The Homuncular Jigsaw: Investigations of Phantom Limb and Body Awareness Following Brachial Plexus Block or Avulsion
Abstract
:1. Introduction
2. Phantom Sensation: A Perspective Following Brachial Plexus Block or Avulsion
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Makin, T.R.; Scholz, J.; Henderson Slater, D.; Johansen-Berg, H.; Tracey, I. Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain 2015, 138, 2140–2146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazzaglia, M.; Zantedeschi, M. Plasticity and Awareness of Bodily Distortion. Neural Plast. 2016, 2016, 9834340. [Google Scholar] [CrossRef] [PubMed]
- Lucci, G.; Pazzaglia, M. Towards multiple interactions of inner and outer sensations in corporeal awareness. Front. Hum. Neurosci. 2015, 9, 163. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.S.; Hirstein, W. The perception of phantom limbs. The D. O. Hebb lecture. Brain 1998, 121 Pt 9, 1603–1630. [Google Scholar] [CrossRef] [Green Version]
- Flor, H.; Nikolajsen, L.; Staehelin Jensen, T. Phantom limb pain: A case of maladaptive CNS plasticity? Nat. Rev. Neurosci. 2006, 7, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.S. Consciousness and body image: Lessons from phantom limbs, Capgras syndrome and pain asymbolia. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1998, 353, 1851–1859. [Google Scholar] [CrossRef] [PubMed]
- Schott, G.D. Revealing the invisible: The paradox of picturing a phantom limb. Brain 2014, 137, 960–969. [Google Scholar] [CrossRef]
- Giummarra, M.J.; Gibson, S.J.; Georgiou-Karistianis, N.; Bradshaw, J.L. Central mechanisms in phantom limb perception: The past, present and future. Brain Res. Rev. 2007, 54, 219–232. [Google Scholar] [CrossRef]
- Montoya, P.; Ritter, K.; Huse, E.; Larbig, W.; Braun, C.; Topfner, S.; Lutzenberger, W.; Grodd, W.; Flor, H.; Birbaumer, N. The cortical somatotopic map and phantom phenomena in subjects with congenital limb atrophy and traumatic amputees with phantom limb pain. Eur. J. Neurosci. 1998, 10, 1095–1102. [Google Scholar] [CrossRef]
- Halligan, P.W.; Marshall, J.C.; Wade, D.T. Sensory disorganization and perceptual plasticity after limb amputation: A follow-up study. Neuroreport 1994, 5, 1341–1345. [Google Scholar] [CrossRef]
- Ichinose, A.; Sano, Y.; Osumi, M.; Sumitani, M.; Kumagaya, S.I.; Kuniyoshi, Y. Somatosensory Feedback to the Cheek During Virtual Visual Feedback Therapy Enhances Pain Alleviation for Phantom Arms. Neurorehabil. Neural Repair 2017, 31, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.S.; Rogers-Ramachandran, D. Phantom limbs and neural plasticity. Arch. Neurol. 2000, 57, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Weeks, S.R.; Tsao, J.W. Incorporation of another person’s limb into body image relieves phantom limb pain: A case study. Neurocase 2010, 16, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Melzack, R. Phantom limbs and the concept of a neuromatrix. Trends Neurosci. 1990, 13, 88–92. [Google Scholar] [CrossRef]
- Sherman, R.A.; Griffin, V.D.; Evans, C.B.; Grana, A.S. Temporal relationships between changes in phantom limb pain intensity and changes in surface electromyogram of the residual limb. Int. J. Psychophysiol. 1992, 13, 71–77. [Google Scholar] [CrossRef]
- Cook, A.W.; Druckemiller, W.H. Phantom limb in paraplegic patients; report of two cases and an analysis of its mechanism. J. Neurosurg. 1952, 9, 508–516. [Google Scholar] [CrossRef]
