Early-Life Exposure to the Chinese Famine and Risk of Cognitive Decline
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Famine Cohorts and Area Categories
2.3. Assessment of Cognitive Performance
2.4. Assessment of Covariates
2.5. Statistical Analysis
3. Results
3.1. Characteristic Description
3.2. Early-Life Famine Exposure and Late-Life Cognitive Performance
3.3. Association between Famine Severity and Cognitive Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuiper, J.S.; Zuidersma, M.; Zuidema, S.U.; Burgerhof, J.G.; Stolk, R.P.; Oude Voshaar, R.C.; Smidt, N. Social relationships and cognitive decline: A systematic review and meta-analysis of longitudinal cohort studies. Int. J. Epidemiol. 2016, 45, 1169–1206. [Google Scholar] [CrossRef] [PubMed]
- Charles, M.A.; Delpierre, C.; Breant, B. Developmental origin of health and adult diseases (DOHaD): Evolution of a concept over three decades. Med. Sci. 2016, 32, 15–20. [Google Scholar] [CrossRef]
- Ko, K.; Byun, M.S.; Yi, D.; Lee, J.H.; Kim, C.H.; Lee, D.Y. Early-Life Cognitive Activity Is Related to Reduced Neurodegeneration in Alzheimer Signature Regions in Late Life. Front. Aging Neurosci. 2018, 10, 70. [Google Scholar] [CrossRef]
- Zhang, D.F.; Li, J.; Wu, H.; Cui, Y.; Bi, R.; Zhou, H.J.; Wang, H.Z.; Zhang, C.; Wang, D.; Kong, Q.P.; et al. CFH Variants Affect Structural and Functional Brain Changes and Genetic Risk of Alzheimer’s Disease. Neuropsychopharmacology 2016, 41, 1034–1045. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Wang, X.; Maruyama, T.; Ma, Y.; Zhang, X.; Mez, J.; Sherva, R.; Takeyama, H.; Lunetta, K.L.; Farrer, L.A.; et al. Genome-wide association study of Alzheimer’s disease endophenotypes at prediagnosis stages. Alzheimer’s Dement. 2018, 14, 623–633. [Google Scholar] [CrossRef]
- Faa, G.; Manchia, M.; Pintus, R.; Gerosa, C.; Marcialis, M.A.; Fanos, V. Fetal programming of neuropsychiatric disorders. Birth Defects Res. Part C Embryo Today Rev. 2016, 108, 207–223. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef]
- Stein, Z.; Susser, M.; Saenger, G.; Marolla, F. Nutrition and mental performance. Science 1972, 178, 708–713. [Google Scholar] [CrossRef] [PubMed]
- De Groot, R.H.; Stein, A.D.; Jolles, J.; van Boxtel, M.P.; Blauw, G.J.; van de Bor, M.; Lumey, L. Prenatal famine exposure and cognition at age 59 years. Int. J. Epidemiol. 2011, 40, 327–337. [Google Scholar] [CrossRef] [Green Version]
- De Rooij, S.R.; Wouters, H.; Yonker, J.E.; Painter, R.C.; Roseboom, T.J. Prenatal undernutrition and cognitive function in late adulthood. Proc. Natl. Acad. Sci. USA 2010, 107, 16881–16886. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Li, Z.; Wang, M.; Martorell, R. Early life exposure to the 1959-1961 Chinese famine has long-term health consequences. J. Nutr. 2010, 140, 1874–1878. [Google Scholar] [CrossRef] [PubMed]
