ESR1 Gene Variants Are Predictive of Osteoporosis in Female Patients with Crohn’s Disease
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Patients
2.2. Ethical Approval
2.3. Biochemical Analysis
2.4. Measurement of Bone Mineral Density
2.5. Molecular Genetic Analysis
2.6. Statistical Analysis
2.7. Linkage Disequilibrium Analysis
3. Results
3.1. Study Group Characteristics
3.2. Analysis of ESR1 Gene Polymorphisms
3.3. Correlation of Studied ESR1 Gene Variants with Bone Parameters
3.4. Haplotypes Analysis and Their Relationship with Bone Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ali, T.; Lam, D.; Bronze, M.S.; Humphrey, M.B. Osteoporosis in inflammatory bowel disease. Am. J. Med. 2009, 122, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.J.; Ryu, K.H.; Park, B.J.; Yoon, B.H. Osteoporosis and Osteoporotic Fractures in Gastrointestinal Disease. J. Bone Metab. 2018, 25, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Adriani, A.; Pantaleoni, S.; Luchino, M.; Ribaldone, D.G.; Reggiani, S.; Sapone, N.; Sguazzini, C.; Isaia, G.; Pellicano, R.; Astegiano, M. Osteopenia and osteoporosis in patients with new diagnosis of inflammatory bowel disease. Panminerva Med. 2014, 56, 145–149. [Google Scholar] [PubMed]
- Loftus, E.V., Jr.; Crowson, C.S.; Sandborn, W.J.; Tremaine, W.J.; O’Fallon, W.M.; Melton, L.J., III. Long-term fracture risk in patients with Crohn’s disease: A population-based study in Olmsted County, Minnesota. Gastroenterology 2002, 123, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, P.; Mosekilde, L. Fracture risk in patients with celiac Disease, Crohn’s disease, and ulcerative colitis: A nationwide follow-up study of 16,416 patients in Denmark. Am. J. Epidemiol. 2002, 156, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Szafors, P.; Che, H.; Barnetche, T.; Morel, J.; Gaujoux-Viala, C.; Combe, B.; Lukas, C. Risk of fracture and low bone mineral density in adults with inflammatory bowel diseases. A systematic literature review with meta-analysis. Osteoporos. Int. 2018, 29, 2389. [Google Scholar] [CrossRef] [PubMed]
- Curry, S.J.; Krist, A.H.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W., Jr.; Kemper, A.R.; Kubik, M.; et al. Screening for Osteoporosis to PreventFractures: US Preventive Services Task Force Recommendation Statement. JAMA 2018, 319, 2521–2531. [Google Scholar] [CrossRef]
- Naito, T.; Yokoyama, N.; Kakuta, Y.; Ueno, K.; Kawai, Y.; Onodera, M.; Moroi, R.; Kuroha, M.; Kanazawa, Y.; Kimura, T.; et al. Clinical and genetic risk factors for decreased bone mineral density in Japanese patients with inflammatory bowel disease. J. Gastroenterol. Hepatol. 2018, 33, 1873–1881. [Google Scholar] [CrossRef]
- Rodriguez-Bores, L.; Barahona-Garrido, J.; Yamamoto-Furusho, J.K. Basic and clinical aspects of osteoporosis in inflammatory bowel disease. World J. Gastroenterol. 2007, 13, 6156–6165. [Google Scholar] [CrossRef]
- Schulte, C.M.; Dignass, A.U.; Goebell, H.; Röher, H.D.; Schulte, K.M. Genetic factors determine extent of bone loss in inflammatory bowel disease. Gastroenterology 2000, 119, 909–920. [Google Scholar] [CrossRef]
- Rivadeneira, F.; Styrkársdottir, U.; Estrada, K.; Halldórsson, B.V.; Hsu, Y.H.; Richards, J.B.; Zillikens, M.C.; Kavvoura, F.K.; Amin, N.; Aulchenko, Y.S.; et al. Genetic Factors for Osteoporosis (GEFOS) Consortium. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat. Genet. 2009, 41, 1199–1206. [Google Scholar] [CrossRef]
- McKeen, H.D.; Byrne, C.; Jithesh, P.V.; Donley, C.; Valentine, A.; Yakkundi, A.; O’Rourke, M.; Swanton, C.; McCarthy, H.O.; Hirst, D.G.; et al. FKBPL regulates estrogen receptor signalling and determines response to endocrine therapy. Cancer Res. 2010, 70, 1090–1100. [Google Scholar] [CrossRef]