- Makin, T.R.; Scholz, J.; Filippini, N.; Henderson Slater, D.; Tracey, I.; Johansen-Berg, H. Phantom pain is associated with preserved structure and function in the former hand area. Nat. Commun. 2013, 4, 1570. [Google Scholar] [CrossRef] [Green Version]
- Pazzaglia, M.; Galli, G.; Lucci, G.; Scivoletto, G.; Molinari, M.; Haggard, P. Phantom limb sensations in the ear of a patient with a brachial plexus lesion. Cortex 2018. [Google Scholar] [CrossRef]
- Catani, M. A little man of some importance. Brain 2017, 140, 3055–3061. [Google Scholar] [CrossRef] [Green Version]
- Leinberry, C.F.; Wehbe, M.A. Brachial plexus anatomy. Hand Clin. 2004, 20, 1–5. [Google Scholar] [CrossRef]
- Chang, K.W.; Justice, D.; Chung, K.C.; Yang, L.J. A systematic review of evaluation methods for neonatal brachial plexus palsy: A review. J. Neurosurg. Pediatr. 2013, 12, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Socolovsky, M.; Costales, J.R.; Paez, M.D.; Nizzo, G.; Valbuena, S.; Varone, E. Obstetric brachial plexus palsy: Reviewing the literature comparing the results of primary versus secondary surgery. Childs Nerv. Syst. 2016, 32, 415–425. [Google Scholar] [CrossRef]
- Winnie, A.P. Interscalene brachial plexus block. Anesth. Analg. 1970, 49, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Parry, C.W. Pain in avulsion lesions of the brachial plexus. Pain 1980, 9, 41–53. [Google Scholar] [CrossRef]
- Schley, M.; Topfner, S.; Wiech, K.; Schaller, H.; Konrad, C.; Schmelz, M.; Birbaumer, N. Continuous brachial plexus blockade in combination with the NMDA receptor antagonist memantine prevents phantom pain in acute traumatic upper limb amputees. Eur. J. Pain 2007, 11, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Melzack, R.; Bromage, P.R. Experimental phantom limbs. Exp. Neurol. 1973, 39, 261–269. [Google Scholar] [CrossRef]
- Russell, H.G.; Tsao, J.W. Phantom Sensations Following Brachial Plexus Nerve Block: A Case Report. Front. Neurol. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Tsao, J.W.; Finn, S.B.; Miller, M.E. Reversal of phantom pain and hand-to-face remapping after brachial plexus avulsion. Ann. Clin. Transl. Neurol. 2016, 3, 463–464. [Google Scholar] [CrossRef] [Green Version]
- Ciaramitaro, P.; Mondelli, M.; Logullo, F.; Grimaldi, S.; Battiston, B.; Sard, A.; Scarinzi, C.; Migliaretti, G.; Faccani, G.; Cocito, D.; et al. Traumatic peripheral nerve injuries: Epidemiological findings, neuropathic pain and quality of life in 158 patients. J. Peripher. Nerv. Syst. 2010, 15, 120–127. [Google Scholar] [CrossRef]
- Rasmussen, T.; Penfield, W. The human sensorimotor cortex as studied by electrical stimulation. Fed. Proc. 1947, 6, 184. [Google Scholar]
- Zeharia, N.; Hertz, U.; Flash, T.; Amedi, A. New whole-body sensory-motor gradients revealed using phase-locked analysis and verified using multivoxel pattern analysis and functional connectivity. J. Neurosci. 2015, 35, 2845–2859. [Google Scholar] [CrossRef] [PubMed]
- Nihashi, T.; Kakigi, R.; Kawakami, O.; Hoshiyama, M.; Itomi, K.; Nakanishi, H.; Kajita, Y.; Inao, S.; Yoshida, J. Representation of the ear in human primary somatosensory cortex. NeuroImage 2001, 13, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Nihashi, T.; Kakigi, R.; Okada, T.; Sadato, N.; Kashikura, K.; Kajita, Y.; Yoshida, J. Functional magnetic resonance imaging evidence for a representation of the ear in human primary somatosensory cortex: Comparison with magnetoencephalography study. NeuroImage 2002, 17, 1217–1226. [Google Scholar] [CrossRef] [PubMed]