- Aslaksen, P.M.; Bystad, M.K.; Orbo, M.C.; Vangberg, T.R. The relation of hippocampal subfield volumes to verbal episodic memory measured by the California Verbal Learning Test II in healthy adults. Behav. Brain Res. 2018, 351, 131–137. [Google Scholar] [CrossRef]
- Zammit, A.R.; Ezzati, A.; Zimmerman, M.E.; Lipton, R.B.; Lipton, M.L.; Katz, M.J. Roles of hippocampal subfields in verbal and visual episodic memory. Behav. Brain Res. 2017, 317, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Antoniades, M.; Schoeler, T.; Radua, J.; Valli, I.; Allen, P.; Kempton, M.J.; McGuire, P. Verbal learning and hippocampal dysfunction in schizophrenia: A meta-analysis. Neurosci. Biobehav. Rev. 2018, 86, 166–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nussbaumer, J. The great Chinese famine, 1958-61: Introduction to the “descent” into the inferno. Zeitgeschichte 1999, 26, 127–153. [Google Scholar] [PubMed]
- Zhao, Y.; Hu, Y.; Smith, J.P.; Strauss, J.; Yang, G. Cohort profile: The China Health and Retirement Longitudinal Study (CHARLS). Int. J. Epidemiol. 2014, 43, 61–68. [Google Scholar] [CrossRef]
- Lei, X.; Smith, J.P.; Sun, X.; Zhao, Y. Gender Differences in Cognition in China and Reasons for Change over Time: Evidence from CHARLS. J. Econ. Ageing 2014, 4, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Ning, M.; Zhang, Q.; Yang, M. Comparison of self-reported and biomedical data on hypertension and diabetes: Findings from the China Health and Retirement Longitudinal Study (CHARLS). BMJ Open 2016, 6, e009836. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.F.; Liu, G.G.; Fan, M. Long-Term Effects of Famine on Chronic Diseases: Evidence from China’s Great Leap Forward Famine. Health Econ. 2017, 26, 922–936. [Google Scholar] [CrossRef]
- Wang, Z.; Li, C.; Yang, Z.; Ma, J.; Zou, Z. Fetal and infant exposure to severe Chinese famine increases the risk of adult dyslipidemia: Results from the China health and retirement longitudinal study. BMC Public Health 2017, 17, 488. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Han, X.; Liu, B.; Hu, H.; Wang, F.; Li, X.; Yang, K.; Yuan, J.; Yao, P.; et al. Exposure to the Chinese Famine in Childhood Increases Type 2 Diabetes Risk in Adults. J. Nutr. 2016, 146, 2289–2295. [Google Scholar] [CrossRef]
- Li, Y.; Jaddoe, V.W.; Qi, L.; He, Y.; Wang, D.; Lai, J.; Zhang, J.; Fu, P.; Yang, X.; Hu, F.B. Exposure to the chinese famine in early life and the risk of metabolic syndrome in adulthood. Diabetes Care 2011, 34, 1014–1018. [Google Scholar] [CrossRef]
- Li, Y.; Jaddoe, V.W.; Qi, L.; He, Y.; Lai, J.; Wang, J.; Zhang, J.; Hu, Y.; Ding, E.L.; Yang, X.; et al. Exposure to the Chinese famine in early life and the risk of hypertension in adulthood. J. Hypertens. 2011, 29, 1085–1092. [Google Scholar] [CrossRef]
- Zhang, Z.; Treiman, D.J. Social origins, hukou conversion, and the wellbeing of urban residents in contemporary China. Soc. Sci. Res. 2013, 42, 71–89. [Google Scholar] [CrossRef]