- Linares, P.M.; Algaba, A.; Urzainqui, A.; Guijarro-Rojas, M.; González-Tajuelo, R.; Garrido, J.; Chaparro, M.; Gisbert, J.P.; Bermejo, F.; Guerra, I.; et al. Ratio of Circulating Estrogen Receptors Beta and Alpha (ERβ/ERα) Indicates Endoscopic Activity in Patients with Crohn’s Disease. Dig. Dis. Sci. 2017, 62, 2744–2754. [Google Scholar] [CrossRef]
- Khosla, S.; Riggs, B.L.; Atkinson, E.J.; Oberg, A.L.; Mavilia, C.; Del Monte, F.; Melton, L.J., III; Brandi, M.L. Relationship of estrogen receptor genotypes to bone mineral density and to rates of bone loss in men. J. Clin. Endocrinol. Metab. 2004, 89, 1808–1816. [Google Scholar] [CrossRef]
- Sowers, M.; Jannausch, M.L.; Liang, W.; Willing, M. Estrogen receptor genotypes and their association with the 10-year changes in bone mineral density and osteocalcin concentrations. J. Clin. Endocrinol. Metab. 2004, 89, 733–739. [Google Scholar] [CrossRef]
- Greendale, G.A.; Wight, R.G.; Huang, M.-H.; Avis, N.; Gold, E.B.; Joffe, H.; Seeman, T.; Vuge, M.; Karlamangla, A.S. Menopause-associated symptoms and cognitive performance: Results from the study of women’s health across the nation. Am. J. Epidemiol. 2010, 171, 1214–1224. [Google Scholar] [CrossRef]
- Méndez, J.P.; Rojano-Mejía, D.; Coral-Vázquez, R.M.; Coronel, A.; Pedraza, J.; Casas, M.J.; Soriano, R.; García-García, E.; Vilchis, F.; Canto, P. Impact of genetic variants of IL-6, IL6R, LRP5, ESR1 and SP7 genes on bone mineral density in postmenopausal Mexican-Mestizo women with obesity. Gene 2013, 528, 216–220. [Google Scholar] [CrossRef]
- Shang, D.; Lian, H.; Fu, D.; Wu, J.; Hou, S.; Lu, J. Relationship between estrogen receptor 1 gene polymorphisms and postmenopausal osteoporosis of the spine in Chinese women. Genet. Mol. Res. 2016, 15, gmr8106. [Google Scholar] [CrossRef]
- Kobayashi, S.; Inoue, S.; Hosoi, T.; Ouchi, Y.; Shiraki, M.; Orimo, H. Association of bone mineral density with polymorphism of the estrogen receptor gene. J. Bone Miner. Res. 1996, 11, 306–311. [Google Scholar] [CrossRef]
- Molvarec, A.; Széplaki, G.; Kovács, M.; Széplaki, Z.; Fazakas, A.; Prohászka, Z.; Füst, G.; Karádi, I. Estrogen receptor alpha (ESR1) PvuII and XbaI gene polymorphisms in ischemic stroke in a Hungarian population. Clin. Chim. Acta 2007, 382, 100–105. [Google Scholar] [CrossRef]
- DeRoo, B.J.; Korach, K.S. Estrogen receptors and human disease. J. Clin. Investig. 2006, 116, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Albagha, O.M.E.; McGuigan, F.E.A.; Reid, D.M.; Ralston, S.H. Estrogen receptor alpha gene polymorphisms and bone mineral density: Haplotype analysis in women from the United Kingdom. J. Bone Miner. Res. 2001, 16, 128–134. [Google Scholar] [CrossRef]
- Ioannidis, J.P.; Ralston, S.H.; Bennett, S.T.; Brandi, M.L.; Grinberg, D.; Karassa, F.B.; Langdahl, B.; van Meurs, J.B.; Mosekilde, L.; Scollen, S.; et al. Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA 2004, 292, 2105–2114. [Google Scholar] [CrossRef]
- Gonnelli, S.; Cepollaro, C.; Pondrelli, C.; Martini, S.; Monaco, R.; Gennari, C. The usefulness of bone turnover in predicting the response to transdermal estrogen therapy in postmenopausal osteoporosis. J. Bone Miner. Res. 1997, 12, 624–631. [Google Scholar] [CrossRef]
- Cook, L.C.; Hillhouse, A.E.; Myles, M.H.; Lubahn, D.B.; Bryda, E.C.; Davis, J.W.; Franklin, C.L. The role of estrogen signaling in a mouse model of inflammatory bowel disease: A Helicobacter hepaticus model. PLoS ONE 2014, 9, e94209. [Google Scholar] [CrossRef]
- Wagtmans, M.; Verspaget, H.; Lamers, C.; Van Hogezand, R.A. Gender-related differences in the clinical course of Crohn’s disease. Am. J. Gastroenterol. 2001, 96, 1541–1546. [Google Scholar] [CrossRef]
- Molodecky, N.A.; Soon, I.S.; Rabi, D.M.; Ghali, W.A.; Ferris, M.; Chernoff, G.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Barkema, H.W.; et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012, 142, 46–54. [Google Scholar] [CrossRef]