- Nihashi, T.; Kakigi, R.; Hoshiyama, M.; Miki, K.; Kajita, Y.; Yoshida, J.; Yatsuya, H. Effect of tactile interference stimulation of the ear in human primary somatosensory cortex: A magnetoencephalographic study. Clin. Neurophysiol. 2003, 114, 1866–1878. [Google Scholar] [CrossRef]
- Yu, L.; Terada, K.; Usui, N.; Usui, K.; Baba, K.; Inoue, Y. Ear movement induced by electrical cortical stimulation. Epilepsy Behav. 2010, 18, 488–490. [Google Scholar] [CrossRef] [PubMed]
- Lucchetti, C.; Lanzilotto, M.; Bon, L. Auditory-motor and cognitive aspects in area 8B of macaque monkey’s frontal cortex: A premotor ear-eye field (PEEF). Exp. Brain Res. 2008, 186, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Pourrier, S.D.; Nieuwstraten, W.; van Cranenburgh, B.; Schreuders, T.A.; Stam, H.J.; Selles, R.W. Three cases of referred sensation in traumatic nerve injury of the hand: Implications for understanding central nervous system reorganization. J. Rehabil. Med. 2010, 42, 357–361. [Google Scholar] [CrossRef]
- Pazzaglia, M.; Scivoletto, G.; Giannini, A.M.; Leemhuis, E. My hand in my ear: A phantom limb re-induced by the illusion of body ownership in a patient with a brachial plexus lesion. Psychol. Res. 2018, in press. [Google Scholar] [CrossRef]
- Redgrave, J.; Day, D.; Leung, H.; Laud, P.J.; Ali, A.; Lindert, R.; Majid, A. Safety and tolerability of Transcutaneous Vagus Nerve stimulation in humans; a systematic review. Brain Stimul. 2018, 11, 1225–1238. [Google Scholar] [CrossRef]
- Frangos, E.; Ellrich, J.; Komisaruk, B.R. Non-invasive Access to the Vagus Nerve Central Projections via Electrical Stimulation of the External Ear: fMRI Evidence in Humans. Brain Stimul. 2015, 8, 624–636. [Google Scholar] [CrossRef] [Green Version]
- Komisaruk, B.R.; Whipple, B.; Crawford, A.; Liu, W.C.; Kalnin, A.; Mosier, K. Brain activation during vaginocervical self-stimulation and orgasm in women with complete spinal cord injury: fMRI evidence of mediation by the vagus nerves. Brain Res. 2004, 1024, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Corazzol, M.; Lio, G.; Lefevre, A.; Deiana, G.; Tell, L.; Andre-Obadia, N.; Bourdillon, P.; Guenot, M.; Desmurget, M.; Luaute, J.; et al. Restoring consciousness with vagus nerve stimulation. Curr. Biol. 2017, 27, R994–R996. [Google Scholar] [CrossRef] [PubMed]
- Hoshide, R.; Jandial, R. Regaining Consciousness: The Effect of Vagal Nerve Stimulation on a Patient in a Permanent Vegetative State. Neurosurgery 2018, 82, N29–N30. [Google Scholar] [CrossRef] [PubMed]
- Conti, F.; Minelli, A.; Pons, T.P. Changes in glutamate immunoreactivity in the somatic sensory cortex of adult monkeys induced by nerve cuts. J. Comp. Neurol. 1996, 368, 503–515. [Google Scholar] [CrossRef]
- Brecht, M. The Body Model Theory of Somatosensory Cortex. Neuron 2017, 94, 985–992. [Google Scholar] [CrossRef] [PubMed]
- Kikkert, S.; Kolasinski, J.; Jbabdi, S.; Tracey, I.; Beckmann, C.F.; Johansen-Berg, H.; Makin, T.R. Revealing the neural fingerprints of a missing hand. Elife 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Vargas, C.; Torres, F.; Ramalho, B.; Patroclo, C.; Souza, L.; Guimarães, F.; Martins, J.V.; Rangel, M.L. Plasticity in the Brain after a Traumatic Brachial Plexus Injury in Adults. In Treatment of Brachial Plexus Injuries; IntechOpen: Rijeka, Croatia, 2018. [Google Scholar]
