The Etiology of Pancreatic Manifestations in Patients with Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Pancreatic Manifestations Accompanied by IBD
2.1. Asymptomatic Elevation of Pancreatic Enzymes
2.2. Acute Pancreatitis
2.3. Chronic Pancreatitis
2.4. Exocrine Pancreatic Insufficiency
2.5. Pancreatic Cancer
3. AP Accompanied by IBD
3.1. Idiopathic
3.2. Drugs
3.3. Gall Stones
3.4. Gastrointestinal Lesions on the Duodenum
3.5. Endoscopic Procedures
3.6. Primary Sclerosing Cholangitis
3.7. Autoimmune Pancreatitis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Molodecky, N.A.; Soon, I.S.; Rabi, D.M.; Ghali, W.A.; Ferris, M.; Chernoff, G.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Barkema, H.W.; et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012, 142, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Iida, T.; Yokoyama, Y.; Wagatsuma, K.; Hirayama, D.; Nakase, H. Impact of autophagy of innate immune cells on inflammatory bowel disease. Cells 2018, 8, E7. [Google Scholar] [CrossRef] [PubMed]
- Vavricka, S.R.; Schoepfer, A.; Scharl, M.; Lakatos, P.L.; Navarini, A.; Rogler, G. Extraintestinal manifestations of inflammatory bowel disease. Inflamm. Bowel Dis. 2015, 21, 1982–1992. [Google Scholar] [CrossRef] [PubMed]
- Rothfuss, K.S.; Stange, E.F.; Herrlinger, K.R. Extraintestinal manifestations and complications in inflammatory bowel diseases. World J. Gastroenterol. 2006, 12, 4819–4831. [Google Scholar] [CrossRef] [PubMed]
- Corica, D.; Romano, C. Renal involvement in inflammatory bowel diseases. J. Crohns. Colitis 2016, 10, 226–235. [Google Scholar] [CrossRef]
- Fine, S.; Nee, J.; Thakuria, P.; Duff, B.; Farraye, F.A.; Shah, S.A. Ocular, auricular, and oral manifestations of inflammatory bowel disease. Dig. Dis. Sci. 2017, 62, 3269–3279. [Google Scholar] [CrossRef]
- Duricova, D.; Sarter, H.; Savoye, G.; Leroyer, A.; Pariente, B.; Armengol-Debeir, L.; Bouguen, G.; Ley, D.; Turck, D.; Templier, C.; et al. Impact of extra-intestinal manifestations at diagnosis on disease outcome in pediatric- and elderly-onset Crohn’s disease: A French population-based study. Inflamm. Bowel Dis. 2018, 50, 903–909. [Google Scholar] [CrossRef]
- Pitchumoni, C.S.; Rubin, A.; Das, K. Pancreatitis in inflammatory bowel diseases. J. Clin. Gastroenterol. 2010, 44, 246–253. [Google Scholar] [CrossRef]
- Ball, W.P.; Baggenstoss, A.H.; Bargen, J.A. Pancreatic lesions associated with chronic ulcerative colitis. Arch. Pathol. 1950, 50, 347–358. [Google Scholar]
- Chapin, L.E.; Scudamore, H.H.; Baggenstoss, A.H.; Bargen, J.A. Regional enteritis: Associated visceral changes. Gastroenterology 1956, 30, 404–415. [Google Scholar] [CrossRef]
- Frey, C.F. Acute pancreatitis as a complication of ulcerative colitis and collagen disease. Univ. Mich. Med. Cent. J. 1967, 33, 18–21. [Google Scholar] [PubMed]
- Legge, D.A.; Hoffman, H.N., II; Carlson, H.C. Pancreatitis as a complication of regional enteritis of the duodenum. Gastroenterology 1971, 61, 834–837. [Google Scholar] [CrossRef]
- Seyrig, J.A.; Jian, R.; Modigliani, R.; Golfain, D.; Florent, C.; Messing, B.; Bitoun, A. Idiopathic pancreatitis associated with inflammatory bowel disease. Dig. Dis. Sci. 1985, 30, 1121–1126. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, S.J.; Korelitz, B.I. Pancreatitis and duodenopancreatic reflux in Crohn’s disease. Case report and review of the literature. J. Clin. Gastroenterol. 1988, 10, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Stöcker, W.; Otte, M.; Ulrich, S.; Normann, D.; Finkbeiner, H.; Stöcker, K.; Jantschek, G.; Scriba, P.C. Autoimmunity to pancreatic juice in Crohn’s disease. Results of an autoantibody screening in patients with chronic inflammatory bowel disease. Scand. J. Gastroenterol. 1987, 139, 41–52. [Google Scholar] [CrossRef]
