer conjugates for dual-modal image-guided enhanced photodynamic therapy. Theranostics 2014, 4, 163–174. [Google Scholar] [CrossRef]
- Li, L.; Nurunnabi, M.; Nafiujjaman, M.; Jeong, Y.Y.; Lee, Y.-k.; Huh, K.M. A photosensitizer-conjugated magnetic iron oxide/gold hybrid nanoparticle as an activatable platform for photodynamic cancer therapy. J. Mat. Chem. B 2014, 2, 2929–2937. [Google Scholar] [CrossRef]
- Nikoobakht, B.; El-Sayed, M.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962. [Google Scholar] [CrossRef]
- Xia, X.H.; Yang, M.X.; Wang, Y.C.; Zheng, Y.Q.; Li, Q.G.; Chen, J.Y.; Xia, Y.N. Quantifying the coverage density of poly(ethylene glycol) chains on the surface of gold nanostructures. ACS Nano 2012, 6, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Kamarulzaman, E.; Gazzali, A.; Acherar, S.; Frochot, C.; Barberi-Heyob, M.; Boura, C.; Chaimbault, P.; Sibille, E.; Wahab, H.; Vanderesse, R. New peptide-conjugated chlorin-type photosensitizer targeting neuropilin-1 for anti-vascular targeted photodynamic therapy. Int. J. Mol. Sci. 2015, 16, 24059–24080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stallivieri, A.; Le Guern, F.; Vanderesse, R.; Meledje, E.; Jori, G.; Frochot, C.; Acherar, S. Synthesis and photophysical properties of the photoactivatable cationic porphyrin 5-(4-N-dodecylpyridyl)-10,15,20-tri(4-N-methylpyridyl)-21H,23H-porphyrin tetraiodide for anti-malaria PDT. Photochem. Photobiol. Sci. 2015, 14, 1290–1295. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, T.L.C.; Johnstone, R.A.W.; Sorensen, A.; Burget, D.; Jacques, P. Determination of fluorescence yields, singlet lifetimes and singlet oxygen yields of water-insoluble porphyrins and metalloporphyrins in organic solvents and in aqueous media. Photochem. Photobiol. 1999, 69, 517–528. [Google Scholar] [CrossRef]
- DeRosa, M.C.; Crutchley, R.J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 2002, 233–234, 351–371. [Google Scholar] [CrossRef]
- Youssef, Z.; Jouan-Hureaux, V.; Colombeau, L.; Arnoux, P.; Moussaron, A.; Baros, F.; Toufaily, J.; Hamieh, T.; Roques-Carmes, T.; Frochot, C. Titania and silica nanoparticles coupled to Chlorin e6 for anti-cancer photodynamic therapy. Photodiagn. Photodyn. Ther. 2018, 22, 115–126. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, G.Z.; You, M.X.; Song, E.Q.; Shukoor, M.I.; Zhang, K.J.; Altman, M.B.; Chen, Y.; Zhu, Z.; Huang, C.Z.; et al. Assembly of aptamer switch probes and photosensitizer on gold nanorods for targeted photothermal and photodynamic cancer therapy. ACS Nano 2012, 6, 5070–5077. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, Y.; Mori, T.; Katayama, Y.; Niidome, T. Conversion of rod-shaped gold nanoparticles to spherical forms and their effect on biodistribution in tumor-bearing mice. Nanoscale Res. Lett. 2012, 7, 765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, J.; Sun, T.; Grattan, K.T.V. Gold nanorod-based localized surface plasmon resonance biosensors: A review. Sens. Actuator B Chem. 2014, 195, 332–351. [Google Scholar] [CrossRef]
- Gentili, D.; Ori, G.; Franchini, M.C. Double phase transfer of gold nanorods for surface functionalization and entrapment into PEG-based nanocarriers. Chem. Commun. 2009, 5874–5876. [Google Scholar] [CrossRef] [PubMed]
