Suitability of Metal Block Augmentation for Large Uncontained Bone Defect in Revision Total Knee Arthroplasty (TKA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Finite Element Models of the Proximal Tibia
2.1.1. Finite Element Models of the Proximal Tibia
2.1.2. Finite Element Models for Revision TKA Components
2.1.3. Insertion, Alignment, and Configuration of Revision TKA with Metal Block Augmentation
2.1.4. Loading, Boundary, and Contact Conditions
2.2. Finite Element Model Validation
2.3. Data Analyses
3. Results
3.1. Finite Element Model Accuracy
3.2. Principal Stress Flow within Cortical Bone of the Tibia
3.3. Strain Distribution on Cortical Bone of Proximal Tibia below Baseplate
3.4. Peak von Mises Stress within Bone Cement
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cram, P.; Lu, X.; Kates, S.L.; Singh, J.A.; Li, Y.; Wolf, B.R. Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991–2010. JAMA 2012, 308, 1227–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalury, D.F.; Pomeroy, D.L.; Gorab, R.S.; Adams, M.J. Why are total knee arthroplasties being revised? J. Arthroplast. 2013, 28, 120–121. [Google Scholar] [CrossRef]
- Sharkey, P.F.; Lichstein, P.M.; Shen, C.; Tokarski, A.T.; Parvizi, J. Why are total knee arthroplasties failing today—Has anything changed after 10 years? J. Arthroplast. 2014, 29, 1774–1778. [Google Scholar] [CrossRef]
- Bhandari, M.; Smith, J.; Miller, L.E.; Block, J.E. Clinical and economic burden of revision knee arthroplasty. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2012, 5, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Koh, I.J.; Cho, W.S.; Choi, N.Y.; Kim, T.K. Causes, risk factors, and trends in failures after TKA in Korea over the past 5 years: A multicenter study. Clin. Orthop. Relat. Res. 2014, 472, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, R.; Garg, B.; Kumar, V. Dual massive skeletal allograft in revision total knee arthroplasty. Indian J. Orthop. 2011, 45, 368–371. [Google Scholar] [PubMed]
- Stockley, I.; McAuley, J.P.; Gross, A.E. Allograft reconstruction in total knee arthroplasty. J. Bone Joint Surg. Br. Vol. 1992, 74, 393–397. [Google Scholar] [CrossRef]
- Cuckler, J.M. Bone loss in total knee arthroplasty: Graft augment and options. J. Arthroplast. 2004, 19, 56–58. [Google Scholar] [CrossRef]
- Vasso, M.; Beaufils, P.; Cerciello, S.; Schiavone Panni, A. Bone loss following knee arthroplasty: Potential treatment options. Arch. Orthop. Trauma Surg. 2014, 134, 543–553. [Google Scholar] [CrossRef] [PubMed]
- Tsukada, S.; Wakui, M.; Matsueda, M. Metal block augmentation for bone defects of the medial tibia during primary total knee arthroplasty. J. Orthop. Surg. Res. 2013, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.W.; Kim, C.W.; Choi, C.H. Management of tibial bony defect with metal block in primary total knee replacement arthroplasty. Knee Sur. Relat. Res. 2013, 25, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.V.; Masonis, J.L.; Guerin, J.; Bourne, R.B.; Rorabeck, C.H. The fate of augments to treat type-2 bone defects in revision knee arthroplasty. J. Bone Joint Surg. Br. Vol. 2004, 86, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Matteo Fosco, R.B.A.; Luca, A.; Dante, D.; Domenico, T. Management of Bone Loss in Primary and Revision Knee Replacement Surgery. Recent Adv. Arthroplast. 2012, 387–410. [Google Scholar]