- Børkje, B.; Vetvik, K.; Odegaard, S.; Schrumpf, E.; Larssen, T.B.; Kolmannskog, F. Chronic pancreatitis in patients with sclerosing cholangitis and ulcerative colitis. Scand. J. Gastroenterol. 1985, 20, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Heikius, B.; Niemelä, S.; Lehtola, J.; Karttunen, T.J. Elevated pancreatic enzymes in inflammatory bowel disease are associated with extensive disease. Am. J. Gastroenterol. 1999, 94, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Hegnhøj, J.; Hansen, C.P.; Rannem, T.; Søbirk, H.; Andersen, L.B.; Andersen, J.R. Pancreatic function in Crohn’s disease. Gut. 1990, 31, 1076–1079. [Google Scholar] [CrossRef]
- Katz, S.; Bank, S.; Greenberg, R.E.; Lendvai, S.; Lesser, M.; Napolitano, B. Hyperamylasemia in inflammatory bowel disease. J. Clin. Gastroenterol. 1988, 10, 627–630. [Google Scholar] [CrossRef]
- Bokemeyer, B. Asymptomatic elevation of serum lipase and amylase in conjunction with Crohn’s disease and ulcerative colitis. Zeitschrift für Gastroenterologie 2002, 40, 5–10. [Google Scholar] [CrossRef]
- Lankisch, P.G.; Apte, M.; Banks, P.A. Acute pancreatitis. Lancet 2015, 386, 85–96. [Google Scholar] [CrossRef]
- Van Dijk, S.M.; Hallensleben, N.D.L.; van Santvoort, H.C.; Fockens, P.; van Goor, H.; Bruno, M.J.; Besselink, M.G. Dutch pancreatitis study group. Acute pancreatitis: Recent advances through randomised trials. Gut 2017, 66, 2024–2032. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, H.H.; Fonager, K.; Sørensen, H.T.; Pedersen, L.; Dahlerup, J.F.; Steffensen, F.H. Risk of acute pancreatitis in patients with chronic inflammatory bowel disease. A Danish 16-year nationwide follow-up study. Scand. J. Gastroenterol 1999, 34, 199–201. [Google Scholar]
- Chen, Y.T.; Su, J.S.; Tseng, C.W.; Chen, C.C.; Lin, C.L.; Kao, C.H. Inflammatory bowel disease on the risk of acute pancreatitis: A population-based cohort study. J. Gastroenterol. Hepatol. 2016, 31, 782–787. [Google Scholar] [CrossRef]
- Fousekis, F.S.; Katsanos, K.H.; Theopistos, V.I.; Baltayiannis, G.; Kosmidou, M.; Glantzounis, G.; Christou, L.; Tsianos, E.V.; Christodoulou, D.K. Hepatobiliary and pancreatic manifestations in inflammatory bowel diseases: A referral center study. BMC Gastroenterol. 2019, 19, 48. [Google Scholar] [CrossRef]
- Kleeff, J.; Whitcomb, D.C.; Shimosegawa, T.; Esposito, I.; Lerch, M.M.; Gress, T.; Mayerle, J.; Drewes, A.M.; Rebours, V.; Akisik, F.; et al. Chronic pancreatitis. Nat. Rev. Dis. Primers 2017, 3, 17060. [Google Scholar] [CrossRef]
- Petrov, M.S.; Yadav, D. Global epidemiology and holistic prevention of pancreatitis. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 175–184. [Google Scholar] [CrossRef]
- Kirkegård, J.; Mortensen, F.V.; Cronin-Fenton, D. Chronic pancreatitis and pancreatic cancer risk: A Systematic review and meta-analysis. Am. J. Gastroenterol. 2017, 112, 1366–1372. [Google Scholar] [CrossRef]
- Yang, D.; Forsmark, C.E. Chronic pancreatitis. Curr. Opin. Gastroenterol. 2017, 33, 396–403. [Google Scholar] [CrossRef]
- Gullo, L.; Barbara, L.; Labò, G. Effect of cessation of alcohol use on the course of pancreatic dysfunction in alcoholic pancreatitis. Gastroenterology 1988, 95, 1063–1068. [Google Scholar] [CrossRef]
- Singh, S.; Midha, S.; Singh, N.; Joshi, Y.K.; Garg, P.K. Dietary counseling versus dietary supplements for malnutrition in chronic pancreatitis: A randomized controlled trial. Clin. Gastroenterol. Hepatol. 2008, 6, 353–359. [Google Scholar] [CrossRef] [PubMed]
- American Gastroenterological Association. American gastroenterological association medical position statement: Treatment of pain in chronic pancreatitis. Gastroenterology 1998, 115, 763–764. [Google Scholar] [CrossRef]
- Ito, T.; Ishiguro, H.; Ohara, H.; Kamisawa, T.; Sakagami, J.; Sata, N.; Takeyama, Y.; Hirota, M.; Miyakawa, H.; Igarashi, H.; et al. Evidence-based clinical practice guidelines for chronic pancreatitis 2015. J. Gastroenterol. 2016, 51, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumonceau, J.M.; Delhaye, M.; Tringali, A.; Arvanitakis, M.; Sanchez-Yague, A.; Vaysse, T.; Aithal, G.P.; Anderloni, A.; Bruno, M.; Cantú, P.; et al. Endoscopic treatment of chronic pancreatitis: European Society of Gastrointestinal Endoscopy (ESGE) Guideline—Updated August 2018. Endoscopy 2019, 51, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cui, N.; Wang, X.; Cui, Y. Surgical strategies in the treatment of chronic pancreatitis: An updated systematic review and meta-analysis of randomized controlled trials. Medicine 2017, 96, e6220. [Google Scholar] [CrossRef] [PubMed]
