Intestinal Fatty Acid Binding Protein, a Biomarker of Intestinal Barrier, is Associated with Severity of Psoriasis
Abstract
:1. Introduction
2. Experimental Section
2.1. Patients
2.2. Intestinal Fatty Acid Binding Protein (I-FABP) Measurement
2.3. Statistical Analysis
2.4. Ethics
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Ipci, K.; Altintoprak, N.; Muluk, N.B.; Senturk, M.; Cingi, C. The possible mechanisms of the human microbiome in allergic diseases. Eur. Arch. Otorhinolaryngol. 2017, 274, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Sender, R.; Fuchs, S.; Milo, R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell 2016, 164, 337–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidalgo-Cantabrana, C.; Gomez, J.; Delgado, S.; Requena-Lopez, S.; Queiro-Silva, R.; Margolles, A.; Coto, E.; Sanchez, B.; Coto-Segura, P. Gut microbiota dysbiosis in a cohort of psoriasis patients. Br. J. Dermatol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Lee, E.; Park, Y.M.; Hong, S.J. Microbiome in the Gut-Skin Axis in Atopic Dermatitis. Allergy Asthma Immunol. Res. 2018, 10, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Parodi, A.; Paolino, S.; Greco, A.; Drago, F.; Mansi, C.; Rebora, A.; Parodi, A.; Savarino, V. Small intestinal bacterial overgrowth in rosacea: clinical effectiveness of its eradication. Clin. Gastroenterol. Hepatol. 2008, 6, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Patrone, V.; Puglisi, E.; Cardinali, M.; Schnitzler, T.S.; Svegliati, S.; Festa, A.; Gabrielli, A.; Morelli, L. Gut microbiota profile in systemic sclerosis patients with and without clinical evidence of gastrointestinal involvement. Sci. Rep. 2017, 7, 14874. [Google Scholar] [CrossRef] [PubMed]
- Salem, I.; Ramser, A.; Isham, N.; Ghannoum, M.A. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front. Microbiol. 2018, 9, 1459. [Google Scholar] [CrossRef] [Green Version]
- Camilleri, M. Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 2019, 68, 1516–1526. [Google Scholar] [CrossRef]
- Mirza, A.; Mao-Draayer, Y. The gut microbiome and microbial translocation in multiple sclerosis. Clin. Immunol. 2017, 183, 213–224. [Google Scholar] [CrossRef]
- Sikora, M.; Chrabaszcz, M.; Maciejewski, C.; Zaremba, M.; Waskiel, A.; Olszewska, M.; Rudnicka, L. Intestinal barrier integrity in patients with plaque psoriasis. J. Derm. 2018, 45, 1468–1470. [Google Scholar] [CrossRef]
- Jaworska, K.; Huc, T.; Samborowska, E.; Dobrowolski, L.; Bielinska, K.; Gawlak, M.; Ufnal, M. Hypertension in rats is associated with an increased permeability of the colon to TMA, a gut bacteria metabolite. PLoS ONE 2017, 12, e0189310. [Google Scholar] [CrossRef] [PubMed]
- Damms-Machado, A.; Louis, S.; Schnitzer, A.; Volynets, V.; Rings, A.; Basrai, M.; Bischoff, S.C. Gut permeability is related to body weight, fatty liver disease, and insulin resistance in obese individuals undergoing weight reduction. Am. J. Clin. Nutr. 2017, 105, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.M.; Brummer, R.J.; Derrien, M.; MacDonald, T.T.; Troost, F.; Cani, P.D.; Theodorou, V.; Dekker, J.; Meheust, A.; de Vos, W.M.; et al. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G171–G193. [Google Scholar] [CrossRef] [PubMed]
