Alcohol Hangover Slightly Impairs Response Selection but not Response Inhibition
Abstract
:1. Introduction
2. Experimental Section
2.1. Participants and Sample Size Estimation
2.2. Experimental Design and Hangover Provoking Procedure
2.3. Questionnaires
2.4. Task
2.5. Statistical Analyses
3. Results
3.1. Sample Characteristics
3.2. Test-Retest Reliability of the Experimental Paradigm
3.3. Behavioral Data
3.4. Add-On Analyses—Alcohol Sensitivity
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Schrojenstein Lantman, M.; JAE van de Loo, A.; Mackus, M.; Verster, J.C. Development of a Definition for the Alcohol Hangover: Consumer Descriptions and Expert Consensus. Curr. Drug Abuse Rev. 2017, 9, 148–154. [Google Scholar] [CrossRef]
- Stephens, R.; Ling, J.; Heffernan, T.M.; Heather, N.; Jones, K. A review of the literature on the cognitive effects of alcohol hangover. Alcohol Alcohol. 2008, 43, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.; Stephens, R.; Heffernan, T.M. Cognitive and psychomotor performance during alcohol hangover. Curr. Drug Abuse Rev. 2010, 3, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Gunn, C.; Mackus, M.; Griffin, C.; Munafò, M.R.; Adams, S. A systematic review of the next-day effects of heavy alcohol consumption on cognitive performance. Addiction 2018, 113, 2182–2193. [Google Scholar] [CrossRef] [PubMed]
- Grange, J.A.; Stephens, R.; Jones, K.; Owen, L. The effect of alcohol hangover on choice response time. J. Psychopharmacol. 2016, 30, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Wolff, N.; Gussek, P.; Stock, A.-K.; Beste, C. Effects of high-dose ethanol intoxication and hangover on cognitive flexibility. Addict. Biol. 2018, 23, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Stock, A.-K.; Hoffmann, S.; Beste, C. Effects of binge drinking and hangover on response selection sub-processes-a study using EEG and drift diffusion modeling: Binge-drinking and hangover. Addict. Biol. 2017, 22, 1355–1365. [Google Scholar] [CrossRef] [PubMed]
- Bush, D.M.; Lipari, R.N. Workplace Policies and Programs Concerning Alcohol and Drug Use. In The CBHSQ Report; Substance Abuse and Mental Health Services Administration: Rockville, MD, USA, 2013. [Google Scholar]
- Verster, J.C.; Bervoets, A.C.; de Klerk, S.; Vreman, R.A.; Olivier, B.; Roth, T.; Brookhuis, K.A. Effects of alcohol hangover on simulated highway driving performance. Psychopharmacology 2014, 231, 2999–3008. [Google Scholar] [CrossRef]
- Jernigan, D.H. Global Status Report: Alcohol and Young People; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Montgomery, C.; Fisk, J.E.; Murphy, P.N.; Ryland, I.; Hilton, J. The effects of heavy social drinking on executive function: A systematic review and meta-analytic study of existing literature and new empirical findings. Hum. Psychopharmacol. 2012, 27, 187–199. [Google Scholar] [CrossRef]
- WHO. Global Status Report on Alcohol and Health 2018. Available online: http://www.who.int/substance_abuse/publications/global_alcohol_report/en/ (accessed on 27 August 2019).