- Barthet, M.; Hastier, P.; Bernard, J.P.; Bordes, G.; Frederick, J.; Allio, S.; Mambrini, P.; Saint-Paul, M.C.; Delmont, J.P.; Salducci, J.; et al. Chronic pancreatitis and inflammatory bowel disease: True or coincidental association? Am. J. Gastroenterol. 1999, 94, 2141–2148. [Google Scholar] [CrossRef]
- Chen, Y.L.; Hsu, C.W.; Cheng, C.C.; Yiang, G.T.; Lin, C.S.; Lin, C.L.; Sung, F.C.; Liang, J.A. Increased subsequent risk of inflammatory bowel disease association in patients with chronic pancreatitis: A nationwide population-based cohort study. Curr. Med. Res. Opin. 2017, 33, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Knafelz, D.; Panetta, F.; Monti, L.; Bracci, F.; Papadatou, B.; Torre, G.; Dall’Oglio, L.; Diamanti, A. Chronic pancreatitis as presentation of Crohn’s disease in a child. World J. Gastroenterol. 2013, 19, 5204–5206. [Google Scholar] [CrossRef]
- Singh, V.K.; Haupt, M.E.; Geller, D.E.; Hall, J.A.; Diez, P.M.Q. Less common etiologies of exocrine pancreatic insufficiency. World J. Gastroenterol. 2017, 23, 7059–7076. [Google Scholar] [CrossRef]
- Keller, J.; Layer, P. Human pancreatic exocrine response to nutrients in health and disease. Gut 2005, 54 (Suppl. 6), 1–28. [Google Scholar] [CrossRef] [Green Version]
- Maconi, G.; Dominici, R.; Molteni, M.; Ardizzone, S.; Bosani, M.; Ferrara, E.; Gallus, S.; Panteghini, M.; Porro, G.B. Prevalenceof pancreatic insufficiency in inflammatory bowel diseases. Assessment by fecal elastase-1. Dig. Dis. Sci. 2008, 53, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Barthet, M.; Lesavre, N.; Desplats, S.; Panuel, M.; Gasmi, M.; Bernard, J.P.; Dagorn, J.C.; Grimaud, J.C. Frequency and characteristicsof pancreatitis in patients with inflammatory bowel disease. Pancreatology 2006, 6, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Heikius, B.; Niemelä, S.; Lehtola, J.; Karttunen, T.; Lähde, S. Pancreaticduct abnormalities and pancreatic function in patients with chronicinflammatory bowel disease. Scand. J. Gastroenterol. 1996, 31, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Angelini, G.; Cavallini, G.; Bovo, P.; Brocco, G.; Castagnini, A.; Lavarini, E.; Merigo, F.; Tallon, N.; Scuro, L.A. Pancreatic function in chronicinflammatory bowel disease. Int. J. Pancreatol. 1988, 3, 185–193. [Google Scholar] [PubMed]
- Lutgens, M.W.; van Oijen, M.G.; van der Heijden, G.J.; Vleggaar, F.P.; Siersema, P.D.; Oldenburg, B. Declining risk of colorectal cancer in inflammatory bowel disease: An updated meta-analysis of population-based cohort studies. Inflamm. Bowel Dis. 2013, 19, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Beaugerie, L.; Brousse, N.; Bouvier, A.M.; Colombel, J.F.; Lémann, M.; Cosnes, J.; Hébuterne, X.; Cortot, A.; Bouhnik, Y.; Gendre, J.P.; et al. CESAME study group. Lymphoproliferative disorders in patients receiving thiopurines for inflammatory bowel disease: A prospective observational cohort study. Lancet 2009, 374, 1617–1625. [Google Scholar] [CrossRef]
- Armstrong, R.G.; West, J.; Card, T.R. Risk of cancer in inflammatory bowel disease treated with azathioprine: A UK population-based case-control study. Am. J. Gastroenterol. 2010, 105, 1604–1609. [Google Scholar] [CrossRef] [PubMed]
- Long, M.D.; Martin, C.F.; Pipkin, C.A.; Herfarth, H.H.; Sandler, R.S.; Kappelman, M.D. Risk of melanoma and nonmelanoma skin cancer among patients with inflammatory bowel disease. Gastroenterology 2012, 143, 390–399.e1. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; Cagan, A.; Gainer, V.S.; Cheng, S.C.; Cai, T.; Szolovits, P.; Shaw, S.Y.; Churchill, S.; Karlson, E.W.; Murphy, S.N.; et al. Mortality and extraintestinal cancers in patients with primary sclerosing cholangitis and inflammatory bowel disease. J. Crohns. Colitis 2014, 8, 956–963. [Google Scholar] [CrossRef]