- Gajda, A.M.; Storch, J. Enterocyte fatty acid-binding proteins (FABPs): Different functions of liver and intestinal FABPs in the intestine. Prostaglandins Leukot. Essent. Fat. Acids 2015, 93, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Wiercinska-Drapalo, A.; Jaroszewicz, J.; Siwak, E.; Pogorzelska, J.; Prokopowicz, D. Intestinal fatty acid binding protein (I-FABP) as a possible biomarker of ileitis in patients with ulcerative colitis. Regul. Pept. 2008, 147, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Guzel, M.; Sozuer, E.M.; Salt, O.; Ikizceli, I.; Akdur, O.; Yazici, C. Value of the serum I-FABP level for diagnosing acute mesenteric ischemia. Surg. Today 2014, 44, 2072–2076. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sheng, L. Significance of dynamic evolution of TNF-alpha, IL-6 and intestinal fatty acid-binding protein levels in neonatal necrotizing enterocolitis. Exp. Med. 2018, 15, 1289–1292. [Google Scholar] [CrossRef]
- Sekino, M.; Funaoka, H.; Sato, S.; Okada, K.; Inoue, H.; Yano, R.; Matsumoto, S.; Ichinomiya, T.; Higashijima, U.; Matsumoto, S.; et al. Intestinal fatty acid-binding protein level as a predictor of 28–day mortality and bowel ischemia in patients with septic shock: A preliminary study. J. Crit. Care 2017, 42, 92–100. [Google Scholar] [CrossRef]
- Kupcinskas, J.; Gedgaudas, R.; Hartman, H.; Sippola, T.; Lindstrom, O.; Johnson, C.D.; Regner, S. Intestinal Fatty Acid Binding Protein as a Marker of Necrosis and Severity in Acute Pancreatitis. Pancreas 2018, 47, 715–720. [Google Scholar] [CrossRef]
- Kitai, T.; Kim, Y.H.; Kiefer, K.; Morales, R.; Borowski, A.G.; Grodin, J.L.; Tang, W.H.W. Circulating intestinal fatty acid-binding protein (I-FABP) levels in acute decompensated heart failure. Clin. Biochem. 2017, 50, 491–495. [Google Scholar] [CrossRef]
- Stehlikova, Z.; Kostovcik, M.; Kostovcikova, K.; Kverka, M.; Juzlova, K.; Rob, F.; Hercogova, J.; Bohac, P.; Pinto, Y.; Uzan, A.; et al. Dysbiosis of Skin Microbiota in Psoriatic Patients: Co-occurrence of Fungal and Bacterial Communities. Front. Microbiol. 2019, 10, 438. [Google Scholar] [CrossRef] [PubMed]
- March, D.S.; Marchbank, T.; Playford, R.J.; Jones, A.W.; Thatcher, R.; Davison, G. Intestinal fatty acid-binding protein and gut permeability responses to exercise. Eur. J. Appl. Physiol. 2017, 117, 931–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schellekens, D.H.; Grootjans, J.; Dello, S.A.; Van Bijnen, A.A.; Van Dam, R.M.; Dejong, C.H.; Derikx, J.P.; Buurman, W.A. Plasma intestinal fatty acid-binding protein levels correlate with morphologic epithelial intestinal damage in a human translational ischemia-reperfusion model. J. Clin. Gastroenterol. 2014, 48, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Agha, M.; Agha, R. The rising prevalence of obesity: Part A: Impact on public health. Int. J. Surg. Oncol. 2017, 2, e17. [Google Scholar] [CrossRef] [PubMed]