- McArdle, J.J.; Fisher, G.G.; Kadlec, K.M. Latent variable analyses of age trends of cognition in the Health and Retirement Study, 1992–2004. Psychol. Aging 2007, 22, 525–545. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, Z.; Li, L.; Liu, J. Early life exposure to China’s 1959–61 famine and midlife cognition. Int. J. Epidemiol. 2018, 47, 109–120. [Google Scholar] [CrossRef]
- Li, J.; Cacchione, P.Z.; Hodgson, N.; Riegel, B.; Keenan, B.T.; Scharf, M.T.; Richards, K.C.; Gooneratne, N.S. Afternoon Napping and Cognition in Chinese Older Adults: Findings from the China Health and Retirement Longitudinal Study Baseline Assessment. J. Am. Geriatr. Soc. 2017, 65, 373–380. [Google Scholar] [CrossRef]
- Apolinario, D.; Lichtenthaler, D.G.; Magaldi, R.M.; Soares, A.T.; Busse, A.L.; Amaral, J.R.; Jacob-Filho, W.; Brucki, S.M. Using temporal orientation, category fluency, and word recall for detecting cognitive impairment: The 10-point cognitive screener (10-CS). Int. J. Geriatr. Psychiatry 2016, 31, 4–12. [Google Scholar] [CrossRef]
- Mathuranath, P.S.; Nestor, P.J.; Berrios, G.E.; Rakowicz, W.; Hodges, J.R. A brief cognitive test battery to differentiate Alzheimer’s disease and frontotemporal dementia. Neurology 2000, 55, 1613–1620. [Google Scholar] [CrossRef]
- Luo, H.; Li, J.; Zhang, Q.; Cao, P.; Ren, X.; Fang, A.; Liao, H.; Liu, L. Obesity and the onset of depressive symptoms among middle-aged and older adults in China: Evidence from the CHARLS. BMC Public Health 2018, 18, 909. [Google Scholar] [CrossRef]
- Ni, Y.; Tein, J.Y.; Zhang, M.; Yang, Y.; Wu, G. Changes in depression among older adults in China: A latent transition analysis. J. Affect. Disord. 2017, 209, 3–9. [Google Scholar] [CrossRef]
- Prado, E.L.; Dewey, K.G. Nutrition and brain development in early life. Nutr. Rev. 2014, 72, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Moody, L.; Chen, H.; Pan, Y.X. Early-Life Nutritional Programming of Cognition-The Fundamental Role of Epigenetic Mechanisms in Mediating the Relation between Early-Life Environment and Learning and Memory Process. Adv. Nutr. 2017, 8, 337–350. [Google Scholar] [CrossRef]
- Bleker, L.S.; de Rooij, S.R.; Painter, R.C.; van der Velde, N.; Roseboom, T.J. Prenatal Undernutrition and Physical Function and Frailty at the Age of 68 Years: The Dutch Famine Birth Cohort Study. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71, 1306–1314. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.D. Nutrition in early life and cognitive functioning. Am. J. Clin. Nutr. 2014, 99, 1–2. [Google Scholar] [CrossRef]
- Roseboom, T.J.; van der Meulen, J.H.; Ravelli, A.C.; Osmond, C.; Barker, D.J.; Bleker, O.P. Effects of prenatal exposure to the Dutch famine on adult disease in later life: An overview. Mol. Cell. Endocrinol. 2001, 185, 93–98. [Google Scholar] [CrossRef]