- Jung, Y.S.; Han, M.; Park, S.; Kim, W.H.; Cheon, J.H. cancer risk in the early stages of inflammatory bowel disease in Korean Patients: A nationwide population-based study. J. Crohns. Colitis 2017, 11, 954–962. [Google Scholar] [CrossRef]
- Chu, L.C.; Goggins, M.G.; Fishman, E.K. Diagnosis and detection of pancreatic cancer. Cancer J. 2017, 23, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.Y.; Yachimski, P.S. Endoscopic management of pancreatobiliary neoplasms. Gastroenterology 2018, 154, 1947–1963. [Google Scholar] [CrossRef] [PubMed]
- Olpin, J.D.; Sjoberg, B.P.; Stilwill, S.E.; Jensen, L.E.; Rezvani, M.; Shaaban, A.M. Beyond the Bowel: Extraintestinal manifestations of inflammatory bowel disease. Radiographics 2017, 37, 1135–1160. [Google Scholar] [CrossRef] [PubMed]
- Garrido Gómez, E.; Lopez San Román, A.; Bermejo San José, F. Idiopathic pancreatitis in inflammatory bowel disease. J. Crohns. Colitis 2008, 2, 237–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moolsintong, P.; Loftus, E.V., Jr.; Chari, S.T.; Egan, L.J.; Tremaine, W.J.; Sandborn, W.J. Acute pancreatitis in patients with Crohn’s disease: Clinical features and outcomes. Inflamm. Bowel Dis. 2005, 11, 1080–1084. [Google Scholar] [CrossRef] [PubMed]
- Broide, E.; Dotan, I.; Weiss, B.; Wilschanski, M.; Yerushalmi, B.; Klar, A.; Levine, A. Idiopathic pancreatitis preceding the diagnosis of inflammatory bowel disease is more frequent in pediatric patients. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Badalov, N.; Baradarian, R.; Iswara, K.; Li, J.; Steinberg, W.; Tenner, S. Drug-induced acute pancreatitis: An evidence-based review. Clin. Gastroenterol. Hepatol. 2007, 5, 648–661. [Google Scholar] [CrossRef]
- Chung, L.W.; Yeh, S.P.; Hsieh, C.Y.; Liao, Y.M.; Huang, H.H.; Lin, C.Y.; Chiu, C.F. Life-threatening acute pancreatitis due to thalidomide therapy for chronic graft-versus-host disease. Ann. Hematol. 2008, 87, 421–423. [Google Scholar] [CrossRef]
- Jiang, R.; Xu, L.; Huang, Y.; Fang, C.; Guo, H.; Li, S.; Wu, J.; Du, Z. Anti-PD-1 drug (Nivolumab) may induce acute and life-threatening pancreatitis in lung cancer patient: A Case report. Pancreas 2018, 47, e53–e54. [Google Scholar] [CrossRef]
- Mallory, A.; Kern, F., Jr. Drug-induced pancreatitis: A critical review. Gastroenterology 1980, 78, 813–820. [Google Scholar] [CrossRef]
- Blomgren, K.B.; Sundström, A.; Steineck, G.; Genell, S.; Sjöstedt, S.; Wiholm, B.E. A Swedish case-control network for studies of drug-induced morbidity—Acute pancreatitis. Eur. J. Clin. Pharmacol. 2002, 58, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Meczker, Á.; Mikó, A.; Gede, N.; Szentesi, A.; Párniczky, A.; Gódi, S.; Hegyi, P. Hungarian pancreatic study group. Retrospective matched-cohort analysis of acute pancreatitis induced by 5-aminosalicylic acid-derived drugs. Pancreas 2019, 48, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Sala, M.; Panés, J.; Feu, F.; Navarro, S.; Terés, J. Acute pancreatitis after long-term 5-aminosalicylic acid therapy. Am. J. Gastroenterol. 1997, 92, 2302–2303. [Google Scholar] [PubMed]
- Ledder, O.; Lemberg, D.A.; Day, A.S. Thiopurine-induced pancreatitis in inflammatory bowel diseases. Expert. Rev. Gastroenterol. Hepatol. 2015, 9, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Wintzell, V.; Svanström, H.; Olén, O.; Melbye, M.; Ludvigsson, J.F.; Pasternak, B. Association between use of azathioprine and risk of acute pancreatitis in children with inflammatory bowel disease: A Swedish-Danish nationwide cohort study. Lancet Child Adolesc. Health 2019, 3, 158–165. [Google Scholar] [CrossRef]