- Bábíčková, J.; Tóthová, L.; Lengyelová, E.; Bartoňová, A.; Hodosy, J.; Gardlík, R.; Celec, P. Sex Differences in Experimentally Induced Colitis in Mice: A Role for Estrogens. Inflammation 2015, 38, 1996–2006. [Google Scholar] [CrossRef]
- Rawla, P.; Sunkara, T.; Raj, J.P. Role of biologics and biosimilars in inflammatory bowel disease: Current trends and future perspectives. J. Inflamm. Res. 2018, 11, 215–226. [Google Scholar] [CrossRef]
- Lin, T.-H.; Yang, R.-S.; Tu, H.-J.; Liou, H.-C.; Lin, Y.-M.; Chuang, W.-J.; Fu, W.-M. Inhibition of osteoporosis by the αvβ3 integrin antagonist of rhodostomin variants. Eur. J. Pharmacol. 2017, 804, 94–101. [Google Scholar] [CrossRef]
- Griffin, L.M.; Thayu, M.; Baldassano, R.N.; DeBoer, M.D.; Zemel, B.S.; Denburg, M.R.; Denson, L.A.; Shults, J.; Herskovitz, R.; Long, J.; et al. Improvements in bone density and structure during anti-TNF-α therapy in pediatric Crohn’s disease. J. Clin. Endocrinol. Metab. 2015, 100, 2630–2639. [Google Scholar] [CrossRef]
- Shukla, P.; Mansoori, M.N.; Singh, D. Efficacy of anti-IL-23 monotherapy versus combination therapy with anti-IL-17 in estrogen deficiency induced bone loss conditions. Bone 2018, 110, 84–95. [Google Scholar] [CrossRef]
- Levin, V.A.; Jiang, X.; Kagan, R. Estrogen therapy for osteoporosis in the modern era. Osteoporos. Int. 2018, 29, 1049–1055. [Google Scholar] [CrossRef]
- Van Der Giessen, J.; Van Der Woude, C.J.; Peppelenbosch, M.P.; Fuhler, G.M. A direct effect of sex hormones on epithelial barrier function in inflammatory bowel disease models. Cells 2019, 8, 261. [Google Scholar] [CrossRef]
- Strom, T.M.; Wienker, T.F. Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH). Available online: https://ihg.gsf.de/cgi-bin/hw/hwa1.pl (accessed on 1 February 2019).
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef]
- Becherini, L.; Gennari, L.; Masi, L.; Mansani, R.; Massart, F.; Morelli, A.; Falchetti, A.; Gonnelli, S.; Fiorelli, G.; Tanini, A.; et al. Evidence of a linkage disequilibrium between polymorphisms in the human estrogen receptor alpha gene and their relationship to bone mass variation in postmenopausal Italian women. Hum. Mol. Genet. 2000, 9, 2043–2050. [Google Scholar] [CrossRef]
- Krela-Kaźmierczak, I.; Kaczmarek-Ryś, M.; Szymczak, A.; Michalak, M.; Skrzypczak-Zielińska, M.; Drwęska-Matelska, N.; Marcinkowska, M.; Eder, P.; Łykowska-Szuber, L.; Wysocka, E.; et al. Bone Metabolism and the c.-223C>T Polymorphism in the 5’UTR Region of the Osteoprotegerin Gene in Patients with Inflammatory Bowel Disease. Calcif. Tissue Int. 2016, 99, 616–624. [Google Scholar] [CrossRef]
- Krela-Kazmierczak, I.; Wawrzyniak, A.; Szymczak, A.; Eder, P.; Lykowska-Szuber, L.; Michalak, M.; Drweska-Matelska, N.; Kaczmarek-Rys, M.; Skrzypczak-Zielinska, M.; Szalata, M.; et al. Bone mineral density and the 570A>T polymorphism of the bone morphogenetic protein 2 (BMP2) gene in patients with inflammatory bowel disease: A cross-sectional study. J. Physiol. Pharmacol. 2017, 68, 757–764. [Google Scholar]
- Krela-Kaźmierczak, I.; Michalak, M.; Wawrzyniak, A.; Szymczak, A.; Eder, P.; Łykowska-Szuber, L.; Kaczmarek-Ryś, M.; Drwęska-Matelska, N.; Skrzypczak-Zielińska, M.; Linke, K.; et al. The c.29T>C polymorphism of the transforming growth factor beta-1 (TGFB1) gene, bone mineral density and the occurrence of low-energy fractures in patients with inflammatory bowel disease. Mol. Biol. Rep. 2017, 44, 455–461. [Google Scholar] [CrossRef]
- NCBI. dbSNP Short Genetic Variations Database. Available online: https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ss.cgi?ss=ss1322898669 (accessed on 1 February 2019).
- NCBI. dbSNP Short Genetic Variations Database. Available online: https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ss.cgi?ss=ss1322898670 (accessed on 1 February 2019).
