Sex and Heart Failure with Preserved Ejection Fraction: From Pathophysiology to Clinical Studies
Abstract
:1. Introduction
2. Epidemiology
3. Pathophysiology
3.1. Hormonal Differences
3.2. Bio-Hormonal Systems
3.3. Cardiovascular Risk Factors
3.3.1. Hypertension
3.3.2. Obesity
3.3.3. Diabetes and Insulin Resistance
3.3.4. Coronary Artery Disease
3.3.5. Atrial Fibrillation
3.4. Race
3.5. Other Risk Factors
4. Clinical Studies
4.1. Hemodynamic Changes and Cardiovascular Remodeling
4.2. Outcomes
5. Treatment
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Després, J.P.; Fullerton, H.J.; et al. Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation 2016, 133, e38–e360. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.; Mulvagh, S.L.; Bairey Merz, C.N.; Buring, J.E.; Manson, J.E. Cardiovascular disease in women: Clinical perspectives. Circ. Res. 2016, 118, 1273–1293. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, R.S.; Tu, J.V.; Lee, D.S.; Austin, P.C.; Fang, J.; Haouzi, A.; Gong, Y.; Liu, P.P. Outcome of heart failure with preserved ejection fraction in a population-based study. N. Engl. J. Med. 2006, 355, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Devereux, R.B.; Roman, M.J.; Liu, J.E.; Welty, T.K.; Lee, E.T.; Rodeheffer, R.; Fabsitz, R.R.; Howard, B.V. Congestive heart failure despite normal left ventricular systolic function in a population-based sample: The Strong Heart Study. Am. J. Cardiol. 2000, 86, 1090–1096. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart disease and stroke statistics-2018 update: A report from the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef] [PubMed]
- Goyal, P.; Paul, T.; Almarzooq, Z.I.; Peterson, J.C.; Krishnan, U.; Swaminathan, R.V.; Feldman, D.N.; Wells, M.T.; Karas, M.G.; Sobol, I.; et al. Sex- and race-related differences in characteristics and outcomes of hospitalizations for heart failure with preserved ejection fraction. J. Am. Heart Assoc. 2017, 6, e003330. [Google Scholar] [CrossRef] [PubMed]
- Harada, E.; Mizuno, Y.; Kugimiya, F.; Shono, M.; Maeda, H.; Yano, N.; Yasue, H. Sex differences in heart failure with preserved ejection fraction reflected by B-type natriuretic peptide level. Am. J. Med. Sci. 2018, 356, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Duca, F.; Zotter-Tufaro, C.; Kammerlander, A.A.; Aschauer, S.; Binder, C.; Mascherbauer, J.; Bonderman, D. Gender-related differences in heart failure with preserved ejection fraction. Sci. Rep. 2018, 8, 1080. [Google Scholar] [CrossRef] [PubMed]
- Merrill, M.; Sweitzer, N.K.; Lindenfeld, J.; Kao, D.P. Sex differences in outcomes and responses to spironolactone in heart failure with preserved ejection fraction: A secondary analysis of TOPCAT Trial. JACC Heart Fail. 2019, 7, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Omar, W.; Ayers, C.; LaMonte, M.; Klein, L.; Allen, N.B.; Kuller, L.H.; Greenland, P.; Eaton, C.B.; Gottdiener, J.S.; et al. Sex and race differences in lifetime risk of heart failure with preserved ejection fraction and heart failure with reduced ejection fraction. Circulation 2018, 137, 1814–1823. [Google Scholar] [CrossRef] [PubMed]