- Souza, L.; Lemos, T.; Silva, D.C.; de Oliveira, J.M.; Guedes Correa, J.F.; Tavares, P.L.; Oliveira, L.A.; Rodrigues, E.C.; Vargas, C.D. Balance Impairments after Brachial Plexus Injury as Assessed through Clinical and Posturographic Evaluation. Front. Hum. Neurosci. 2015, 9, 715. [Google Scholar] [CrossRef]
- Tatu, L.; Bogousslavsky, J. Phantom Sensations, Supernumerary Phantom Limbs and Apotemnophilia: Three Body Representation Disorders. Front. Neurol. Neurosci. 2018, 41, 14–22. [Google Scholar] [CrossRef]
- Crawford, C.S. Phantom Limb: Amputation, Embodiment, and Prosthetic Technology; NYU Press: New York, NY, USA, 2014. [Google Scholar]
- Bayne, T.; Levy, N. Amputees by choice: Body integrity identity disorder and the ethics of amputation. J. Appl. Philos. 2005, 22, 75–86. [Google Scholar] [CrossRef]
- Hilti, L.M.; Hanggi, J.; Vitacco, D.A.; Kraemer, B.; Palla, A.; Luechinger, R.; Jancke, L.; Brugger, P. The desire for healthy limb amputation: Structural brain correlates and clinical features of xenomelia. Brain 2013, 136, 318–329. [Google Scholar] [CrossRef]
- Berti, A. This limb is mine but I do not want it: From anatomy to body ownership. Brain 2013, 136, 11–13. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.S.; Altschuler, E.L. The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 2009, 132, 1693–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotze, M.; Grodd, W.; Birbaumer, N.; Erb, M.; Huse, E.; Flor, H. Does use of a myoelectric prosthesis prevent cortical reorganization and phantom limb pain? Nat. Neurosci. 1999, 2, 501–502. [Google Scholar] [CrossRef] [PubMed]
- Pons, T.P.; Garraghty, P.E.; Ommaya, A.K.; Kaas, J.H.; Taub, E.; Mishkin, M. Massive cortical reorganization after sensory deafferentation in adult macaques. Science 1991, 252, 1857–1860. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.; Qi, H.X.; Collins, C.E.; Kaas, J.H. Large-scale reorganization in the somatosensory cortex and thalamus after sensory loss in macaque monkeys. J. Neurosci. 2008, 28, 11042–11060. [Google Scholar] [CrossRef] [PubMed]
- Kaas, J.H.; Qi, H.X.; Burish, M.J.; Gharbawie, O.A.; Onifer, S.M.; Massey, J.M. Cortical and subcortical plasticity in the brains of humans, primates, and rats after damage to sensory afferents in the dorsal columns of the spinal cord. Exp. Neurol. 2008, 209, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Makin, T.R.; Bensmaia, S.J. Stability of Sensory Topographies in Adult Cortex. Trends Cogn. Sci. 2017, 21, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Knecht, S.; Henningsen, H.; Elbert, T.; Flor, H.; Hohling, C.; Pantev, C.; Taub, E. Reorganizational and perceptional changes after amputation. Brain 1996, 119 Pt 4, 1213–1219. [Google Scholar] [CrossRef] [Green Version]
- Kambi, N.; Halder, P.; Rajan, R.; Arora, V.; Chand, P.; Arora, M.; Jain, N. Large-scale reorganization of the somatosensory cortex following spinal cord injuries is due to brainstem plasticity. Nat. Commun. 2014, 5, 3602. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.; Florence, S.L.; Qi, H.X.; Kaas, J.H. Growth of new brainstem connections in adult monkeys with massive sensory loss. Proc. Natl. Acad. Sci. USA 2000, 97, 5546–5550. [Google Scholar] [CrossRef] [Green Version]