- Oros-Ruiz, S.; Hernandez-Gordillo, A.; Garcia-Mendoza, C.; Rodriguez-Rodriguez, A.A.; Gomez, R. Comparative activity of CdS nanofibers superficially modified by Au, Cu, and Ni nanoparticles as co-catalysts for photocatalytic hydrogen production under visible light. J. Chem. Technol. Biotechnol. 2016, 91, 2205–2210. [Google Scholar] [CrossRef]
- Turcheniuk, K.; Dumych, T.; Bilyy, R.; Turcheniuk, V.; Bouckaert, J.; Vovk, V.; Chopyak, V.; Zaitsev, V.; Mariot, P.; Prevarskaya, N.; et al. Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites. RSC Adv. 2016, 6, 1600–1610. [Google Scholar] [CrossRef] [Green Version]
- Kuo, W.-S.; Chang, C.-N.; Chang, Y.-T.; Yang, M.-H.; Chien, Y.-H.; Chen, S.-J.; Yeh, C.-S. Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. Angew. Chem. Int. Ed. 2010, 49, 2711–2715. [Google Scholar] [CrossRef] [Green Version]
- Pramual, S.; Lirdprapamongkol, K.; Svasti, J.; Bergkvist, M.; Jouan-Hureaux, V.; Arnoux, P.; Frochot, C.; Barberi-Heyob, M.; Niamsiri, N. Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy. J. Photochem. Photobiol. B Biol. 2017, 173, 12–22. [Google Scholar] [CrossRef]
- Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 1252–1276. [Google Scholar] [CrossRef]
- Kobayashi, H.; Watanabe, R.; Choyke, P.L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2013, 4, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Mochida, A.; Choyke, P.L.; Kobayashi, H. Nanodrug delivery: Is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug. Chem. 2016, 27, 2225–2238. [Google Scholar] [CrossRef]
- Zhou, A.; Wei, Y.; Wu, B.; Chen, Q.; Xing, D. Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy. Mol. Pharm. 2012, 9, 1580–1589. [Google Scholar] [CrossRef] [PubMed]
Total PEGs per AuNRs | ||
---|---|---|
HS-PEG-NH2 (Dalton) | Measured by the fluorescamine-based assay | Measured by the ninhydrin-based assay |
2000 | 1466 +/− 6 | 1600 +/− 35 |
Compound | λmax (nm) | Φf | ΦΔ | τf (ns) | τΔ (μs) |
---|---|---|---|---|---|
Pyro | 412 | 0.38 | 0.51 | 6.8 | 14 |
Fmoc-K(Pyro)-OH | 412 | 0.35 | 0.51 | 6.9 | 14 |
H-K(Pyro)DKPPR-OH | 412 | 0.34 | 0.44 | 6.8 | 14 |
MI-K(Pyro)DKPPR-OH | 412 | 0.29 | 0.39 | 6.5 | 13 |
AuNRs@PEG-MI-K(Pyro)DKPPR-OH | 412 | 0.30 | 0.40 | 6.5 | 12 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youssef, Z.; Yesmurzayeva, N.; Larue, L.; Jouan-Hureaux, V.; Colombeau, L.; Arnoux, P.; Acherar, S.; Vanderesse, R.; Frochot, C. New Targeted Gold Nanorods for the Treatment of Glioblastoma by Photodynamic Therapy. J. Clin. Med. 2019, 8, 2205. https://doi.org/10.3390/jcm8122205
Youssef Z, Yesmurzayeva N, Larue L, Jouan-Hureaux V, Colombeau L, Arnoux P, Acherar S, Vanderesse R, Frochot C. New Targeted Gold Nanorods for the Treatment of Glioblastoma by Photodynamic Therapy. Journal of Clinical Medicine. 2019; 8(12):2205. https://doi.org/10.3390/jcm8122205
Chicago/Turabian StyleYoussef, Zahraa, Nurlykyz Yesmurzayeva, Ludivine Larue, Valérie Jouan-Hureaux, Ludovic Colombeau, Philippe Arnoux, Samir Acherar, Régis Vanderesse, and Céline Frochot. 2019. "New Targeted Gold Nanorods for the Treatment of Glioblastoma by Photodynamic Therapy" Journal of Clinical Medicine 8, no. 12: 2205. https://doi.org/10.3390/jcm8122205
APA StyleYoussef, Z., Yesmurzayeva, N., Larue, L., Jouan-Hureaux, V., Colombeau, L., Arnoux, P., Acherar, S., Vanderesse, R., & Frochot, C. (2019). New Targeted Gold Nanorods for the Treatment of Glioblastoma by Photodynamic Therapy. Journal of Clinical Medicine, 8(12), 2205. https://doi.org/10.3390/jcm8122205