- Subramanya, V.; Zhao, D.; Ouyang, P.; Lima, J.A.; Vaidya, D.; Ndumele, C.E.; Bluemke, D.A.; Shah, S.J.; Guallar, E.; Nwabuo, C.C.; et al. Sex hormone levels and change in left ventricular structure among men and post-menopausal women: The Multi-Ethnic Study of Atherosclerosis (MESA). Maturitas 2018, 108, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Guallar, E.; Ouyang, P.; Subramanya, V.; Vaidya, D.; Ndumele, C.E.; Lima, J.A.; Allison, M.A.; Shah, S.J.; Bertoni, A.G.; et al. Endogenous sex hormones and incident cardiovascular disease in post-menopausal women. J. Am. Coll. Cardiol. 2018, 71, 2555–2566. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Gupte, A.A. The role of estrogen in cardiac metabolism and diastolic function. Methodist Debakey Cardiovasc. J. 2017, 13, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Atucha, A.; Izagirre, A.; Fraile-Bermúdez, A.B.; Kortajarena, M.; Larrinaga, G.; Martinez-Lage, P.; Echevarría, E.; Gil, J. Sex differences in the aging pattern of renin-angiotensin system serum peptidases. Biol. Sex Differ. 2017, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Toering, T.J.; Gant, C.M.; Visser, F.W.; van der Graaf, A.M.; Laverman, G.D.; Danser, A.H.J.; Faas, M.M.; Navis, G.; Lely, A.T. Sex differences in renin-angiotensin-aldosterone system affect extracellular volume in healthy subjects. Am. J. Physiol. Renal. Physiol. 2018, 314, F873–F878. [Google Scholar] [CrossRef] [PubMed]
- Chinnaiyan, K.M.; Alexander, D.; McCullough, P.A. Role of angiotensin II in the evolution of diastolic heart failure. J. Clin. Hypertens. 2005, 7, 740–747. [Google Scholar] [CrossRef]
- Gregori, M.; Tocci, G.; Marra, A.; Pignatelli, G.; Santolamazza, C.; Befani, A.; Ciavarella, G.M.; Ferrucci, A.; Paneni, F. Inadequate RAAS suppression is associated with excessive left ventricular mass and systo-diastolic dysfunction. Clin. Res. Cardiol. 2013, 102, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Usselman, C.W.; Steinback, C.D.; Shoemaker, J.K. Effects of one’s sex and sex hormones on sympathetic responses to chemoreflex activation. Exp. Physiol. 2016, 101, 362–367. [Google Scholar] [CrossRef]
- Hinojosa-Laborde, C.; Chapa, I.; Lange, D.; Haywood, J.R. Gender differences in sympathetic nervous system regulation. Clin. Exp. Pharmacol. Physiol. 1999, 26, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Grassi, G.; Seravalle, G.; Quarti-Trevano, F.; Dell’Oro, R.; Arenare, F.; Spaziani, D.; Mancia, G. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension 2009, 53, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.; Sivananthan, M.U.; Ball, S.G.; Mackintosh, A.F.; Mary, D.A.; Greenwood, J.P. Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation 2007, 115, 1999–2005. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M.; Cuspidi, C.; Frydas, A.; Grassi, G. The role of arterial hypertension in development heart failure with preserved ejection fraction: Just a risk factor or something more? Heart Fail Rev. 2018, 23, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M.; Cuspidi, C. Obesity and heart failure with preserved ejection fraction: A paradox or something else? Heart Fail. Rev. 2019, 24, 379–385. [Google Scholar] [CrossRef] [PubMed]
- McHugh, K.; DeVore, A.D.; Wu, J.; Matsouaka, R.A.; Fonarow, G.C.; Heidenreich, P.A.; Yancy, C.W.; Green, J.B.; Altman, N.; Hernandez, A.F. Heart failure with preserved ejection fraction and diabetes: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 73, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W.J.; Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Florijn, B.W.; Bijkerk, R.; van der Veer, E.P.; van Zonneveld, A.J. Gender and cardiovascular disease: Are sex-biased microRNA networks a driving force behind heart failure with preserved ejection fraction in women? Cardiovasc. Res. 2018, 114, 210–225. [Google Scholar] [CrossRef] [PubMed]