- Krasowska, D.; Adamczyk, M. Znaczenie otyłości w łuszczycy. Dermatol. Rev. Przegląd. Dermatol. 2016, 103, 303–308. [Google Scholar] [CrossRef]
- Budu-Aggrey, A.; Brumpton, B.; Tyrrell, J.; Watkins, S.; Modalsli, E.H.; Celis-Morales, C.; Ferguson, L.D.; Vie, G.A.; Palmer, T.; Fritsche, L.G.; et al. Evidence of a causal relationship between body mass index and psoriasis: A mendelian randomization study. PLoS Med. 2019, 16, e1002739. [Google Scholar] [CrossRef] [PubMed]
- Verdam, F.J.; Greve, J.W.; Roosta, S.; Van Eijk, H.; Bouvy, N.; Buurman, W.A.; Rensen, S.S. Small intestinal alterations in severely obese hyperglycemic subjects. J. Clin. Endocrinol. Metab. 2011, 96, E379–E383. [Google Scholar] [CrossRef]
- Nguyen, J.; Siksik, J.M.; Genser, L. Intestinal perforation secondary to strangulated internal hernia after Roux-en-Y gastric bypass. J. Visc. Surg. 2018, 155, 339–341. [Google Scholar] [CrossRef]
- Gummesson, A.; Carlsson, L.M.; Storlien, L.H.; Backhed, F.; Lundin, P.; Lofgren, L.; Stenlof, K.; Lam, Y.Y.; Fagerberg, B.; Carlsson, B. Intestinal permeability is associated with visceral adiposity in healthy women. Obesity 2011, 19, 2280–2282. [Google Scholar] [CrossRef]
- Alotaibi, H.A. Effects of Weight Loss on Psoriasis: A Review of Clinical Trials. Cureus 2018, 10, e3491. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.H.; Wang, Z.M.; Chen, S.Y. Neutrophil to lymphocyte ratio predict mortality and major adverse cardiac events in acute coronary syndrome: A systematic review and meta-analysis. Clin. Biochem. 2018, 52, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wei, Q.; Fan, J.; Cheng, S.; Ding, W.; Hua, Z. Prognostic role of the neutrophil-to-lymphocyte ratio in pancreatic cancer: A meta-analysis containing 8252 patients. Clin. Chim. Acta 2018, 479, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Erre, G.L.; Paliogiannis, P.; Castagna, F.; Mangoni, A.A.; Carru, C.; Passiu, G.; Zinellu, A. Meta-analysis of neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio in rheumatoid arthritis. Eur J. Clin. Investig. 2019, 49, e13037. [Google Scholar] [CrossRef] [PubMed]
- Paliogiannis, P.; Satta, R.; Deligia, G.; Farina, G.; Bassu, S.; Mangoni, A.A.; Carru, C.; Zinellu, A. Associations between the neutrophil-to-lymphocyte and the platelet-to-lymphocyte ratios and the presence and severity of psoriasis: a systematic review and meta-analysis. Clin. Exp. Med. 2019, 19, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Beygi, S.; Lajevardi, V.; Abedini, R. C-reactive protein in psoriasis: A review of the literature. J. Eur. Acad. Derm. Venereol. 2014, 28, 700–711. [Google Scholar] [CrossRef] [PubMed]
- Turina, M.C.; Landewe, R.; Baeten, D. Lessons to be learned from serum biomarkers in psoriasis and IBD—the potential role in SpA. Expert Rev. Clin. Immunol. 2017, 13, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Brandl, K.; Schnabl, B. Is intestinal inflammation linking dysbiosis to gut barrier dysfunction during liver disease? Expert Rev. Gastroenterol. Hepatol. 2015, 9, 1069–1076. [Google Scholar] [CrossRef]