- Perez-Garcia, G.; Guzman-Quevedo, O.; Da Silva Aragao, R.; Bolanos-Jimenez, F. Early malnutrition results in long-lasting impairments in pattern-separation for overlapping novel object and novel location memories and reduced hippocampal neurogenesis. Sci. Rep. 2016, 6, 21275. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Castro, L.A.; Padilla-Gomez, E.; Parga-Martinez, N.J.; Castro-Rodriguez, D.C.; Quirarte, G.L.; Diaz-Cintra, S.; Nathanielsz, P.W.; Zambrano, E. Hippocampal mechanisms in impaired spatial learning and memory in male offspring of rats fed a low-protein isocaloric diet in pregnancy and/or lactation. Hippocampus 2018, 28, 18–30. [Google Scholar] [CrossRef]
- Hock, R.S.; Bryce, C.P.; Fischer, L.; First, M.B.; Fitzmaurice, G.M.; Costa, P.T.; Galler, J.R. Childhood malnutrition and maltreatment are linked with personality disorder symptoms in adulthood: Results from a Barbados lifespan cohort. Psychiatry Res. 2018, 269, 301–308. [Google Scholar] [CrossRef]
- Ampaabeng, S.K.; Tan, C.M. The long-term cognitive consequences of early childhood malnutrition: The case of famine in Ghana. J. Health Econ. 2013, 32, 1013–1027. [Google Scholar] [CrossRef]
- Van der Zwaluw, N.L.; van de Rest, O.; Kessels, R.P.; de Groot, L.C. Effects of glucose load on cognitive functions in elderly people. Nutr. Rev. 2015, 73, 92–105. [Google Scholar] [CrossRef]
- Arevalo-Rodriguez, I.; Smailagic, N.; Roque, I.F.M.; Ciapponi, A.; Sanchez-Perez, E.; Giannakou, A.; Pedraza, O.L.; Bonfill Cosp, X.; Cullum, S. Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev. 2015, CD010783. [Google Scholar] [CrossRef]
- Rong, H.; Xi, Y.; An, Y.; Tao, L.; Zhang, X.; Yu, H.; Wang, Y.; Qin, Z.; Xiao, R. The Correlation between Early Stages of Life Exposed to Chinese Famine and Cognitive Decline in Adulthood: Nutrition of Adulthood Plays an Important Role in the Link? Front. Aging Neurosci. 2017, 9, 444. [Google Scholar] [CrossRef]
- Li, J.; Na, L.; Ma, H.; Zhang, Z.; Li, T.; Lin, L.; Li, Q.; Sun, C.; Li, Y. Multigenerational effects of parental prenatal exposure to famine on adult offspring cognitive function. Sci. Rep. 2015, 5, 13792. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; An, Y.; Yu, H.; Feng, L.; Liu, Q.; Lu, Y.; Wang, H.; Xiao, R. Association between Exposure to the Chinese Famine in Different Stages of Early Life and Decline in Cognitive Functioning in Adulthood. Front. Behav. Neurosci. 2016, 10, 146. [Google Scholar] [CrossRef]
- Riggins, T.; Blankenship, S.L.; Mulligan, E.; Rice, K.; Redcay, E. Developmental Differences in Relations Between Episodic Memory and Hippocampal Subregion Volume During Early Childhood. Child Dev. 2015, 86, 1710–1718. [Google Scholar] [CrossRef]
- Lee, J.K.; Ekstrom, A.D.; Ghetti, S. Volume of hippocampal subfields and episodic memory in childhood and adolescence. NeuroImage 2014, 94, 162–171. [Google Scholar] [CrossRef]