- Vaso, A.; Adahan, H.M.; Gjika, A.; Zahaj, S.; Zhurda, T.; Vyshka, G.; Devor, M. Peripheral nervous system origin of phantom limb pain. Pain 2014, 155, 1384–1391. [Google Scholar] [CrossRef] [PubMed]
- Henderson, W.R.; Smyth, G.E. Phantom limbs. J. Neurol. Neurosurg. Psychiatry 1948, 11, 88–112. [Google Scholar] [CrossRef] [PubMed]
- Agon, F.; Mateo, S.; Servajean, V.; Rode, G. Regression of supernumerary upper limb phantom and pain after left complete plexus brachial avulsion using mirror therapy: A single case study. Ann. Phys. Rehabil. Med. 2014, 57, e105. [Google Scholar] [CrossRef] [Green Version]
- Ambron, E.; Miller, A.; Kuchenbecker, K.J.; Buxbaum, L.J.; Coslett, H.B. Immersive Low-Cost Virtual Reality Treatment for Phantom Limb Pain: Evidence from Two Cases. Front. Neurol. 2018, 9, 67. [Google Scholar] [CrossRef] [PubMed]
- Raffin, E.; Mattout, J.; Reilly, K.T.; Giraux, P. Disentangling motor execution from motor imagery with the phantom limb. Brain 2012, 135, 582–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clites, T.R.; Carty, M.J.; Ullauri, J.B.; Carney, M.E.; Mooney, L.M.; Duval, J.F.; Srinivasan, S.S.; Herr, H.M. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Valle, G.; Mazzoni, A.; Iberite, F.; D’Anna, E.; Strauss, I.; Granata, G.; Controzzi, M.; Clemente, F.; Rognini, G.; Cipriani, C.; et al. Biomimetic Intraneural Sensory Feedback Enhances Sensation Naturalness, Tactile Sensitivity, and Manual Dexterity in a Bidirectional Prosthesis. Neuron 2018, 100, 37–45 e37. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, E.L.; Resnik, L.; Schiefer, M.A.; Schmitt, M.S.; Tyler, D.J. Home Use of a Neural-connected Sensory Prosthesis Provides the Functional and Psychosocial Experience of Having a Hand Again. Sci. Rep. 2018, 8, 9866. [Google Scholar] [CrossRef] [PubMed]
- Pazzaglia, M.; Haggard, P.; Scivoletto, G.; Molinari, M.; Lenggenhager, B. Pain and somatic sensation are transiently normalized by illusory body ownership in a patient with spinal cord injury. Restor. Neurol. Neurosci. 2016, 34, 603–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazzaglia, M. Body and Odors: Non Just Molecules, After All. Curr. Dir. Psychol. Sci. 2015, 24, 329–333. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pazzaglia, M.; Leemhuis, E.; Giannini, A.M.; Haggard, P. The Homuncular Jigsaw: Investigations of Phantom Limb and Body Awareness Following Brachial Plexus Block or Avulsion. J. Clin. Med. 2019, 8, 182. https://doi.org/10.3390/jcm8020182
Pazzaglia M, Leemhuis E, Giannini AM, Haggard P. The Homuncular Jigsaw: Investigations of Phantom Limb and Body Awareness Following Brachial Plexus Block or Avulsion. Journal of Clinical Medicine. 2019; 8(2):182. https://doi.org/10.3390/jcm8020182
Chicago/Turabian StylePazzaglia, Mariella, Erik Leemhuis, Anna Maria Giannini, and Patrick Haggard. 2019. "The Homuncular Jigsaw: Investigations of Phantom Limb and Body Awareness Following Brachial Plexus Block or Avulsion" Journal of Clinical Medicine 8, no. 2: 182. https://doi.org/10.3390/jcm8020182
APA StylePazzaglia, M., Leemhuis, E., Giannini, A. M., & Haggard, P. (2019). The Homuncular Jigsaw: Investigations of Phantom Limb and Body Awareness Following Brachial Plexus Block or Avulsion. Journal of Clinical Medicine, 8(2), 182. https://doi.org/10.3390/jcm8020182