- Teich, N.; Mohl, W.; Bokemeyer, B.; Bündgens, B.; Büning, J.; Miehlke, S.; Hüppe, D.; Maaser, C.; Klugmann, T.; Kruis, W.; et al. German IBD Study Group. Azathioprine-induced acute pancreatitis in patients with inflammatory bowel diseases—A prospective study on incidence and severity. J. Crohns. Colitis 2016, 10, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, F.; Lopez-Sanroman, A.; Taxonera, C.; Gisbert, J.P.; Pérez-Calle, J.L.; Vera, I.; Menchén, L.; Martín-Arranz, M.D.; Opio, V.; Carneros, J.A.; et al. Acute pancreatitis in inflammatory bowel disease, with special reference to azathioprine-induced pancreatitis. Aliment. Pharmacol. Ther. 2008, 28, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.; Jansen, L.E.; Rose, R.V.; Gregor, J.C.; Ponich, T.; Chande, N.; Khanna, R.; Yan, B.; Jairath, V.; Khanna, N.; et al. HLA-DQA1-HLA-DRB1 polymorphism is a major predictor of azathioprine-induced pancreatitis in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2018, 47, 615–620. [Google Scholar] [CrossRef]
- Picardo, S.; So, K.; Venugopal, K.; Chin, M. Vedolizumab-induced acute pancreatitis: The first reported clinical case. BMJ Case Rep. 2018. [Google Scholar] [CrossRef]
- Lopez, R.N.; Gupta, N.; Lemberg, D.A. Vedolizumab-associated pancreatitis in paediatric ulcerative colitis: Functional selectivity of the α4β7integrin and MAdCAM-1 pathway? J. Crohns. Colitis 2018, 12, 507–508. [Google Scholar] [CrossRef]
- Portincasa, P.; Di Ciaula, A.; de Bari, O.; Garruti, G.; Palmieri, V.O.; Wang, D.Q. Management of gallstones and its related complications. Expert. Rev. Gastroenterol. Hepatol. 2016, 10, 93–112. [Google Scholar] [CrossRef] [PubMed]
- Zilio, M.B.; Eyff, T.F.; Azeredo-Da-Silva, A.L.F.; Bersch, V.P.; Osvaldt, A.B. A systematic review and meta-analysis of the aetiology of acute pancreatitis. HPB 2019, 21, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Gizard, E.; Ford, A.C.; Bronowicki, J.P.; Peyrin-Biroulet, L. Systematic review: The epidemiology of the hepatobiliary manifestations in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2014, 40, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.M.; Xu, C.F.; Shan, G.D.; Chen, H.T.; Xu, G.Q. Is gallstone disease associated with inflammatory bowel diseases? A meta-analysis. J. Dig. Dis. 2015, 16, 634–641. [Google Scholar] [CrossRef]
- Jeong, Y.H.; Kim, K.O.; Lee, H.C.; Sohn, S.H.; Lee, J.W.; Lee, S.H.; Jang, B.I.; Kim, T.N. Gallstone prevalence and risk factors in patients with ulcerative colitis in Korean population. Medicine 2017, 96, e7653. [Google Scholar] [CrossRef]
- Chen, C.H.; Lin, C.L.; Kao, C.H. Association between Inflammatory bowel disease and cholelithiasis: A nationwide population-based cohort study. Int. J. Env. Res. Public Health 2018, 15, E513. [Google Scholar] [CrossRef]
- Fagagnini, S.; Heinrich, H.; Rossel, J.B.; Biedermann, L.; Frei, P.; Zeitz, J.; Spalinger, M.; Battegay, E.; Zimmerli, L.; Vavricka, S.R.; et al. Risk factors for gallstones and kidney stones in a cohort of patients with inflammatory bowel diseases. PLoS ONE 2017, 12, e0185193. [Google Scholar] [CrossRef]
- ASGE Standards of Practice Committee; Buxbaum, J.L.; Abbas Fehmi, S.M.; Sultan, S.; Fishman, D.S.; Qumseya, B.J.; Cortessis, V.K.; Schilperoort, H.; Kysh, L.; Matsuoka, L.; et al. ASGE guideline on the role of endoscopy in the evaluation and management of choledocholithiasis. Gastrointest. Endosc. 2019, 89, 1075–1105. [Google Scholar]
- Huang, R.J.; Barakat, M.T.; Girotra, M.; Banerjee, S. Practice patterns for cholecystectomy after endoscopic retrograde cholangiopancreatography for patients with choledocholithiasis. Gastroenterology 2017, 153, 762–771.e2. [Google Scholar] [CrossRef]
- Van Geenen, E.J.; van der Peet, D.L.; Mulder, C.J.; Cuesta, M.A.; Bruno, M.J. Recurrent acute biliary pancreatitis: The protective role of cholecystectomy and endoscopic sphincterotomy. Surg. Endosc. 2009, 23, 950–956. [Google Scholar] [CrossRef]
- Elmunzer, B.J.; Noureldin, M.; Morgan, K.A.; Adams, D.B.; Coté, G.A.; Waljee, A.K. The impact of cholecystectomy after endoscopic sphincterotomy for complicated gallstone disease. Am. J. Gastroenterol. 2017, 112, 1596–1602. [Google Scholar] [CrossRef] [PubMed]