- Ngo, C.T.; Alm, K.H.; Metoki, A.; Hampton, W.; Riggins, T.; Newcombe, N.S.; Olson, I.R. White matter structural connectivity and episodic memory in early childhood. Dev. Cogn. Neurosci. 2017, 28, 41–53. [Google Scholar] [CrossRef]
- Dias, B.F.; Rezende, L.O.; Malloy-Diniz, L.F.; Paula, J.J. Relationship between visuospatial episodic memory, processing speed and executive function: Are they stable over a lifespan? Arquivos de Neuro-Psiquiatria 2018, 76, 89–92. [Google Scholar] [CrossRef]
- Vaiserman, A.M.; Koliada, A.K. Early-life adversity and long-term neurobehavioral outcomes: Epigenome as a bridge? Hum. Genom. 2017, 11, 34. [Google Scholar] [CrossRef]
- Shi, Z.; Nicholls, S.J.; Taylor, A.W.; Magliano, D.J.; Appleton, S.; Zimmet, P. Early life exposure to Chinese famine modifies the association between hypertension and cardiovascular disease. J. Hypertens. 2018, 36, 54–60. [Google Scholar] [CrossRef]
- Li, C.; Lumey, L.H. Exposure to the Chinese famine of 1959–61 in early life and long-term health conditions: A systematic review and meta-analysis. Int. J. Epidemiol. 2017, 46, 1157–1170. [Google Scholar] [CrossRef]
- Chen, H.; Nembhard, W.N.; Stockwell, H.G. Sex-specific effects of fetal exposure to the 1959-1961 Chinese famine on risk of adult hypertension. Matern. Child Health J. 2014, 18, 527–533. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, Y.; Ren, W.; Luo, R.; Zhang, S.; Zhang, J.H.; Zeng, Q. Risk of metabolic syndrome in adults exposed to the great Chinese famine during the fetal life and early childhood. Eur. J. Clin. Nutr. 2012, 66, 231–236. [Google Scholar] [CrossRef]
- Roseboom, T.; de Rooij, S.; Painter, R. The Dutch famine and its long-term consequences for adult health. Early Hum. Dev. 2006, 82, 485–491. [Google Scholar] [CrossRef]
- Fukuoka, H.; Kubota, T. One-Carbon Metabolism and Lipid Metabolism in DOHaD. Adv. Exp. Med. Biol. 2018, 1012, 3–9. [Google Scholar] [CrossRef]
- Zhang, X.; Lv, C.; An, Y.; Liu, Q.; Rong, H.; Tao, L.; Wang, Y.; Wang, Y.; Xiao, R. Increased Levels of 27-Hydroxycholesterol Induced by Dietary Cholesterol in Brain Contribute to Learning and Memory Impairment in Rats. Mol. Nutr. Food Res. 2018, 62. [Google Scholar] [CrossRef]
- Liu, Q.; An, Y.; Yu, H.; Lu, Y.; Feng, L.; Wang, C.; Xiao, R. Relationship between oxysterols and mild cognitive impairment in the elderly: A case-control study. Lipids Health Dis. 2016, 15, 177. [Google Scholar] [CrossRef]
- Susser, E.; St Clair, D. Prenatal famine and adult mental illness: Interpreting concordant and discordant results from the Dutch and Chinese Famines. Soc. Sci. Med. 2013, 97, 325–330. [Google Scholar] [CrossRef]
- Horvat, P.; Richards, M.; Malyutina, S.; Pajak, A.; Kubinova, R.; Tamosiunas, A.; Pikhart, H.; Peasey, A.; Marmot, M.G.; Bobak, M. Life course socioeconomic position and mid-late life cognitive function in Eastern Europe. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2014, 69, 470–481. [Google Scholar] [CrossRef]