- Thaiss, C.A.; Levy, M.; Grosheva, I.; Zheng, D.; Soffer, E.; Blacher, E.; Braverman, S.; Tengeler, A.C.; Barak, O.; Elazar, M.; et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science 2018, 359, 1376–1383. [Google Scholar] [CrossRef] [Green Version]
- Shin, W.; Kim, H.J. Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human gut inflammation-on-a-chip. Proc. Natl. Acad. Sci. USA 2018, 115, E10539–E10547. [Google Scholar] [CrossRef]
Control Group (n = 40) | Psoriasis (n = 80) | Statistical Significance | |
---|---|---|---|
Age (years) | 42.9 ± 12.7 | 42.5 ± 13.9 | 0.89 |
Sex, men, n (%) | 28 (70%) | 54 (67.5%) | 0.84 |
BMI (kg/m2) | 29.3 ± 6.1 | 29.8 ± 5.8 | 0.68 |
Smoking, n (%) | 21 (52.5%) | 38 (47.5%) | 0.70 |
Steatohepatitis, n (%) | 21 (52.5%) | 54 (67.5%) | 0.11 |
Psoriasis duration (years) | - | 10.5 ± 6.4 | - |
PASI score | - | 11.75 [7.45–16.8] | - |
Neutrophil to lymphocyte ratio (NLR) | 1.72 [1.36–2.11] | 2.59 [1.96–3.09] | <0.01 |
Glucose (mg/dL) | 87.9 ± 11.7 | 90.9 ± 10.5 | 0.78 |
Total cholesterol (mg/dL) | 181.6 ± 18.6 | 188.7 ± 33.5 | 0.97 |
LDL-cholesterol (mg/dL) | 106.8 ± 22.8 | 109.6 ± 36.2 | 0,76 |
HDL-cholesterol (mg/dL) | 48.1 ± 15.8 | 46.6 ± 11.5 | 0.72 |
Triglycerides (mg/dL) | 133.8 ± 45.7 | 143.8 ± 52.6 | 0.87 |
AST (U/L) | 26.1 ± 13.4 | 27.4 ± 15.1 | 0.67 |
ALT (U/L) | 32.8 ± 24.2 | 34.5 ± 24.8 | 0.75 |
GGT (U/L) | 48.2 ± 57.3 | 55.9 ± 73.9 | 0.64 |
Creatinine (mg/dL) | 0.84 ± 0.21 | 0.85 ± 0.19 | 0.90 |
eGFR, (mL/min/1.73 m2) | 91.3 ± 25.7 | 89.8 ± 24.6 | 0.78 |
CRP (mg/L) | 3.85 ± 4.8 | 4.03 ± 5.9 | 0.89 |
I-FABP (pg/mL) | 114.38 [51.60–241.60] | 243.00 [108.88–787.10] | <0.001 |
All (n = 80) | Normal Weight (n = 24) | Overweight (n = 25) | Obese (n = 31) | |||||
---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | |
Age (years) | −0.01 | 0.91 | 0.01 | 0.99 | −0.12 | 0.6 | 0.35 | 0.08 |
BMI (kg/m2) | 0.82 | <0.001 | 0.12 | 0.62 | −0.21 | 0.35 | 0.13 | 0.54 |
PASI score | 0.78 | <0.001 | 0.93 | <0.001 | 0.89 | <0.001 | 0.57 | <0.01 |
NLR | 0.62 | <0.001 | 0.58 | <0.01 | 0.45 | <0.05 | 0.53 | <0.01 |
Total cholesterol (mg/dL) | 0.11 | 0.42 | 0.07 | 0.78 | 0.17 | 0.5 | 0.04 | 0.86 |
LDL-cholesterol (mg/dL) | 0.13 | 0.32 | 0.11 | 0.69 | 0.03 | 0.91 | 0.06 | 0.8 |
HDL-cholesterol (mg/dL) | −0.27 | 0.35 | −0.51 | 0.64 | −0.02 | 0.95 | −0.03 | 0.9 |
Triglycerides (mg/dL) | 0.14 | 0.29 | 0.18 | 0.51 | 0.02 | 0.93 | 0.11 | 0.62 |
AST (U/L) | 0.15 | 0.28 | 0.25 | 0.34 | 0.24 | 0.36 | 0.32 | 0.14 |
ALT (U/L) | 0.15 | 0.28 | 0.28 | 0.3 | 0.21 | 0.41 | 0.18 | 0.41 |
GGT (U/L) | 0.18 | 0.18 | 0.43 | 0.11 | 0.12 | 0.64 | 0.09 | 0.67 |
Creatinine (mg/dL) | 0.28 | 0.14 | 0.04 | 0.87 | 0.18 | 0.49 | 0.37 | 0.09 |
CRP (mg/L) | 0.24 | 0.08 | 0.71 | 0.01 | 0.11 | 0.67 | 0.07 | 0.75 |
Q1 (n = 20) | Q2 (n = 20) | Q3 (n = 20) | Q4 (n = 20) | p | |
---|---|---|---|---|---|
Age (years) | 38.0 [32.5–55.5] | 43.0 [34.0–50.0] | 40.5 [33.0–54.5] | 39.5 [29.0–59.5] | 0.97 |
Sex, men/women, n (%) | 15/5 (75%/25%) | 13/7 (65%/35%) | 14/6 (70%/30%) | 12/8 (60%/40%) | 0.77 |