- Gschwantler, M.; Kogelbauer, G.; Klose, W.; Bibus, B.; Tscholakoff, D.; Weiss, W. The pancreas as a site of granulomatous inflammation in Crohn’s disease. Gastroenterology 1995, 108, 1246–1249. [Google Scholar] [CrossRef]
- Arulanandan, A.; Dulai, P.S.; Singh, S.; Sandborn, W.J.; Kalmaz, D. Systematic review: Safety of balloon assisted enteroscopy in Crohn’s disease. World J. Gastroenterol. 2016, 22, 8999–9011. [Google Scholar] [CrossRef] [PubMed]
- Domagk, D.; Mensink, P.; Aktas, H.; Lenz, P.; Meister, T.; Luegering, A.; Ullerich, H.; Aabakken, L.; Heinecke, A.; Domschke, W.; et al. Single- vs. double-balloon enteroscopy in small-bowel diagnostics: A randomized multicenter trial. Endosccopy 2011, 43, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Lipka, S.; Rabbanifard, R.; Kumar, A.; Brady, P. Single versus double balloon enteroscopy for small bowel diagnostics: A systematic review and meta-analysis. J. Clin. Gastroenterol. 2015, 49, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.J.; Kim, E.R.; Chang, D.K.; Kim, Y.H.; Hong, S.N. Comparison of the efficacy and safety of single- versus double-balloon enteroscopy performed by endoscopist experts in single-balloon enteroscopy: A single-center experience and meta-analysis. Gut. Liver 2017, 11, 520–527. [Google Scholar] [CrossRef] [PubMed]
- Yip, W.M.; Lok, K.H.; Lai, L.; Li, K.F.; Li, K.K.; Szeto, M.L. Acute pancreatitis: Rarecomplication of retrograde single-balloon enteroscopy. Endoscopy 2009, 41, E324. [Google Scholar] [CrossRef]
- Latorre, R.; López-Albors, O.; Soria, F.; Morcillo, E.; Esteban, P.; Pérez-Cuadrado-Robles, E.; Pérez-Cuadrado-Martínez, E. Evidences supporting the vascular etiology of post-double balloon enteroscopy pancreatitis: Study in porcine model. World J. Gastroenterol. 2017, 23, 6201–6211. [Google Scholar] [CrossRef]
- Aktas, H.; Mensink, P.B.; Haringsma, J.; Kuipers, E.J. Low incidence of hyperamylasemia after proximal double-balloon enteroscopy: Has the insertion technique improved? Endoscopy 2009, 41, 670–673. [Google Scholar] [CrossRef]
- Zepeda-Gómez, S.; Barreto-Zuñiga, R.; Ponce-de-León, S.; Meixueiro-Daza, A.; Herrera-López, J.A.; Camacho, J.; Tellez-Avila, F.; Valdovinos-Andraca, F.; Vargas-Vorackova, F. Risk of hyperamylasemia and acute pancreatitis after double-balloon enteroscopy: A prospective study. Endoscopy 2011, 43, 766–770. [Google Scholar] [CrossRef]
- Feng, N.; Dai, J.; Lu, H.; Li, X.B.; Gao, Y.J.; Ge, Z.Z. Hyperamylasemia is associated with increased intestinal permeability in patients undergoing diagnostic oral double-balloon enteroscopy. World J. Gastroenterol. 2014, 20, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Pata, C.; Akyüz, U.; Erzin, Y.; Mutlu, N.; Mercan, A.; Dirican, A. Post-procedure elevated amylase and lipase levels after double-balloon enteroscopy: Relations with the double-balloon technique. Dig. Dis. Sci. 2010, 55, 1982–1988. [Google Scholar] [CrossRef] [PubMed]
- Fricker, Z.P.; Lichtenstein, D.R. Primary sclerosing cholangitis: A concise review of diagnosis and management. Dig. Dis. Sci. 2019, 64, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, K.; Beuers, U.; Ponsioen, C.Y. Epidemiology of primary sclerosing cholangitis and primary biliary cirrhosis: A systematic review. J. Hepatol. 2012, 56, 1181–1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsen, T.H.; Folseraas, T.; Thorburn, D.; Vesterhus, M. Primary sclerosing cholangitis—A comprehensive review. J. Hepatol. 2017, 67, 1298–1323. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.G.; Juran, B.D.; Mucha, S.; Folseraas, T.; Jostins, L.; Melum, E.; Kumasaka, N.; Atkinson, E.J.; Schlicht, E.M.; Liu, J.Z.; et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat. Genet. 2017, 49, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Goldin, E.; Libson, E.; Wengrower, D.; Antal, S.; Kovacs, Z.; Rachmilewitz, D. Severe acute pancreatitis as the presenting symptom of primary sclerosing cholangitis: Treatment by endoscopic insertion of a biliary stent. Int. Surg. 1990, 75, 58–60. [Google Scholar]