Unexposed | Fetal Exposed | Childhood-Exposed | |||
---|---|---|---|---|---|
Early Childhood | Mid Childhood | Late Childhood | |||
N | 1635 | 895 | 1218 | 1364 | 1305 |
Birth date a | 1962–1964 | 1959–1961 | 1956–1958 | 1954–1956 | 1952–1954 |
Age in 2015 | 52.0 (0.7) | 55.1 (0.7) * | 58.0 (0.7) * | 60.0 (0.7) * | 62.0 (0.7) * |
Male, n (%) | 796 (48.7) | 414 (46.3) | 612 (50.3) | 668 (49.0) | 627 (48.1) |
Severely-affected area, n (%) | — | 290 (32.4) | 444 (36.5) | 544 (39.9) | 522 (40.0) |
Education, n (%) | |||||
Primary school and below | 730 (44.7) | 427 (47.7) | 711 (58.4) | 885 (64.9) | 971 (74.4) |
Junior school | 603 (36.9) | 246 (27.5) | 292 (24.0) | 299 (21.9) | 219 (16.8) |
High school | 206 (12.6) | 181 (20.2) | 170 (14.0) | 140 (10.3) | 77 (5.9) |
College and above | 94 (5.8) | 41 (4.6) | 44 (3.6) | 39 (2.9) | 38 (2.9) |
Smoking, n (%) | 462 (28.3) | 261 (29.2) | 374 (30.7) | 429 (31.5) | 389 (29.8) |
Drinking, n (%) | 641 (39.2) | 345 (38.6) | 473 (38.9) | 490 (36.0) | 444 (34.0) * |
Marital status | 1557 (95.2) | 837 (93.5) | 1133 (93.0) * | 1246 (91.4) * | 1164 (89.2) * |
Hukou status, n (%) | |||||
Rural | 1207 (77.7) | 645 (76.4) | 898 (77.2) | 1015 (78.7) | 965 (78.6) |
Urban | 347 (22.3) | 199 (23.6) | 265 (22.8) | 274 (21.3) | 263 (21.4) |
Self-reported good health status, n (%) | 243 (14.9) | 115 (12.9) | 134 (11.0) | 167 (12.2) | 128 (9.8) * |
Good health status in childhood (self-reported), n (%) | 315 (19.5) | 182 (20.6) | 246 (20.4) | 248 (18.4) | 243 (18.9) |
Depression, median (IQR) | 6 (3, 11) | 6 (3, 11) | 6 (3, 11) | 6 (3, 11) | 6 (3, 12) * |
ADL-impaired, n (%) | 184 (11.3) | 128 (14.3) | 206 (16.9) * | 215 (15.8) * | 283 (21.7) * |
Hypertension, n (%) | 391 (26.2) | 248 (30.9) | 343 (30.6) | 400 (31.7) * | 456 (37.6) * |
Diabetes, n (%) | 123 (8.4) | 90 (11.2) | 122 (11.0) | 128 (10.2) | 136 (11.4) |
Dyslipidemia, n (%) | 268 (18.4) | 177 (22.5) | 223 (20.3) | 250 (20.1) | 256 (21.8) |
Heart disease, n (%) | 196 (13.2) | 128 (15.9) | 200 (18.0) * | 223 (17.7) * | 246 (20.4) * |
Unexposed | Fetal Exposed | Childhood-Exposed | |||
---|---|---|---|---|---|
Early Childhood | Mid Childhood | Late Childhood | |||
TICS (range: 0–10) | 7.1 ± 2.6 | 6.7 ± 2.7 * | 6.5 ± 2.8 * | 6.6 ± 2.8 * | 6.2 ± 2.9 * |
Word recall (range: 0–10) | 4.0 ± 1.7 | 3.7 ± 1.7 * | 3.4 ± 1.8 * | 3.4 ± 1.7 * | 3.3 ± 1.7 * |
Draw pentagons (binary: 0/1) | 1257 (77.4%) | 652 (73.1%) | 809 (67.1%) * | 873 (64.8%) * | 778 (60.3%) * |
General cognition (range: 0–21) | 11.9 ± 3.7 | 11.2 ± 3.9 * | 10.7 ± 4.0 * | 10.7 ± 4.0 * | 10.2 ± 4.2 * |
Unexposed | Fetal Exposed | Childhood-Exposed | |||
---|---|---|---|---|---|
Early Childhood | Mid Childhood | Late Childhood | |||
TICS (range: 0–10) | |||||
Coef. | Ref. | −0.52 (−0.93, −0.10) | 0.22 (−0.46, 0.90) | 0.33 (−0.20, 0.87) | 0.01 (−0.40, 0.38) |