- Tromp, J.; Teng, T.H.; Tay, W.T.; Hung, C.L.; Narasimhan, C.; Shimizu, W.; Park, S.W.; Liew, H.B.; Ngarmukos, T.; Reyes, E.B.; et al. Heart failure with preserved ejection fraction in Asia. Eur. J. Heart Fail. 2019, 21, 23–36. [Google Scholar] [CrossRef]
- Levy, D.; Larson, M.G.; Vasan, R.S.; Kannel, W.B.; Ho, K.K. The progression from hypertension to congestive heart failure. JAMA 1996, 275, 1557–1562. [Google Scholar] [CrossRef]
- Eaton, C.B.; Pettinger, M.; Rossouw, J.; Martin, L.W.; Foraker, R.; Quddus, A.; Liu, S.; Wampler, N.S.; Hank Wu, W.C.; Manson, J.E.; et al. Risk factors for incident hospitalized heart failure with preserved versus reduced ejection fraction in a multiracial cohort of postmenopausal women. Circ. Heart Fail. 2016, 9, e002883. [Google Scholar] [CrossRef]
- Chester, R.; Sander, G.; Fernandez, C.; Chen, W.; Berenson, G.; Giles, T. Women have significantly greater difference between central and peripheral arterial pressure compared with men: The Bogalusa Heart Study. J. Am. Soc. Hypertens. 2013, 7, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Kuch, B.; Muscholl, M.; Luchner, A.; Döring, A.; Riegger, G.A.; Schunkert, H.; Hense, H.W. Gender specific differences in left ventricular adaptation to obesity and hypertension. J. Hum. Hypertens. 1998, 12, 685–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higashi, H.; Okayama, H.; Saito, M.; Morioka, H.; Aono, J.; Yoshii, T.; Hiasa, G.; Sumimoto, T.; Nishimura, K.; Inoue, K.; et al. Relationship between augmentation index and left ventricular diastolic function in healthy women and men. Am. J. Hypertens. 2013, 26, 1280–1286. [Google Scholar] [CrossRef] [PubMed]
- Mengden, T.; Weber, T. “Little Old Ladies’ Heart”—Ventriculo-arterial coupling in women with isolated systolic hypertension and diastolic dysfunction. Dtsch. Med. Wochenschr. 2019, 144, 561–567. [Google Scholar] [PubMed]
- Savji, N.; Meijers, W.C.; Bartz, T.M.; Bhambhani, V.; Cushman, M.; Nayor, M.; Kizer, J.R.; Sarma, A.; Blaha, M.J.; Gansevoort, R.T.; et al. The association of obesity and cardiometabolic traits with incident HFpEF and HFrEF. JACC Heart Fail. 2018, 6, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Haykowsky, M.J.; Nicklas, B.J.; Brubaker, P.H.; Hundley, W.G.; Brinkley, T.E.; Upadhya, B.; Becton, J.T.; Nelson, M.D.; Chen, H.; Kitzman, D.W. Regional Adipose Distribution and its relationship to exercise intolerance in older obese patients who have heart failure with preserved ejection fraction. JACC Heart Fail. 2018, 6, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Nakada, Y.; Kawakami, R.; Nakano, T.; Takitsume, A.; Nakagawa, H.; Ueda, T.; Nishida, T.; Onoue, K.; Soeda, T.; Okayama, S.; et al. Sex differences in clinical characteristics and long-term outcome in acute decompensated heart failure patients with preserved and reduced ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H813–H820. [Google Scholar] [CrossRef] [Green Version]
- Gori, M.; Lam, C.S.; Gupta, D.K.; Santos, A.B.; Cheng, S.; Shah, A.M.; Claggett, B.; Zile, M.R.; Kraigher-Krainer, E.; Pieske, B.; et al. Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2014, 16, 535–542. [Google Scholar] [CrossRef]
- Shah, S.J.; Lam, C.S.P.; Svedlund, S.; Saraste, A.; Hage, C.; Tan, R.S.; Beussink-Nelson, L.; Fermer, M.L.; Broberg, M.A.; Gan, L.M.; et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur. Heart J. 2018, 39, 3439–3450. [Google Scholar] [CrossRef]