- Matsushita, M.; Nagasawa, M.; Sato, Y.; Souda, K.; Kobayashi, Y. Primary sclerosing cholangitis associated with limy bile and acute pancreatitis. Pancreatology 2005, 5, 466–469. [Google Scholar] [CrossRef]
- Von Seth, E.; Arnelo, U.; Enochsson, L.; Bergquist, A. Primary sclerosing cholangitis increases the risk for pancreatitis after endoscopic retrograde cholangiopancreatography. Liver Int. 2015, 35, 254–262. [Google Scholar] [CrossRef]
- Shimosegawa, T.; Chari, S.T.; Frulloni, L.; Kamisawa, T.; Kawa, S.; Mino-Kenudson, M.; Kim, M.H.; Klöppel, G.; Lerch, M.M.; Löhr, M.; et al. International consensus diagnostic criteria for autoimmune pancreatitis: Guidelines of the International Association of Pancreatology. Pancreas 2011, 40, 352–358. [Google Scholar] [CrossRef]
- Kamisawa, T.; Chari, S.T.; Giday, S.A.; Kim, M.H.; Chung, J.B.; Lee, K.T.; Werner, J.; Bergmann, F.; Lerch, M.M.; Mayerle, J.; et al. Clinical profile of autoimmune pancreatitis and its histological subtypes: An international multicenter survey. Pancreas 2011, 40, 809–814. [Google Scholar] [CrossRef] [PubMed]
- Hart, P.A.; Zen, Y.; Chari, S.T. Recent Advances in Autoimmune Pancreatitis. Gastroenterology 2015, 149, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Takahashi, N.; Chari, S.T. Autoimmune Pancreatitis. Dig. Dis. Sci. 2017, 62, 1762–1769. [Google Scholar] [CrossRef] [PubMed]
- Song, T.J.; Kim, J.H.; Kim, M.H.; Jang, J.W.; Park, D.H.; Lee, S.S.; Seo, D.W.; Lee, S.K.; Yu, E. Comparison of clinical findings between histologically confirmed type 1 and type 2 autoimmune pancreatitis. J. Gastroenterol. Hepatol. 2012, 27, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Ueki, T.; Kawamoto, K.; Otsuka, Y.; Minoda, R.; Maruo, T.; Matsumura, K.; Noma, E.; Mitsuyasu, T.; Otani, K.; Aomi, Y.; et al. Prevalence and clinicopathological features of autoimmune pancreatitis in Japanese patients with inflammatory bowel disease. Pancreas 2015, 44, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.; Song, T.J.; Moon, S.H.; Kim, J.H.; Lee, J.N.; Hong, S.M.; Lee, J.S.; Jo, S.J.; Cho, D.H.; Park, D.H.; et al. Type 2 autoimmune pancreatitis (idiopathic duct-centric pancreatitis) highlighting patients presenting as clinical acute pancreatitis: A single center experience. Gut. Liver 2019. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jia, G.; Zuo, C.; Jia, N.; Wang, H. 18F-FDG PET/CT helps differentiate autoimmune pancreatitis from pancreatic cancer. BMC Cancer 2017, 17, 695. [Google Scholar] [CrossRef] [PubMed]
- Notohara, K.; Burgart, L.J.; Yadav, D.; Chari, S.; Smyrk, T.C. Idiopathic chronic pancreatitis with periductal lymphoplasmacytic infiltration: Clinicopathologic features of 35 cases. Am. J. Surg. Pathol. 2003, 27, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, G.; Lüttges, J.; Capelli, P.; Frulloni, L.; Cavallini, G.; Pederzoli, P.; Leins, A.; Longnecker, D.; Klöppel, G. Histopathological features of diagnostic and clinical relevance in autoimmune pancreatitis: A study on 53 resection specimens and 9 biopsy specimens. Virchows. Arch. 2004, 445, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Ravi, K.; Chari, S.T.; Vege, S.S.; Sandborn, W.J.; Smyrk, T.C.; Loftus, E.V. Inflammatory bowel disease in the setting of autoimmune pancreatitis. Inflamm. Bowel Dis. 2009, 15, 1326–1330. [Google Scholar] [CrossRef] [PubMed]
- Srinath, A.I.; Gupta, N.; Husain, S.Z. Probing the association of pancreatitis in inflammatory bowel disease. Inflamm. Bowel Dis. 2016, 22, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Roque Ramos, L.; DiMaio, C.J.; Sachar, D.B.; Atreja, A.; Colombel, J.F.; Torres, J. Autoimmune pancreatitis and inflammatory bowel disease: Case series and review of literature. Dig. Liver Dis. 2016, 4, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, D.; Ye, B.D.; Yang, S.K.; Kim, J.H.; Yang, D.H.; Jung, K.W.; Kim, K.J.; Byeon, J.S.; Myung, S.J.; et al. The characteristics of ulcerative colitis associated with autoimmune pancreatitis. J. Clin. Gastroenterol. 2013, 47, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Rovati, L.; Lanzillotta, M.; Bozzolo, E.; Arcidiacono, P.G.; Falconi, M.; Dagna, L.; Della-Torre, E. Methotrexate as induction of remission therapy for type 1 autoimmune pancreatitis. Am. J. Gastroenterol. 2019, 114, 831–833. [Google Scholar] [CrossRef] [PubMed]