p | 0.015 * | 0.518 | 0.225 | 0.972 | |
Word recall (range: 0–10) | |||||
Coef. | Ref. | −0.46 (−0.74, −0.19) | −0.56 (−1.00, −0.11) | −0.46 (−0.81, −0.11) | −0.30 (−0.55, −0.04) |
p | 0.001 * | 0.014 * | 0.010 * | 0.022 * | |
Draw pentagons (binary: 0/1) | |||||
Coef. | Ref. | −0.40 (−0.83, 0.03) | −0.76 (−1.40, −0.12) | −0.66 (−1.16, −0.16) | −0.75 (−1.13, −0.37) |
p | 0.066 | 0.020 * | 0.010 * | < 0.001 * | |
General cognition (range: 0–21) | |||||
Coef. | Ref. | −1.05 (−1.64, −0.47) | −0.75 (−1.71, 0.21) | −0.41 (−1.17, 0.34) | −0.54 (−1.08, 0.01) |
p | < 0.001 * | 0.124 | 0.282 | 0.053 |
Unexposed | Fetal-Exposed | Childhood-Exposed | |||
---|---|---|---|---|---|
Early Childhood | Mid Childhood | Late Childhood | |||
TICS | |||||
Severely | Ref. | −0.13 (−0.81, 0.55) | −0.47 (−1.50, 0.57) | −0.20 (−1.01, 0.61) | 0.01 (−0.59, 0.60) |
p | 0.707 | 0.375 | 0.629 | 0.980 | |
Less | Ref. | −0.77 (−1.29, −0.24) | 0.79 (−0.12, 1.68) | 0.73 (−0.02, 1.44) | −0.00 (−0.51, 0.51) |
p | 0.005 * | 0.090 | 0.043 * | 0.996 | |
Word recall | |||||
Severely | Ref. | −0.48 (−0.94, −0.02) | −0.95 (−1.65, −0.26) | −0.89 (−1.44, −0.35) | −0.76 (−1.16, −0.36) |
p | 0.039 * | 0.007 * | 0.001 * | <0.001 * | |
Less | Ref. | −0.43 (−0.77, −0.09) | −0.27 (−0.85, 0.31) | −0.16 (−0.62, 0.30) | 0.02 (−0.31, 0.35) |
p | 0.013 * | 0.355 | 0.491 | 0.905 | |
Draw pentagons | |||||
Severely | Ref. | −0.07 (−0.19, 0.05) | −0.19 (−0.37, −0.01) | −0.23 (−0.37, −0.08) | −0.22 (−0.32, −0.11) |
p | 0.239 | 0.041 * | 0.002 * | <0.001 * | |
Less | Ref. | −0.05 (−0.15, 0.04) | −0.09 (−0.25, 0.07) | −0.04 (−0.16, 0.09) | −0.07 (−0.16, 0.02) |
p | 0.254 | 0.253 | 0.558 | 0.124 | |
General cognition | |||||
Severely | Ref. | −0.69 (−1.67, 0.28) | −1.75 (-3.22, −0.28) | −1.48 (-2.64, −0.32) | −1.09 (−1.94, −0.25) |
p | 0.162 | 0.020 * | 0.012 * | 0.011 * | |
Less | Ref. | −1.26 (−2.00, −0.52) | −0.00 (−1.26, 1.26) | 0.36 (−0.64, 1.34) | −0.14 (−0.85, 0.57) |
p | 0.001 * | 1.00 | 0.487 | 0.703 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, H.; Lai, X.; Mahmoudi, E.; Fang, H. Early-Life Exposure to the Chinese Famine and Risk of Cognitive Decline. J. Clin. Med. 2019, 8, 484. https://doi.org/10.3390/jcm8040484
Rong H, Lai X, Mahmoudi E, Fang H. Early-Life Exposure to the Chinese Famine and Risk of Cognitive Decline. Journal of Clinical Medicine. 2019; 8(4):484. https://doi.org/10.3390/jcm8040484
Chicago/Turabian StyleRong, Hongguo, Xiaozhen Lai, Elham Mahmoudi, and Hai Fang. 2019. "Early-Life Exposure to the Chinese Famine and Risk of Cognitive Decline" Journal of Clinical Medicine 8, no. 4: 484. https://doi.org/10.3390/jcm8040484
APA StyleRong, H., Lai, X., Mahmoudi, E., & Fang, H. (2019). Early-Life Exposure to the Chinese Famine and Risk of Cognitive Decline. Journal of Clinical Medicine, 8(4), 484. https://doi.org/10.3390/jcm8040484