- Seidelmann, S.B.; Claggett, B.; Bravo, P.E.; Gupta, A.; Farhad, H.; Klein, B.E.; Klein, R.; Di Carli, M.; Solomon, S.D. Retinal vessel calibers in predicting long-term cardiovascular outcomes: The Atherosclerosis Risk in Communities Study. Circulation 2016, 134, 1328–1338. [Google Scholar] [CrossRef]
- Yoshida, K.; Obokata, M.; Kurosawa, K.; Sorimachi, H.; Kurabayashi, M.; Negishi, K. Effect of sex differences on the association between stroke risk and left atrial anatomy or mechanics in patients with atrial fibrillation. Circ. Cardiovasc. Imaging 2016, 9, e004999. [Google Scholar] [CrossRef]
- Meyer, S.; Brouwers, F.P.; Voors, A.A.; Hillege, H.L.; de Boer, R.A.; Gansevoort, R.T.; van der Harst, P.; Rienstra, M.; van Gelder, I.C.; van Veldhuisen, D.J.; et al. Sex differences in new-onset heart failure. Clin. Res. Cardiol. 2015, 104, 342–350. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, W.T.; Sandesara, P.; Hammadah, M.; Venkatesh, S.; Samman-Tahhan, A.; Kelli, H.M.; Soliman, E.Z. Gender differences in the risk of adverse outcomes in patients with atrial fibrillation and heart failure with preserved ejection fraction. Am. J. Cardiol. 2017, 119, 1785–1790. [Google Scholar] [CrossRef] [PubMed]
- Lam, C.S.; Rienstra, M.; Tay, W.T.; Liu, L.C.; Hummel, Y.M.; van der Meer, P.; de Boer, R.A.; Van Gelder, I.C.; van Veldhuisen, D.J.; Voors, A.A.; et al. Atrial fibrillation in heart failure with preserved ejection fraction: Association with exercise capacity, left ventricular filling pressures, natriuretic peptides, and left atrial volume. JACC Heart Fail. 2017, 5, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Kajimoto, K.; Minami, Y.; Sato, N.; Otsubo, S.; Kasanuki, H.; Investigators of the Acute Decompensated Heart Failure Syndromes (ATTEND) Registry. Gender differences in anemia and survival in patients hospitalized for acute decompensated heart failure with preserved or reduced ejection fraction. Am. J. Cardiol. 2017, 120, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Saiki, H.; Petersen, I.A.; Scott, C.G.; Bailey, K.R.; Dunlay, S.M.; Finley, R.R.; Ruddy, K.J.; Yan, E.; Redfield, M.M. Risk of heart failure with preserved ejection fraction in older women after contemporary radiotherapy for breast cancer. Circulation 2017, 135, 1388–1396. [Google Scholar] [CrossRef] [PubMed]
- Tromp, J.; Westenbrink, B.D.; Ouwerkerk, W.; van Veldhuisen, D.J.; Samani, N.J.; Ponikowski, P.; Metra, M.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; et al. Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction. J. Am. Coll. Cardiol. 2018, 72, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Beale, A.L.; Nanayakkara, S.; Segan, L.; Mariani, J.A.; Maeder, M.T.; van Empel, V.; Vizi, D.; Evans, S.; Lam, C.S.P.; Kaye, D.M. Sex differences in heart failure with preserved ejection fraction pathophysiology: A detailed invasive hemodynamic and echocardiographic analysis. JACC Heart Fail. 2019, 7, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Belyavskiy, E.; Morris, D.A.; Url-Michitsch, M.; Verheyen, N.; Meinitzer, A.; Radhakrishnan, A.K.; Kropf, M.; Frydas, A.; Ovchinnikov, A.G.; Schmidt, A.; et al. Diastolic stress test echocardiography in patients with suspected heart failure with preserved ejection fraction: A pilot study. ESC Heart Fail. 2019, 6, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Zsilinszka, R.; Shrader, P.; DeVore, A.D.; Hardy, N.C.; Mentz, R.J.; Pang, P.S.; Peacock, W.F.; Fonarow, G.C.; Hernandez, A.F. Sex