BMI (kg/m2) | 24.35 [22.95–25.09] | 26.50 [25.38–28.63] | 29.99 [27.75–31.72] | 32.74 [29.80–37.98] | <0.001 |
Smoking, n (%) | 8/12 (40%/60%) | 11/9 (55%/45%) | 10/10 (50%/50%) | 9/11 (45%/55%) | 0.79 |
Steatohepatitis, n (%) | 11/9 (55%/45%) | 13/7 (65%/35%) | 14/6 (70%/30%) | 16/4 (80%/20%) | 0.39 |
PASI score | 5.80 [2.05–9.45] | 9.05 [6.75–11.55] | 13.40 [11.55–15.25] | 18.70 [17.00–21.00] | <0.001 |
NLR | 1.79 [1.47–2.37] | 2.48 [1.85–2.66] | 2.67 [2.45–3.07] | 3.72 [2.88–4.52] | <0.001 |
Total cholesterol (mg/dL) | 175.0 [154.0–195.5] | 183.0 [157.0–200.0] | 185.0 [169.0–210.0] | 176.0 [162.0–205.0] | 0.67 |
LDL-cholesterol (mg/dL) | 104.4 +/− 33.0 | 109.4 +/− 38.3 | 118.2 +/− 23.0 | 114.2 +/− 28.60 | 0.71 |
HDL-cholesterol (mg/dL) | 46.5 [43.0–51.0] | 40.0 [39.0–42.0] | 45.0 [40.5–48.5] | 42.0 [38.0–45.0] | 0.07 |
Triglycerides (mg/dL) | 120.0 [100.5–148.0] | 122.0 [87.0–170.0] | 145.0 [101.0–190.0] | 133.0 [106.0–165.0] | 0.71 |
AST (U/L) | 23.5 [20.0–29.5] | 23.0 [21.0–26.0] | 21.0 [17.5–29.0] | 22.0 [17.0–24.0] | 0.66 |
ALT (U/L) | 26.5 [24.5–33.5] | 25.0 [19.0–50.0] | 29.0 [15.5–40.5] | 25.0 [19.0–30.0] | 0.53 |
GGT (U/L) | 30.0 [24.0–46.0] | 30.0 [24.0–44.0] | 30.5 [16.5–56.0] | 22.0 [16.0–36.0] | 0.5 |
Creatinine (mg/dL) | 0.76 +/− 0.15 | 0.82 +/− 0.13 | 0.95 +/− 0.23 | 0.88 +/− 0.23 | 0.25 |
CRP (mg/L) | 1.92 [0.59–4.30] | 2.40 [0.74–5.40] | 0.92 +/− 3.1 [1.04–5.07] | 3.62 [1.06–6.35] | 0.45 |
Model | I-FABP (per 100 pg/mL Increase) | OR | 95% CI | p Value |
---|---|---|---|---|
Model 1 | Adjusting for age and sex | 3.34 | 1.68–6.65 | <0.001 |
Model 2 | Adjusting for age, sex, BMI, smoking and steatohepatitis | 3.53 | 1.56–8.03 | <0.01 |
Model 3 | Adjusting for age, sex, BMI, smoking, steatohepatitis, creatinine, NLR and CRP | 3.47 | 1.20–10.07 | <0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, M.; Stec, A.; Chrabaszcz, M.; Waskiel-Burnat, A.; Zaremba, M.; Olszewska, M.; Rudnicka, L. Intestinal Fatty Acid Binding Protein, a Biomarker of Intestinal Barrier, is Associated with Severity of Psoriasis. J. Clin. Med. 2019, 8, 1021. https://doi.org/10.3390/jcm8071021
Sikora M, Stec A, Chrabaszcz M, Waskiel-Burnat A, Zaremba M, Olszewska M, Rudnicka L. Intestinal Fatty Acid Binding Protein, a Biomarker of Intestinal Barrier, is Associated with Severity of Psoriasis. Journal of Clinical Medicine. 2019; 8(7):1021. https://doi.org/10.3390/jcm8071021
Chicago/Turabian StyleSikora, Mariusz, Albert Stec, Magdalena Chrabaszcz, Anna Waskiel-Burnat, Michal Zaremba, Malgorzata Olszewska, and Lidia Rudnicka. 2019. "Intestinal Fatty Acid Binding Protein, a Biomarker of Intestinal Barrier, is Associated with Severity of Psoriasis" Journal of Clinical Medicine 8, no. 7: 1021. https://doi.org/10.3390/jcm8071021
APA StyleSikora, M., Stec, A., Chrabaszcz, M., Waskiel-Burnat, A., Zaremba, M., Olszewska, M., & Rudnicka, L. (2019). Intestinal Fatty Acid Binding Protein, a Biomarker of Intestinal Barrier, is Associated with Severity of Psoriasis. Journal of Clinical Medicine, 8(7), 1021. https://doi.org/10.3390/jcm8071021