- Courtney, K.E.; Polich, J. Binge drinking in young adults: Data, definitions and determinants. Psychol. Bull. 2009, 135, 142–156. [Google Scholar] [CrossRef]
- Knight, J.R.; Wechsler, H.; Kuo, M.; Seibring, M.; Weitzman, E.R.; Schuckit, M.A. Alcohol abuse and dependence among US college students. J. Stud. Alcohol 2002, 63, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Shnitko, T.A.; Gonzales, S.W.; Grant, K.A. Low cognitive flexibility as a risk for heavy alcohol drinking in non-human primates. Alcohol 2018, 74, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Bjork, J.M.; Gilman, J.M. The effects of acute alcohol administration on the human brain: Insights from neuroimaging. Neuropharmacology 2014, 84, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, M.; Schoenmakers, T.; Wiers, R.W. Cognitive processes in alcohol binges: A review and research agenda. Curr. Drug Abuse Rev. 2008, 1, 263–279. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, W.X.; Zink, N.; Chmielewski, K.Y.; Beste, C.; Stock, A.-K. How high-dose alcohol intoxication affects the interplay of automatic and controlled processes. Addict. Biol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Stock, A.-K.; Schulz, T.; Lenhardt, M.; Blaszkewicz, M.; Beste, C. High-dose alcohol intoxication differentially modulates cognitive subprocesses involved in response inhibition. Addict. Biol. 2014, 21, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Stock, A.-K.; Riegler, L.; Chmielewski, W.X.; Beste, C. Paradox effects of binge drinking on response inhibition processes depending on mental workload. Arch. Toxicol. 2015, 90, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Stock, A.-K. Barking up the Wrong Tree: Why and How We May Need to Revise Alcohol Addiction Therapy. Front. Psychol. 2017, 8, 884. [Google Scholar] [CrossRef]
- Chastain, G. Alcohol, neurotransmitter systems and behavior. J. Gen. Psychol. 2006, 133, 329–335. [Google Scholar] [CrossRef]
- Di Chiara, G. Alcohol and dopamine. Alcohol Health Res. World 1997, 21, 108–114. [Google Scholar]
- Iversen, L.L.; Iversen, S.D.; Bloom, F.E.; Roth, R.H. Introduction to Neuropsychopharmacology; Oxford University Press: New York, NY, USA, 2009; ISBN 978-0-19-538053-8. [Google Scholar]
- Kumar, S.; Porcu, P.; Werner, D.F.; Matthews, D.B.; Diaz-Granados, J.L.; Helfand, R.S.; Morrow, A.L. The role of GABA(A) receptors in the acute and chronic effects of ethanol: A decade of progress. Psychopharmacology 2009, 205, 529–564. [Google Scholar] [CrossRef] [PubMed]
- Melis, M.; Diana, M.; Enrico, P.; Marinelli, M.; Brodie, M.S. Ethanol and acetaldehyde action on central dopamine systems: Mechanisms, modulation and relationship to stress. Alcohol 2009, 43, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Martí-Prats, L.; Sánchez-Catalán, M.J.; Orrico, A.; Zornoza, T.; Polache, A.; Granero, L. Opposite motor responses elicited by ethanol in the posterior VTA: The role of acetaldehyde and the non-metabolized fraction of ethanol. Neuropharmacology 2013, 72, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Prat, G.; Adan, A.; Sánchez-Turet, M. Alcohol hangover: A critical review of explanatory factors. Hum. Psychopharmacol. Clin. Exp. 2009, 24, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Wiese, J.G.; Shlipak, M.G.; Browner, W.S. The alcohol hangover. Ann. Intern. Med. 2000, 132, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, K.; Ohkuma, S.; Taguchi, J.; Hashimoto, T. Alcohol, acetaldehyde and salsolinol-induced alterations in functions of cerebral GABA/benzodiazepine receptor complex. Physiol. Behav. 1987, 40, 393–399. [Google Scholar] [CrossRef]
- Correa, M.; Salamone, J.D.; Segovia, K.N.; Pardo, M.; Longoni, R.; Spina, L.; Peana, A.T.; Vinci, S.; Acquas, E. Piecing together the puzzle of acetaldehyde as a neuroactive agent. Neurosci. Biobehav. Rev. 2012, 36, 404–430. [Google Scholar] [CrossRef]
- Quertemont, E.; Grant, K.A.; Correa, M.; Arizzi, M.N.; Salamone, J.D.; Tambour, S.; Aragon, C.M.G.; McBride, W.J.; Rodd, Z.A.; Goldstein, A.; et al. The role of acetaldehyde in the central effects of ethanol. Alcohol. Clin. Exp. Res. 2005, 29, 221–234. [Google Scholar] [CrossRef]