- Ezzat, Y.; Hamdy, K. The frequency of low bone mineral density and its associated risk factors in patients with inflammatory bowel diseases. Int. J. Rheum. Dis. 2010, 13, 259–265. [Google Scholar] [CrossRef]
- Lopes, L.H.C.; Sdepanian, V.L.; Szejnfeld, V.L.; De Morais, M.B.; Fagundes-Neto, U.; Morais, M.B. Risk factors for low bone mineral density in children and adolescents with inflammatory bowel disease. Dig. Dis. Sci. 2008, 53, 2746–2753. [Google Scholar] [CrossRef]
- Steinbuch, M.; Youket, T.E.; Cohen, S. Oral glucocorticoid use is associated with an increased risk of fracture. Osteoporos. Int. 2004, 15, 323–328. [Google Scholar] [CrossRef]
- Walther, F.; Fusch, C.; Radke, M.; Beckert, S.; Findeisen, A. Osteoporosis in pediatric patients suffering from chronic inflammatory bowel disease with and without steroid treatment. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 42–51. [Google Scholar] [CrossRef]
- Ribas, V.; Nguyen, M.T.; Henstridge, D.C.; Nguyen, A.K.; Beaven, S.W.; Watt, M.J.; Hevener, A.L. Impaired oxidative metabolism and inflammation are associated with insulin resistance in ERalpha-deficient mice. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E304–E319. [Google Scholar] [CrossRef]
- Jacenik, D.; Cygankiewicz, A.I.; Mokrowiecka, A.; Małecka-Panas, E.; Fichna, J.; Krajewska, W.M. Sex-and Age-Related Estrogen Signaling Alteration in Inflammatory Bowel Diseases: Modulatory Role of Estrogen Receptors. Int. J. Mol. Sci. 2019, 20, 3175. [Google Scholar] [CrossRef]
- Yamada, Y.; Ando, F.; Niino, N.; Ohta, S.; Shimokata, H. Association of polymorphisms of the estrogen receptor alpha gene with bone mineral density of the femoral neck in elderly Japanese women. J. Mol. Med. 2002, 80, 452–460. [Google Scholar] [CrossRef]
- Long, J.R.; Zhang, Y.Y.; Liu, P.Y.; Liu, Y.J.; Shen, H.; Dvornyk, V.; Zhao, L.J.; Deng, H.-W. Association of estrogen receptor alpha and vitamin D receptor gene polymorphisms with bone mineral density in Chinese males. Calcif. Tissue Int. 2004, 74, 270–276. [Google Scholar] [CrossRef]
- Colin, E.M.; Uitterlinden, A.G.; Meurs, J.B.J.; Bergink, A.P.; Van De Klift, M.; Fang, Y.; Arp, P.P.; Hofman, A.; Van Leeuwen, J.P.T.M.; Pols, H.A.P. Interaction between vitamin D receptor genotype and estrogen receptor alpha genotype influences vertebral fracture risk. J. Clin. Endocrinol. Metab. 2003, 88, 3777–3784. [Google Scholar] [CrossRef]
- Gennari, L.; Becherini, L.; Masi, L.; Mansani, R.; Gonnelli, S.; Cepollaro, C.; Martini, S.; Montagnani, A.; Lentini, G.; Becorpi, A.M.; et al. Vitamin D and estrogen receptor allelic variants in Italian postmenopausal women: Evidence of multiple gene contribution to bone mineral density. J. Clin. Endocrinol. Metab. 1998, 83, 939–944. [Google Scholar] [CrossRef]
- ang, L.; Cheng, G.-L.; Xu, Z.-H. Association between estrogen receptor α gene (ESR1) PvuII (C/T) and XbaI (A/G) polymorphisms and hip fracture risk: Evidence from a meta-analysis. PLoS ONE 2013, 8, e82806. [Google Scholar] [CrossRef]