differences in the management and outcomes of heart failure with preserved ejection fraction in patients presenting to the emergency department with acute heart failure. J. Card. Fail. 2016, 22, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Hsich, E.M.; Grau-Sepulveda, M.V.; Hernandez, A.F.; Peterson, E.D.; Schwamm, L.H.; Bhatt, D.L.; Fonarow, G.C. Sex differences in in-hospital mortality in acute decompensated heart failure with reduced and preserved ejection fraction. Am. Heart J. 2012, 163, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M.; Cuspidi, C.; Grassi, G.; Ivanovic, B. Gender-specific therapeutic approach in arterial hypertension—Challenges ahead. Pharmacol. Res. 2019, 141, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Fukuta, H.; Goto, T.; Wakami, K.; Ohte, N. The effect of beta-blockers on mortality in heart failure with preserved ejection fraction: A meta-analysis of observational cohort and randomized controlled studies. Int. J. Cardiol. 2017, 228, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Fonarow, G.C.; Khan, H.; Greene, S.J.; Anker, S.D.; Gheorghiade, M.; Butler, J. Renin-angiotensin blockade in heart failure with preserved ejection fraction: A systematic review and meta-analysis. ESC Heart Fail. 2017, 4, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Kosmala, W.; Rojek, A.; Przewlocka-Kosmala, M.; Wright, L.; Mysiak, A.; Marwick, T.H. Effect of aldosterone antagonism on exercise tolerance in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol. 2016, 68, 1823–1834. [Google Scholar] [CrossRef] [PubMed]
- Goliasch, G.; Pavo, N.; Zotter-Tufaro, C.; Kammerlander, A.; Duca, F.; Mascherbauer, J.; Bonderman, D. Soluble neprilysin does not correlate with outcome in heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2016, 18, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Rizkala, A.R.; Lefkowitz, M.P.; Shi, V.C.; Gong, J.; Anavekar, N.; Anker, S.D.; Arango, J.L.; Arenas, J.L.; Atar, D.; et al. Baseline characteristics of patients with heart failure and preserved ejection fraction in the PARAGON-HF Trial. Circ. Heart Fail. 2018, 11, e004962. [Google Scholar] [CrossRef]
Reference | Sample Size | Women/Men (%) | Study Type | Main Findings |
---|---|---|---|---|
Goyal et al. [6] | 1,889,608 pts hospitalized for HFpEF | 1,208,763 (64) | Short follow-up | Arterial hypertension, obesity, and anemia were significantly more prevalent among women than men with HFpEF. Diabetes was more prevalent in women younger than 75 years and in men older than 75 years. Atrial fibrillation and coronary artery disease were more prevalent in men. |
Harada et al. [7] | 733 HFpEF pts | 529 (72) | Cross-sectional | Obesity (BMI > 25 kg/m2), diabetes, coronary artery disease and atrial fibrillatio were more frequent in men than in women with HfpEF. |
Duca et al. [8] | 260 HFpEF pts | 181 (70) | 30 month follow-up | No difference in cardiovascular risk factors between women and men with HFpEF, except smoking and chronic obstructive lung disease. |
Pandey et al. [10] | 12,417 subjects | 6854 (55.2) | 11.6 year follow-up | The lifetime risk of HFpEF did not differ between women and men. |
Eaton et al. [29] | 42,170 postmenopausal women | All | 13.2 year follow-up | Hypertension, diabetes, and obesity were independent predictors only of HFpEF, but not HFrEF. The white race, and not African American and Hispanic, was associated with both, HFpEF and HFrEF. |