- Bar-Gad, I.; Morris, G.; Bergman, H. Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog. Neurobiol. 2003, 71, 439–473. [Google Scholar] [CrossRef]
- Plenz, D. When inhibition goes incognito: Feedback interaction between spiny projection neurons in striatal function. Trends Neurosci. 2003, 26, 436–443. [Google Scholar] [CrossRef]
- Willemssen, R.; Falkenstein, M.; Schwarz, M.; Müller, T.; Beste, C. Effects of aging, Parkinson’s disease and dopaminergic medication on response selection and control. Neurobiol. Aging 2011, 32, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Plessow, F.; Fischer, R.; Volkmann, J.; Schubert, T. Subthalamic deep brain stimulation restores automatic response activation and increases susceptibility to impulsive behavior in patients with Parkinson’s disease. Brain Cogn. 2014, 87, 16–21. [Google Scholar] [CrossRef] [PubMed]
- De la Vega, A.; Brown, M.S.; Snyder, H.R.; Singel, D.; Munakata, Y.; Banich, M.T. Individual differences in the balance of GABA to glutamate in pFC predict the ability to select among competing options. J. Cogn. Neurosci. 2014, 26, 2490–2502. [Google Scholar] [CrossRef] [PubMed]
- Zink, N.; Bensmann, W.; Beste, C.; Stock, A.-K. Alcohol Hangover Increases Conflict Load via Faster Processing of Subliminal Information. Front. Hum. Neurosci. 2018, 12, 316. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, W.X.; Beste, C. Testing interactive effects of automatic and conflict control processes during response inhibition—A system neurophysiological study. Neuroimage 2017, 146, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.R. The effects of an irrelevant directional cue on human information processing. In Stimulus-Response Compatibility: An Integrated Perspective; Proctor, R.W., Reeve, T.G., Eds.; Elsevier: Amsterdam, The Netherlands, 1990; pp. 31–86. [Google Scholar]
- Leuthold, H. The Simon effect in cognitive electrophysiology: A short review. Acta Psychol. 2011, 136, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Hommel, B. The Simon effect as tool and heuristic. Acta Psychol. 2011, 136, 189–202. [Google Scholar] [CrossRef] [PubMed]
- De Jong, R.; Liang, C.C.; Lauber, E. Conditional and unconditional automaticity: A dual-process model of effects of spatial stimulus-response correspondence. J. Exp. Psychol. Hum. Percept. Perform. 1994, 20, 731–750. [Google Scholar] [CrossRef]
- Kornblum, S.; Hasbroucq, T.; Osman, A. Dimensional overlap: Cognitive basis for stimulus-response compatibility—A model and taxonomy. Psychol. Rev. 1990, 97, 253–270. [Google Scholar] [CrossRef] [PubMed]
- Keye, D.; Wilhelm, O.; Oberauer, K.; Stürmer, B. Individual differences in response conflict adaptations. Front. Psychol. 2013, 4, 947. [Google Scholar] [CrossRef] [Green Version]
- Chmielewski, W.X.; Mückschel, M.; Beste, C. Response selection codes in neurophysiological data predict conjoint effects of controlled and automatic processes during response inhibition. Hum. Brain Mapp. 2018, 39, 1839–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donkers, F.C.L.; van Boxtel, G.J.M. The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain Cogn. 2004, 56, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Dippel, G.; Chmielewski, W.; Mückschel, M.; Beste, C. Response mode-dependent differences in neurofunctional networks during response inhibition: An EEG-beamforming study. Brain Struct. Funct. 2016, 221, 4091–4101. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; reprint; Psychology Press: New York, NY, USA, 2009; ISBN 978-0-8058-0283-2. [Google Scholar]
- Babor, T.F.; Higgins-Biddle, J.C.; Saunders, J.B.; Monteiro, M.G. The Alcohol Use Disorders Identification Test Guidelines for Use in Primary Care, 2nd ed.; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Van Schrojenstein Lantman, M.; Mackus, M.; Roth, T.; Verster, J. Total sleep time, alcohol consumption and the duration and severity of alcohol hangover. Nat. Sci. Sleep 2017, 9, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Widmark, E.M.P. Die Theoretischen Grundlagen Und Die Praktische Verwendbarkeit Der Gerichtlich-Medizinischen Alkoholbestimmung; Urban & Schwarzenberg: Berlin, Germany, 1932. [Google Scholar]