- Deng, W.; Han, J.; Chen, L.; Qi, W. Estrogen receptor alpha gene PvuII polymorphism and risk of fracture in postmenopausal women: A meta-analysis. Genet. Mol. Res. 2015, 14, 1293–1300. [Google Scholar] [CrossRef]
- Ignaszak-Szczepaniak, M.; Horst-Sikorska, W.; Dytfeld, J.; Gowin, E.; Słomski, R.; Stajgis, M. Association between estrogen receptor alpha gene polymorphisms and bone mineral density in Polish female patients with Graves’ disease. Acta Biochim. Pol. 2011, 58, 101–109. [Google Scholar] [CrossRef]
CD | UC | CG | P Value | |||
---|---|---|---|---|---|---|
N | 100 | 98 | 41 | CD vs. UC | CD vs. CG | UC vs. CG |
Age (years) | 35.59 ± 12.79 | 39.46 ± 14.69 | 30.37 ± 8.58 | ns. | ns | 0.001 |
Body weight (kg) | 63.39 ± 13.71 | 68.38 ± 14.83 | 74.63 ± 14.07 | 0.032 | 0.001 | ns |
Height (cm) | 171.17 ± 10.19 | 171.01 ± 9.25 | 173.05 ± 9.25 | ns | ns | ns |
BMI (kg/m2) | 21.51 ± 3.72 | 23.29 ± 4.28 | 24.79 ± 3.51 | 0.004 | <0.001 | ns |
Vit. D (ng/mL) | 21.14 ± 11.73 | 21.74 ± 8.87 | 21.34 ± 8.94 | ns | ns | ns |
Ca (mmol/L) | 2.32 ± 0.19 | 2.36 ± 0.14 | 2.37 ± 0.08 | ns | ns | ns |
P (mmol/L) | 1.13 ± 0.26 | 1.11 ± 0.28 | 1.20 ± 0.20 | ns | ns | ns |
L2–L4 BMD (g/cm2) | 1.11 ± 0.18 | 1.16 ± 0.14 | 1.23 ± 0.08 | ns | 0.001 | 0.019 |
L2–L4 T-score | −0.90 ± 1.45 | −0.42 ± 1.15 | 0.12 ± 0.69 | ns | <0.001 | 0.015 |
L2–L4 Z-score | −0.12 ± 1.18 | −0.12 ± 1.18 | 0.09 ± 0.64 | ns | 0.015 | ns |
Femoral neck BMD (g/cm2) | 0.94 ± 0.18 | 0.98 ± 1.18 | 1.08 ± 1.16 | ns | <0.001 | 0.010 |
Femoral neck T-score | −0.64 ± 1.30 | −0.31 ± 1.22 | 0.44 ± 1.02 | ns | <0.001 | 0.003 |
Femoral neck Z-score | −0.25 ± 1.11 | 0.08 ± 1.06 | 0.38 ± 0.97 | ns | 0.006 | ns |
Patients with bone fractures (n) % | (26) 26% | (29) 29.6% | (0) 0.0% | ns | <0.001 | <0.001 |
Women | CD | UC | CG | P Value | ||
n | 49 | 52 | 20 | CD vs. UC | CD vs. CG | UC vs. CG |
Women with bone fractures (n) % | (13) 26.5% | (15) 28.8% | n.o. | ns | 0.011 | 0.007 |
BMI (kg/m2) | 21.17 ± 4.04 | 22.10 ± 4.32 | 23.39 ± 3.09 | ns | 0.031 | ns |
L2–L4 BMD (g/cm2) | 1.06 ± 0.17 | 1.17 ± 0.13 | 1.21 ± 0.08 | 0.001 | 0.005 | ns |
L2–L4 T score | −1.17 ± 1.41 | −0.34 ± 1.15 | 0.06 ± 0.65 | 0.002 | 0.004 | ns |
L2–L4 Z score | −0.54 ± 1.26 | 0.13 ± 1.17 | 0.21 ± 0.65 | 0.020 | 0.056 | ns |
Femoral neck BMD (g/cm2) | 0.85 ± 0.15 | 0.93 ± 1.14 | 0.99 ± 0.09 | 0.014 | 0.004 | ns |
Femoral neck T-score | −1.08 ± 1.27 | −0.49 ± 1.11 | 0.08 ± 0.72 | 0.033 | <0.001 | ns |
Femoral neck Z-score | −0.50 ± 1.13 | 0.03 ± 1.00 | 0.20 ± 0.70 | 0.064 | 0.015 | ns |
Men | CD | UC | CG | P Value | ||
n | 51 | 47 | 21 | CD vs. UC | CD vs. CG | UC vs. CG |
Men with bone fractures (n) % | (13) 25.5% | (14) 29.8% | n.o. | ns | 0.013 | 0.006 |
BMI (kg/m2) | 21.58 ± 3.35 | 24.85 ± 3.83 | 25.27 ± 5.98 | 0.002 | <0.001 | ns |
L2–L4 BMD (g/cm2) | 1.20 ± 0.18 | 1.18 ± 0.14 | 1.27 ± 0.08 | ns | ns | ns |
L2–L4 T score | −0.64 ± 1.45 | −0.51 ± 1.16 | 0.17 ± 0.74 | ns | 0.089 | ns |
L2–L4 Z score | −0.39 ± 1.34 | −0.42 ± 1.13 | −0.27 ± 0.63 | ns | ns | ns |
Femoral neck BMD (g/cm2) | 1.03 ±0.16 | 1.05 ± 0.16 | 1.17 ± 0.16 | ns | 0.016 | 0.040 |