- Daines, B.K.; Dennis, D.A. Management of bone defects in revision total knee arthroplasty. Instr. Course Lect. 2013, 62, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Cawley, D.T.; Kelly, N.; Simpkin, A.; Shannon, F.J.; McGarry, J.P. Full and surface tibial cementation in total knee arthroplasty: A biomechanical investigation of stress distribution and remodeling in the tibia. Clin. Biomech. (Bristol, Avon) 2012, 27, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.S.; Lee, J.K.; Lee, H.J.; Choi, C.H. Double metal tibial blocks augmentation in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Bathis, H.; Perlick, L.; Tingart, M.; Luring, C.; Zurakowski, D.; Grifka, J. Alignment in total knee arthroplasty. A comparison of computer-assisted surgery with the conventional technique. J. Bone Joint Surg. Br. Vol. 2004, 86, 682–687. [Google Scholar] [CrossRef]
- Han, P.; Jang, Y.W.; Kim, J.S.; Yoo, O.S.; Lee, M.C.; Lim, D. Biomechanical evaluation of new total knee arthroplasty (TKA) enabling high deep flexion: Stand-sit-stand motion condition. Int. J. Precis. Eng. Manuf. 2014, 15, 2623–2629. [Google Scholar] [CrossRef]
- Jang, Y.W.; Kwon, S.-Y.; Kim, J.S.; Yoo, O.S.; Lee, M.C.; Lim, D. Alterations in Stress Distribution and Micromotion Characteristics due to an Artificial Defect within a Composite Tibia used for Mechanical/Biomechanical Evaluation of Total Knee Arthroplasty. Int. J. Precis. Eng. Manuf. 2015, 16, 2213–2218. [Google Scholar] [CrossRef]
- Kang, K.S.; Jang, Y.W.; Yoo, O.S.; Jung, D.; Lee, S.J.; Lee, M.C.; Lim, D. Biomechanical Characteristics of Three Baseplate Rotational Arrangement Techniques in Total Knee Arthroplasty. BioMed Res. Int. 2018, 2018, 11. [Google Scholar] [CrossRef] [PubMed]
- Van de Groes, S.; de Waal-Malefijt, M.; Verdonschot, N. Probability of mechanical loosening of the femoral component in high flexion total knee arthroplasty can be reduced by rather simple surgical techniques. The Knee 2014, 21, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmann, G.; Bender, A.; Graichen, F.; Dymke, J.; Rohlmann, A.; Trepczynski, A.; Heller, M.O.; Kutzner, I. Standardized loads acting in knee implants. PloS One 2014, 9, e86035. [Google Scholar] [CrossRef] [PubMed]
- Hanson, G.R.; Park, S.E.; Suggs, J.F.; Moynihan, A.L.; Nha, K.W.; Freiberg, A.A.; Li, G. In vivo kneeling biomechanics after posterior stabilized total knee arthroplasty. J. Orthop. Sci. 2007, 12, 476–483. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Komistek, R.D.; Scuderi, G.R.; Cates, H.E., Jr. High-flexion TKA designs: What are their in vivo contact mechanics? Clin. Orthop. Relat. Res. 2007, 464, 117–126. [Google Scholar]
- Completo, A.; Rego, A.; Fonseca, F.; Ramos, A.; Relvas, C.; Simoes, J.A. Biomechanical evaluation of proximal tibia behaviour with the use of femoral stems in revision TKA: An in vitro and finite element analysis. Clin. Biomech. (Bristol, Avon) 2010, 25, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Ramaniraka, N.A.; Rakotomanana, L.R.; Leyvraz, P.F. The fixation of the cemented femoral component. Effects of stem stiffness, cement thickness and roughness of the cement-bone surface. J. Bone Joint Surg. Br. Vol. 2000, 82, 297–303. [Google Scholar] [CrossRef]
- Taylor, M.; Tanner, K.E.; Freeman, M.A. Finite element analysis of the implanted proximal tibia: A relationship between the initial cancellous bone stresses and implant migration. J. Biomech. 1998, 31, 303–310. [Google Scholar] [CrossRef]
- Fantozzi, S.; Catani, F.; Ensini, A.; Leardini, A.; Giannini, S. Femoral rollback of cruciate-retaining and posterior-stabilized total knee replacements: In vivo fluoroscopic analysis during activities of daily living. J. Orthop. Res. 2006, 24, 2222–2229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Completo, A.; Fonseca, F.; Simoes, J.A. Finite element and experimental cortex strains of the intact and implanted tibia. J. Biomech. Eng. 2007, 129, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Completo, A.; Fonseca, F.; Simoes, J.A. Strain shielding in proximal tibia of stemmed knee prosthesis: Experimental study. J. Biomech. 2008, 41, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.R.; Watts, C.D.; Levy, D.L.; Kim, R.H. Medial Tibial Stress Shielding: A Limitation of Cobalt Chromium Tibial Baseplates. J. Arthroplast. 2017, 32, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Deen, J.T.; Clay, T.B.; Iams, D.A.; Horodyski, M.; Parvataneni, H.K. Proximal tibial resorption in a modern total knee prosthesis. Arthroplast. Today 2018, 4, 244–248. [Google Scholar] [CrossRef]