- Watson, P.E.; Watson, I.D.; Batt, R.D. Total body water volumes for adult males and females estimated from simple anthropometric measurements. Am. J. Clin. Nutr. 1980, 33, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Rohsenow, D.J.; Howland, J.; Arnedt, J.T.; Almeida, A.B.; Greece, J.; Minsky, S.; Kempler, C.S.; Sales, S. Intoxication With Bourbon Versus Vodka: Effects on Hangover, Sleep and Next-Day Neurocognitive Performance in Young Adults. Alcohol. Clin. Exp. Res. 2010, 34, 509–518. [Google Scholar] [CrossRef]
- Verster, J.C. The alcohol hangover-a puzzling phenomenon. Alcohol Alcohol. 2008, 43, 124–126. [Google Scholar] [CrossRef] [Green Version]
- Epler, A.J.; Tomko, R.L.; Piasecki, T.M.; Wood, P.K.; Sher, K.J.; Shiffman, S.; Heath, A.C. Does Hangover Influence the Time to Next Drink? An Investigation Using Ecological Momentary Assessment. Alcohol. Clin. Exp. Res. 2014, 38, 1461–1469. [Google Scholar] [CrossRef]
- Jackson, K.M.; Rohsenow, D.J.; Piasecki, T.M.; Howland, J.; Richardson, A.E. Role of Tobacco Smoking in Hangover Symptoms Among University Students. J. Stud. Alcohol Drugs 2013, 74, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Reiss, S.; Peterson, R.A.; Gursky, D.M.; McNally, R.J. Anxiety sensitivity, anxiety frequency and the prediction of fearfulness. Behav. Res. Ther. 1986, 24, 1–8. [Google Scholar] [CrossRef]
- Beck, A.T. An Inventory for Measuring Depression. Arch. Gen. Psychiatry 1961, 4, 561. [Google Scholar] [CrossRef] [PubMed]
- Fleming, K.A.; Bartholow, B.D.; Hilgard, J.; McCarthy, D.M.; O’Neill, S.E.; Steinley, D.; Sher, K.J. The Alcohol Sensitivity Questionnaire: Evidence for Construct Validity. Alcohol. Clin. Exp. Res. 2016, 40, 880–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson, M.E.J. A tutorial on a practical Bayesian alternative to null-hypothesis significance testing. Behav. Res. 2011, 43, 679–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raftery, A.E. Bayesian Model Selection in Social Research. Sociol. Methodol. 1995, 25, 111. [Google Scholar] [CrossRef]
- Piasecki, T.M.; Alley, K.J.; Slutske, W.S.; Wood, P.K.; Sher, K.J.; Shiffman, S.; Heath, A.C. Low sensitivity to alcohol: Relations with hangover occurrence and susceptibility in an ecological momentary assessment investigation. J. Stud. Alcohol Drugs 2012, 73, 925–932. [Google Scholar] [CrossRef] [PubMed]
- Bailey, K.; Bartholow, B.D. Alcohol words elicit reactive cognitive control in low-sensitivity drinkers. Psychophysiology 2016, 53, 1751–1759. [Google Scholar] [CrossRef] [Green Version]
- Fleming, K.A.; Bartholow, B.D. Alcohol cues, approach bias and inhibitory control: Applying a dual process model of addiction to alcohol sensitivity. Psychol. Addict. Behav. 2014, 28, 85–96. [Google Scholar] [CrossRef]
- Devenney, L.E.; Coyle, K.B.; Verster, J.C. Cognitive performance and mood after a normal night of drinking: A naturalistic alcohol hangover study in a non-student sample. Addict. Behav. Rep. 2019, 10, 100197. [Google Scholar] [CrossRef]
- Scholey, A.; Benson, S.; Kaufman, J.; Terpstra, C.; Ayre, E.; Verster, J.; Allen, C.; Devilly, G. Effects of Alcohol Hangover on Cognitive Performance: Findings from a Field/Internet Mixed Methodology Study. J. Clin. Med. 2019, 8, 440. [Google Scholar] [CrossRef]
- Harrison, E.L.R.; Fillmore, M.T. Alcohol and distraction interact to impair driving performance. Drug Alcohol Depend. 2011, 117, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brumback, T.; Cao, D.; McNamara, P.; King, A. Alcohol-induced performance impairment: A 5-year re-examination study in heavy and light drinkers. Psychopharmacology 2017, 234, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
- Devenney, L.E.; Coyle, K.B.; Verster, J.C. Memory and attention during an alcohol hangover. Hum. Psychopharmacol. Clin. Exp. 2019. [Google Scholar] [CrossRef] [PubMed]