Femoral neck T-score | −0.23 ± 1.19 | −0.11 ± 1.31 | 0.78 ± 1.16 | ns | 0.007 | 0.023 |
Femoral neck Z-score | −0.01 ± 1.05 | 0.21 ± 1.14 | 0.56 ± 1.17 | ns | ns | ns |
ESR1 c.397T>C (PvuII) | |||||
---|---|---|---|---|---|
Genotype Frequencies (%) | Allele Frequencies (%) | ||||
TT | TC | CC | T * 1000Genomes: 57.7% | C * 1000Genomes: 42.3% | |
IBD (all patients) n = 198 | 77 (38.9%) | 81 (41.0%) | 40 (20.2%) | 235 (59.3%) | 161 (40.7%) |
UC patients (n = 98) | 29 (29.6%) | 46 (46.9%) | 23 (23.5%) | 104 (53.1%) | 92 (46.9%) |
CD patients ** (n = 100) | 48 (48.0%) | 35 (35.0%) | 17 (17.0%) | 131 (65.5%) | 69 (34.5%) |
CG (n = 41) | 13 (31.7%) | 24 (58.5%) | 4 (9.8%) | 50 (61.0%) | 32 (39.0%) |
Comparisons of allelic and genotypic frequencies between groups under study | |||||
[TT + TC] vs. [CC] | [TT] vs. [TC + CC] | [TT] vs. [CC] | [T] vs. [C] | [C] vs. [T] | |
CG vs. IBD OR, 95% CI P-value | OR = 0.43 [0.14–1.27] P = 0.116 | OR = 0.73 [0.36–1.50] P = 0.388 | OR = 1.69 [0.517–5.516] P = 0.382 | OR = 1.07 [0.66–1.74] | OR = 0.93 [0.57–1.52] |
P = 0.784 | |||||
CG vs. UC OR, 95% CI P-value | OR = 0.35 [0.11–1.09] P = 0.062 | OR = 1.11 [0.50–2.43] P = 0.804 | OR = 2.58 [0.74–8.97] P = 0.129 | OR = 1.38 [0.82–2.34] | OR = 0.72 [0.43–1.22] |
P = 0.226 | |||||
CG vs. CD OR, 95% CI P-value | OR = 0.58 [0.17–1.68] P = 0.273 | OR = 0.50 [0.13–0.70] P = 0.004 | OR = 1.15 [0.33–4.02] P = 0.825 | OR = 0.82 [0.48–1.40] | OR = 1.22 [0.72–2.10] |
P = 0.472 | |||||
CD vs. UC OR, 95% CI P-value | OR = 0.67 [0.33–1.35] P = 0.257 | OR = 2.20 [1.22–3.94] P = 0.008 | OR = 2.24 [1.03–4.88] P = 0.041 | OR = 1.68 [1.12–2.52] | OR = 0.60 [0.40–0.89] |
P = 0.012 |
ESR1 c.454-351A>G (XbaI) | ||||||
---|---|---|---|---|---|---|
Genotype Frequencies (%) | Allele Frequencies (%) | |||||
GG | GA | AA | G * 1000Genomes: 30.8% | A * 1000Genomes: 69.2% | ||
IBD (all patients) n = 198 | 21 (9.6%) | 98 (49.0%) | 79 (41.4%) | 140 (35.4%) | 256 (64.6%) | |
UC patients (n = 98) | 11 (11.2%) | 47 (48.0%) | 40 (40.8%) | 69 (35.2%) | 127 (64.8%) | |
CD patients (n = 100) | 10 (10.0%) | 51 (51.0%) | 39 (39.0%) | 71 (35.5%) | 129 (64.5%) | |
CG (n = 41) | 2 (4.9%) | 19 (46.3%) | 20 (48.8%) | 23 (28.0%) | 59 (72.0%) | |
Comparisons of allelic and genotypic frequencies between groups under study | ||||||
[GG + GA] vs. [AA] | [GG] vs. [GA + AA] | [GG] vs. [AA] | [G] vs. [A] | [A] vs. [G] | ||
CG vs. IBD OR, 95% CI P-value | OR = 0.70 CI = [0.36–1.37] P = 0.293 | OR = 2.31 CI = [0.52–10.28] P = 0.258 | OR = 2.66 CI = [0.58–12.29] P = 0.196 | OR = 1.40 CI = [0.83–2.37] | OR 0.71 CI = [0.42–1.20] | |
P = 0.204 | ||||||
CG vs. UC OR, 95% CI P-value | OR = 0.72 CI = [0.35–1.51] P = 0.387 | OR = 2.47 CI = [0.52–11.65] P = 0.241 | OR = 2.75 CI = [0.56–13.61] p = 0.201 | OR = 1.39 CI = [0.79–2.45] | OR = 0.71 CI = [0.41–1.26] | |
P = 0.248 | ||||||
CG vs. CD OR, 95% CI P-value | OR = 0.67 CI = [0.32–1.40] P = 0.285 | OR = 2.17 CI = [0.45–10.35] P = 0.322 | OR = 2.56 CI = [0.51–12.84] P = 0.239 | OR = 1.412 CI = [0.81–2.48] | OR = 0.71 CI = [0.40–1.24] | |
P = 0.228 | ||||||