- Masamune, A.; Nishimori, I.; Kikuta, K.; Tsuji, I.; Mizuno, N.; Iiyama, T.; Kanno, A.; Tachibana, Y.; Ito, T.; Kamisawa, T.; et al. Randomised controlled trial of long-term maintenance corticosteroid therapy in patients with autoimmune pancreatitis. Gut 2017, 66, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Hart, P.A.; Topazian, M.D.; Witzig, T.E.; Clain, J.E.; Gleeson, F.C.; Klebig, R.R.; Levy, M.J.; Pearson, R.K.; Petersen, B.T.; Smyrk, T.C.; et al. Treatment of relapsing autoimmune pancreatitis with immunomodulators and rituximab: The Mayo Clinic experience. Gut 2013, 62, 1607–1615. [Google Scholar] [CrossRef]
- Sah, R.P.; Chari, S.T.; Pannala, R.; Sugumar, A.; Clain, J.E.; Levy, M.J.; Pearson, R.K.; Smyrk, T.C.; Petersen, B.T.; Topazian, M.D.; et al. Differences in clinical profile and relapse rate of type 1 versus type 2 autoimmune pancreatitis. Gastroenterology 2010, 139, 140–148. quiz e12-e13. [Google Scholar] [CrossRef]
- Sandanayake, N.S.; Church, N.I.; Chapman, M.H.; Johnson, G.J.; Dhar, D.K.; Amin, Z.; Deheragoda, M.G.; Novelli, M.; Winstanley, A.; Rodriguez-Justo, M.; et al. Presentation and management of post-treatment relapse in autoimmune pancreatitis/immunoglobulin G4-associated cholangitis. Clin. Gastroenterol. Hepatol. 2009, 7, 1089–1096. [Google Scholar] [CrossRef]
- Hart, P.A.; Levy, M.J.; Smyrk, T.C.; Takahashi, N.; Abu Dayyeh, B.K.; Clain, J.E.; Gleeson, F.C.; Pearson, R.K.; Petersen, B.T.; Topazian, M.D.; et al. Clinical profiles and outcomes in idiopathic duct-centric chronic pancreatitis (type 2 autoimmune pancreatitis): The Mayo Clinic experience. Gut 2016, 65, 1702–1709. [Google Scholar] [CrossRef]
1. Asymptomatic elevation of pancreatic enzyme |
2. Acute pancreatitis (AP) |
a. Idiopathic |
b. Drugs |
c. Gall stones |
d. Gastrointestinal lesions on the duodenum |
e. Endoscopic procedures |
f. Primary sclerosing cholangitis (PSC) |
g. Autoimmune pancreatitis (AIP) |
3. Chronic pancreatitis (CP) |
4. Exocrine pancreatic insufficiency (EPI) |
5. Pancreatic cancer (PC) |
Type 1 | Type 2 | |
---|---|---|
Racial difference | Asian > European/American | Asian < European/American |
Peak age of onset | 60s | 40s |
Sex difference | Mainly men | None or more common in men |
Mode of onset | Jaundice is predominant | Acute pancreatitis is predominant |
IgG/IgG4 | Elevated | Normal |
Autoantibody positive | High frequency | Low frequency |
Diffuse pancreatic enlargement | High frequency | High frequency |
Lower biliary stricture | High frequency | Low to high frequency |
Pathological features | LPSP | GEL |
Lesions of other organs | Sclerosing cholangitis | Inflammatory bowel disease (particularly UC) |
Sclerosing sialadenitis | ||
Retroperitoneal fibrosis |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iida, T.; Wagatsuma, K.; Hirayama, D.; Yokoyama, Y.; Nakase, H. The Etiology of Pancreatic Manifestations in Patients with Inflammatory Bowel Disease. J. Clin. Med. 2019, 8, 916. https://doi.org/10.3390/jcm8070916
Iida T, Wagatsuma K, Hirayama D, Yokoyama Y, Nakase H. The Etiology of Pancreatic Manifestations in Patients with Inflammatory Bowel Disease. Journal of Clinical Medicine. 2019; 8(7):916. https://doi.org/10.3390/jcm8070916
Chicago/Turabian StyleIida, Tomoya, Kohei Wagatsuma, Daisuke Hirayama, Yoshihiro Yokoyama, and Hiroshi Nakase. 2019. "The Etiology of Pancreatic Manifestations in Patients with Inflammatory Bowel Disease" Journal of Clinical Medicine 8, no. 7: 916. https://doi.org/10.3390/jcm8070916
APA StyleIida, T., Wagatsuma, K., Hirayama, D., Yokoyama, Y., & Nakase, H. (2019). The Etiology of Pancreatic Manifestations in Patients with Inflammatory Bowel Disease. Journal of Clinical Medicine, 8(7), 916. https://doi.org/10.3390/jcm8070916