Reference | Sample Size | Women/Men (%) | Study Type | Main Findings |
---|---|---|---|---|
Beale et al. [47] | 161 HFpEF pts | 114 (71) | Cross-sectional | Women with HFpEF had worse diastolic reserve. LV filling pressures measured by echocardiographic and invasive measurements at exercise were higher than in men. Women showed lower systemic and pulmonary arterial compliance, as well as worse peripheral oxygen kinetics. |
Harada et al. [7] | 733 HFpEF pts | 529 (72) | Cross-sectional | Females with HFpEF had smaller LV diameters and better LVEF. LV filling pressure was similar between sexes. Left atrium was larger in men. Concentric LV hypertrophy was predominant in women, and eccentric in men with HFpEF. |
Duca et al. [8] | 260 HFpEF pts | 181 (70) | 30 month follow-up | No difference in invasive hemodynamic parameters between women and men with HFpEF. LV mass index was significantly higher in men, and LVEF measured by CMR was significantly higher in women. |
Gori et al. [37] | 279 HFpEF pts | 159 (57) | 3 year follow-up | Indexed LV mass and volumes were significantly lower in women with HFpEF. Indexed left atrial volume, LVEF and LV filling pressure were significantly higher in men. There was no difference in LV longitudinal, circumferential, and radial strain between women and men with HFpEF. Effective arterial elastance, LV end systolic elastance and diastolic stiffness were higher among women with HFpEF. |
Hormonal | Bio-Hormonal | Risk Factors | Race | Therapy |
---|---|---|---|---|
Decreased estradiol | Higher angiotensin-converting enzyme serum activity in women | Obesity | White race, and not African American and Hispanic, was associated with HFpEF | Spironolactone-associated reduction in all-cause mortality was observed only in women |
Hypertension | ||||
Higher testosterone | Increased sympathetic nervous system activity in women | Diabetes | Obesity was reported as more important risk factor in African American women | Sex-specific differences regarding beta blockers and renin-angiotensin inhibitors in HFpEF have not been investigated so far |
Coronary heart disease | ||||
Decreased nitric oxide bioavailability | Atrial fibrillation | |||
Anemia | ||||
Increased prostaglandin and prostacyclin levels | Chronic obstructive pulmonary disease | |||
Oxidative stress | Renal dysfunction | |||
Chemo- and radiotherapy |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tadic, M.; Cuspidi, C.; Plein, S.; Belyavskiy, E.; Heinzel, F.; Galderisi, M. Sex and Heart Failure with Preserved Ejection Fraction: From Pathophysiology to Clinical Studies. J. Clin. Med. 2019, 8, 792. https://doi.org/10.3390/jcm8060792
Tadic M, Cuspidi C, Plein S, Belyavskiy E, Heinzel F, Galderisi M. Sex and Heart Failure with Preserved Ejection Fraction: From Pathophysiology to Clinical Studies. Journal of Clinical Medicine. 2019; 8(6):792. https://doi.org/10.3390/jcm8060792
Chicago/Turabian StyleTadic, Marijana, Cesare Cuspidi, Sven Plein, Evgeny Belyavskiy, Frank Heinzel, and Maurizio Galderisi. 2019. "Sex and Heart Failure with Preserved Ejection Fraction: From Pathophysiology to Clinical Studies" Journal of Clinical Medicine 8, no. 6: 792. https://doi.org/10.3390/jcm8060792
APA StyleTadic, M., Cuspidi, C., Plein, S., Belyavskiy, E., Heinzel, F., & Galderisi, M. (2019). Sex and Heart Failure with Preserved Ejection Fraction: From Pathophysiology to Clinical Studies. Journal of Clinical Medicine, 8(6), 792. https://doi.org/10.3390/jcm8060792