CD vs. UC OR, 95% CI P-value | OR = 0.93 CI = [0.53–1.64] P = 0.794 | OR = 0.88 C.I. = [0.36–2.17] P = 0.780 | OR = 0.932 CI = [0.36–2.44] P = 0.887 | OR = 1.01 CI = [0.67–1.53] | OR = 0.99 CI = [0.65–1.49] | |
P = 0.951 |
Females PvuII | CD (n = 49) Average ± SD | P-Value * | UC (n = 52) Average± SD | P-Value * | |||||
CC n = 8 (16.3%) | TC n = 24 (49.0%) | TT n = 17 (34.7%) | CC n = 12 (23.1%) | TC n = 25 (48.1%) | TT n = 15 (28.8) | ||||
BMI (kg/m2) | 20.95 ± 3.66 | 22.25 ± 4.68 | 19.46 ± 2.52 | 0.128 | 20.49 ± 4.43 | 21.82 ± 3.82 | 23.85 ± 4.67 | 0.086 | |
BMD L2–L4 (g/cm2) | 1.13 ± 0.20 | 1.09 ± 0.17 | 1.00 ± 0.15 | 0.127 | 1.10 ± 0.14 | 1.18 ± 0.15 | 1.19 ± 0.16 | 0.330 | |
L2–L4 T-score | −0.62 ± 1.70 | −0.96 ± 1.40 | −1.69 ± 1.21 | 0.133 | −0.80 ± 1.14 | −0.31 ± 1.11 | −0.12 ± 1.31 | 0.389 | |
L2–L4 Z-score | −0.23 ± 1.32 | −0.34 ± 1.38 | −0.93 ± 1.03 | 0.272 | −0.14 ± 1.18 | 0.21 ± 1.08 | 0.08 ± 1.32 | 0.697 | |
Femoral neck BMD | 0.94 ± 0.15 | 0.88 ± 0.16 | 0.77 ± 0.11 | 0.018 | 0.87 ± 0.13 | 0.94 ± 0.13 | 0.95 ± 0.14 | 0.269 | |
Femoral neck T-score | −0.37 ± 1.27 | −0.83 ± 1.33 | −1.73 ± 0.93 | 0.017 | −0.94 ± 1.18 | −0.36 ± 1.09 | −0.31 ± 1.02 | 0.274 | |
Femoral neck Z-s | 0.07 ± 1.04 | −0.23 ± 1.14 | −1.09 ± 0.91 | 0.021 ** | −0.30 ± 0.93 | 0.12 ± 1.09 | −0.05 ± 0.90 | 0.541 | |
Males PvuII | CD (n = 51) Average± SD | P-Value * | UC (n = 46) Average± SD | P-Value * | |||||
CC n = 10 (19.6%) | TC n = 35 (68.6%) | TT n = 6 (11.8%) | CC n = 11 (23.9%) | TC n = 21 (45.7%) | TT n = 14 (30.4%) | ||||
BMI (kg/m2) | 21.28 ± 2.31 | 21.84 ± 3.66 | 21.26 ± 3.36 | 0.694 | 24.56 ±4.78 | 25.23 ± 4.19 | 24.48 ± 2.43 | 0.819 | |
BMD L2–L4 (g/cm2) | 1.11 ± 0.11 | 1.13 ± 0.19 | 1.28 ± 0.17 | 0.127 | 1.14 ± 0.12 | 1.18 ± 0.12 | 1.18 ± 0.16 | 0.636 | |
L2–L4 T-score | −0.98 ± 0.69 | −0.82 ± 1.52 | 0.40 ± 1.45 | 0.125 | −0.80 ± 1.00 | −0.44 ± 1.10 | −0.34 ± 1.36 | 0.653 | |
L2–L4 Z-score | −0.66 ± 0.60 | −0.58 ± 1.43 | 0.62 ± 1.29 | 0.108 | −0.73 ± 0.80 | −0.30 ± 1.15 | −0.39 ± 1.40 | 0.408 | |
Femoral neck BMD | 1.02 ± 0.07 | 1.00 ± 0.16 | 1.14 ± 0.18 | 0.134 | 1.05 ± 0.20 | 1.04 ± 0.12 | 1.04 ± 0.17 | 0.993 | |
Femoral neck T-score | −0.33 ± 0.55 | −0.42 ± 1.24 | 0.64 ± 1.29 | 0.123 | −0.13 ± 1.50 | −0.22 ± 0.94 | 0.03 ± 1.56 | 0.909 | |
Femoral neck Z-score | −0.05 ± 0.56 | −0.22 ± 1.05 | 0.87 ± 1.22 | 0.101 | 0.18 ± 1.24 | 0.11 ± 0.77 | 0.31 ± 1.48 | 0.810 | |
Females XbaI | CD (n = 49) Average± SD | P-Value * | UC (n = 52) Average± SD | P-Value * | |||||
GG n = 3 (6.1%) | GA n = 24 (49.0%) | AA n = 22 (44.9%) | GG n = 6 (11.5%) | GA n = 25 (48.1%) | AA n = 21 (40.4%) | ||||
BMI (kg/m2) | 22.09 ± 6.05 | 21.11 ± 3.49 | 20.89 ± 4.47 | 0.758 | 19.88 ± 2.78 | 21.19 ± 4.00 | 23.83 ± 4.55 | 0.043 | |
BMD L2–L4 (g/cm2) | 1.26 ± 0.15 | 1.08 ± 0.17 | 1.01 ± 0.16 | 0.039 | 1.12 ± 0.06 | 1.16 ± 0.17 | 1.18 ± 0.15 | 0.754 | |
L2–L4 T-score | 0.53 ± 1.24 | −0.98 ± 1.40 | −1.58 ± 1.31 | 0.035 | −0.64 ± 0.54 | −0.44 ± 1.25 | −0.20 ± 1.22 | 0.721 | |
L2–L4 Z-score | 0.44 ± 1.11 | −0.30 ± 1.31 | −0.91 ± 1.15 | 0.104 | 0.12 ± 0.52 | 0.17 ± 1.25 | 0.02 ± 1.19 | 0.660 | |