- Gallo, J.; Goodman, S.B.; Konttinen, Y.T.; Wimmer, M.A.; Holinka, M. Osteolysis around total knee arthroplasty: A review of pathogenetic mechanisms. Acta Biomater 2013, 9, 8046–8058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Part of FE Model | Material | Elastic Modulus (MPa) | Poisson’s Ratio |
---|---|---|---|
Cortical | Cortical bone | 17,000 | 0.36 |
Cancellous | Cancellous bone | 300 | 0.3 |
Baseplate | Cobalt-chromium alloy (CoCr) | 200,000 | 0.33 |
Femoral | |||
Nut adaptor | |||
Adaptor offset | Titanium alloy | 113,000 | 0.33 |
Extension stem | |||
Block augment | |||
Spacer | Ultra-high molecular wear polyethylene (UHMWPE) | 900 | 0.46 |
Bone cement | Polymethylmethacrylate (PMMA) | 2280 | 0.3 |
Interaction | Coefficient of Friction |
---|---|
Femoral-tibial insert contact | 0.01 |
Cement-tibial baseplate | 0.4 |
Cement-metal block augmentation | 0.25 |
Cement-bone | 1 |
Extension stem-bone | 0.25 |
Type of Loading | ADL (Knee Flexion Angle) | Cement Layer | PVMS (MPa) | |||
---|---|---|---|---|---|---|
Type A | Type B | Type C | Type D | |||
Low | Knee bend (0°) | First | 2.6 | 3.3 | 3.4 | 3.3 |
Second | 1.7 | 1.3 | - | - | ||
Third | 4.4 | 7.3 | 5.4 | 7.2 | ||
Stand up (0°) | First | 2.6 | 3.2 | 3.3 | 3.3 | |
Second | 1.6 | 1.3 | - | - | ||
Third | 4.3 | 7.1 | 5.3 | 7.0 | ||
Sit down (30°) | First | 3.4 | 4.1 | 4.2 | 4.4 | |
Second | 2.2 | 1.6 | - | - | ||
Third | 4.3 | 5.2 | 6.2 | 6.0 | ||
Stair up (30°) | First | 1.2 | 1.5 | 1.6 | 1.6 | |
Second | 0.8 | 0.6 | - | - | ||
Third | 2.0 | 2.0 | 2.3 | 2.4 | ||
High | Standing (0°) | First | 5.9 | 7.6 | 7.4 | 7.8 |
Second | 3.3 | 2.1 | - | - | ||
Third | 11.9 | 14.9 | 13.2 | 17.5 | ||
Stair down (30°) | First | 6.9 | 8.6 | 8.6 | 9.1 | |
Second | 3.9 | 2.6 | - | - | ||
Third | 9.7 | 10.8 | 14.2 | 12.2 | ||
Stair up (60°) | First | 7.3 | 10.4 | 9.3 | 11.3 | |
Second | 4.3 | 2.8 | - | - | ||
Third | 10.4 | 13.4 | 15.3 | 12.1 | ||
Sit down (90°) | First | 6.9 | 7.6 | 7.4 | 8.9 | |
Second | 3.3 | 2.2 | - | - | ||
Third | 4.9 | 8.9 | 13.5 | 10.1 | ||
Stand up (90°) | First | 7.7 | 9.7 | 8.4 | 9.2 | |
Second | 3.9 | 3.4 | - | - | ||
Third | 8.9 | 9.8 | 14.9 | 11.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, K.S.; Tien, T.N.; Lee, M.C.; Lee, K.-Y.; Kim, B.; Lim, D. Suitability of Metal Block Augmentation for Large Uncontained Bone Defect in Revision Total Knee Arthroplasty (TKA). J. Clin. Med. 2019, 8, 384. https://doi.org/10.3390/jcm8030384
Kang KS, Tien TN, Lee MC, Lee K-Y, Kim B, Lim D. Suitability of Metal Block Augmentation for Large Uncontained Bone Defect in Revision Total Knee Arthroplasty (TKA). Journal of Clinical Medicine. 2019; 8(3):384. https://doi.org/10.3390/jcm8030384
Chicago/Turabian StyleKang, Kwan Su, Trinh Ngoc Tien, Myung Chul Lee, Kwon-Yong Lee, Bongju Kim, and Dohyung Lim. 2019. "Suitability of Metal Block Augmentation for Large Uncontained Bone Defect in Revision Total Knee Arthroplasty (TKA)" Journal of Clinical Medicine 8, no. 3: 384. https://doi.org/10.3390/jcm8030384
APA StyleKang, K. S., Tien, T. N., Lee, M. C., Lee, K. -Y., Kim, B., & Lim, D. (2019). Suitability of Metal Block Augmentation for Large Uncontained Bone Defect in Revision Total Knee Arthroplasty (TKA). Journal of Clinical Medicine, 8(3), 384. https://doi.org/10.3390/jcm8030384