Femoral neck BMD | 0.97 ± 0.09 | 0.88 ± 0.16 | 0.81 ± 0.14 | 0.152 | 0.85 ± 0.09 | 0.93 ± 0.15 | 0.95 ± 0.13 | 0.309 | |
Femoral neck T-score | −0.12 ± 0.74 | −0.85 ± 1.37 | −1.43 ± 1.14 | 0.127 | −1.16 ± 0.93 | −0.40 ± 1.23 | −0.38 ± 0.94 | 0.312 | |
Femoral neck Z-score | −0.04 ± 0.35 | −0.21 ± 1.15 | −0.83 ± 1.11 | 0.148 | −0.29 ± 0.45 | 0.10 ± 1.23 | −0.11 ± 0.79 | 0.733 | |
Males XbaI | CD (n = 51) Average± SD | P-Value * | UC (n = 46) Average± SD | P-Value * | |||||
GG n = 7 (13.7%) | GA n = 27 (53.0%) | AA n = 17 (33.3%) | GG n = 5 (10.9%) | GA n = 22 (47.8%) | AA n = 19 (41.3%) | ||||
BMI (kg/m2) | 20.91 ± 2.70 | 21.66 ± 3.64 | 21.97 ± 3.27 | 0.582 | 24.74 ± 7.17 | 25.13 ± 3.64 | 24.54 ± 3.10 | 0.834 | |
BMD L2–L4 [g/cm2] | 1.15 ± 0.10 | 1.12 ± 0.20 | 1.18 ± 0.18 | 0.663 | 1.07 ± 0.13 | 1.17 ± 0.12 | 1.19 ± 0.14 | 0.190 | |
L2–L4 T-score | −0.85 ± 0.77 | −0.88 ± 1.62 | −0.37 ± 1.32 | 0.504 | −1.20 ± 1.20 | −0.57 ± 1.10 | −0.23 ± 1.17 | 0.326 | |
L2–L4 Z-score | −0.58 ± 0.56 | −0.58 ± 1.53 | −0.19 ± 1.23 | 0.632 | −1.15 ± 0.64 | −0.45 ± 1.10 | −0.22 ± 1.26 | 0.230 | |
Femoral neck BMD | 1.04 ± 0.05 | 0.98 ± 0.16 | 1.08 ± 0.15 | 0.110 | 0.98 ± 0.23 | 1.03 ± 0.13 | 1.07 ± 0.16 | 0.484 | |
Femoral neck T-score | −0.22 ± 0.36 | −0.56 ± 1.27 | 0.15 ± 1.17 | 0.145 | −0.58 ± 1.75 | −0.26 ± 1.06 | 0.15 ± 1.36 | 0.678 | |
Femoral neck Z-score | 0.07 ± 0.28 | −0.28 ± 1.08 | 0.25 ± 1.11 | 0.276 | −0.30 ± 1.44 | 0.06 ± 0.94 | 0.45 ± 1.21 | 0.509 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krela-Kaźmierczak, I.; Skrzypczak-Zielińska, M.; Kaczmarek-Ryś, M.; Michalak, M.; Szymczak-Tomczak, A.; Hryhorowicz, S.T.; Szalata, M.; Łykowska-Szuber, L.; Eder, P.; Stawczyk-Eder, K.; et al. ESR1 Gene Variants Are Predictive of Osteoporosis in Female Patients with Crohn’s Disease. J. Clin. Med. 2019, 8, 1306. https://doi.org/10.3390/jcm8091306
Krela-Kaźmierczak I, Skrzypczak-Zielińska M, Kaczmarek-Ryś M, Michalak M, Szymczak-Tomczak A, Hryhorowicz ST, Szalata M, Łykowska-Szuber L, Eder P, Stawczyk-Eder K, et al. ESR1 Gene Variants Are Predictive of Osteoporosis in Female Patients with Crohn’s Disease. Journal of Clinical Medicine. 2019; 8(9):1306. https://doi.org/10.3390/jcm8091306
Chicago/Turabian StyleKrela-Kaźmierczak, Iwona, Marzena Skrzypczak-Zielińska, Marta Kaczmarek-Ryś, Michał Michalak, Aleksandra Szymczak-Tomczak, Szymon T. Hryhorowicz, Marlena Szalata, Liliana Łykowska-Szuber, Piotr Eder, Kamila Stawczyk-Eder, and et al. 2019. "ESR1 Gene Variants Are Predictive of Osteoporosis in Female Patients with Crohn’s Disease" Journal of Clinical Medicine 8, no. 9: 1306. https://doi.org/10.3390/jcm8091306
APA StyleKrela-Kaźmierczak, I., Skrzypczak-Zielińska, M., Kaczmarek-Ryś, M., Michalak, M., Szymczak-Tomczak, A., Hryhorowicz, S. T., Szalata, M., Łykowska-Szuber, L., Eder, P., Stawczyk-Eder, K., Tomczak, M., Słomski, R., & Dobrowolska, A. (2019). ESR1 Gene Variants Are Predictive of Osteoporosis in Female Patients with Crohn’s Disease. Journal of Clinical Medicine, 8(9), 1306. https://doi.org/10.3390/jcm8091306