- Finnigan, F.; Hammersley, R.; Cooper, T. An examination of next-day hangover effects after a 100 mg/100 mL dose of alcohol in heavy social drinkers. Addiction 1998, 93, 1829–1838. [Google Scholar] [CrossRef] [PubMed]
- Wolff, N.; Chmielewski, W.; Buse, J.; Roessner, V.; Beste, C. Paradoxical response inhibition advantages in adolescent obsessive compulsive disorder result from the interplay of automatic and controlled processes. Neuroimage Clin. 2019, 23, 101893. [Google Scholar] [CrossRef] [PubMed]
- Quetscher, C.; Yildiz, A.; Dharmadhikari, S.; Glaubitz, B.; Schmidt-Wilcke, T.; Dydak, U.; Beste, C. Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates. Brain Struct. Funct. 2015, 220, 3555–3564. [Google Scholar] [CrossRef]
- Ramdani, C.; Carbonnell, L.; Vidal, F.; Béranger, C.; Dagher, A.; Hasbroucq, T. Dopamine precursors depletion impairs impulse control in healthy volunteers. Psychopharmacology 2015, 232, 477–487. [Google Scholar] [CrossRef]
- Nederkoorn, C.; Baltus, M.; Guerrieri, R.; Wiers, R.W. Heavy drinking is associated with deficient response inhibition in women but not in men. Pharmacol. Biochem. Behav. 2009, 93, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Tolstrup, J.S.; Stephens, R.; Grønbaek, M. Does the severity of hangovers decline with age? Survey of the incidence of hangover in different age groups. Alcohol. Clin. Exp. Res. 2014, 38, 466–470. [Google Scholar] [CrossRef]
- Thumin, F.; Wims, E. The Perception of the Common Cold and other Ailments and Discomforts, as Related to Age. Int. J. Aging Hum. Dev. 1975, 6, 43–49. [Google Scholar] [CrossRef]
- Devenney, L.E.; Coyle, K.B.; Verster, J.C. The impact of expectancy on cognitive performance during alcohol hangover. BMC Res. Notes 2018, 11, 730. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Included Sample (n = 34) |
---|---|
Age in years | 23.21 ± 0.48 (19–28) |
Height in cm | 181.59 ± 0.99 (170–195) |
Weight in kg | 77.37 ± 1.73 (63–105) |
Cigarettes smoked per day | 0.80 ± 0.38 (0–10) |
Hours of sport per week | 4.65 ± 0.58 (0–16) |
BDI Score | 3.32 ± 0.70 (0–19) |
ASI Score | 13.34 ± 1.45 (1–33) |
AUDIT Score | 9.94 ± 0.54 (5–18) |
ASQ Score total | 8.40 ± 0.41 (3.25–13.29) |
ASQ Score of light-drinking | 5.27 ± 0.31 (1.63–9.25) |
ASQ Score of heavy-drinking | 13.43 ± 0.79 (5.20–24.00) |
Individual measured alcohol amount of brandy (36 Vol %) in mL | 419.71 ± 5.95 (369–516) |
Alcohol consumption duration in minutes | 182.50 ± 4.33 (111–243) |
BAC 30 min after end of consumption | 1.31 ± 0.03 (1.05–1.69) |
BAC 60 min after end of consumption | 1.24 ± 0.02 (1.01–1.56) |
BAC 90 min after end of consumption | 1.15 ± 0.02 (0.91–1.40) |
BAC 120 min after end of consumption | 1.07 ± 0.03 (0.83–1.43) |
Symptom | Sober | Hangover | Difference |
---|---|---|---|
Hours of sleep in previous night | 7.35 ± 0.15 (5.50–9) | 5.58 ± 0.19 (4–8) | p < 0.001 ** |
Overall hangover severity | 0 ± 0 (0–0) | 3.82 ± 0.42 (0–10) | p < 0.001 ** |
Headache | 0.06 ± 0.04 (0–1) | 2.68 ± 0.40 (0–8) | p < 0.001 ** |
Nausea | 0.03 ± 0.03 (0–1) | 1.71 ± 0.39 (0–7) | p < 0.001 ** |
Concentration problems | 0.61 ± 0.18 (0–4) | 3.21 ± 0.40 (0–8) | p < 0.001 ** |
Regret | 0.12 ± 0.12 (0–4) | 1.00 ± 0.36 (0–10) | p = 0.003 ** |
Sleepiness | 0.97 ± 0.22 (0–4) | 3.91 ± 0.44 (0–9) | p < 0.001 ** |
Heart pounding | 0.30 ± 0.10 (0–2) | 0.94 ± 0.24 (0–5) | p = 0.010 * |
Vomiting | 0.03 ± 0.03 (0–1) | 0.82 ± 0.34 (0–9) | p < 0.030 * |
Tired | 1.09 ± 0.21 (0–4) | 4.71 ± 0.40 (1–10) | p < 0.001 ** |
Shivering | 0.36 ± 0.13 (0–3) | 1.24 ± 0.29 (0–6) | p = 0.006 ** |
Clumsy | 0.42 ± 0.15 (0–3) | 2.12 ± 0.33 (0–6) | p < 0.001 ** |
Weakness | 0.30 ± 0.11 (0–2) | 2.50 ± 0.37 (0–10) | p < 0.001 ** |
Dizziness | 0.03 ± 0.03 (0–1) | 1.88 ± 0.33 (0–8) | p < 0.001 ** |
Apathy | 0 ± 0 (0–0) | 1.03 ± 0.23 (0–5) | p < 0.001 ** |
Sweating | 1.06 ± 0.28 (0–6) | 1.24 ± 0.32 (0–9) | p = 0.555 |
Stomach pain | 0.24 ± 0.16 (0–5) | 1.29 ± 0.38 (0–8) | p < 0.001 ** |
Confusion | 0.15 ± 0.08 (0–2) | 1.15 ± 0.28 (0–7) | p = 0.001 ** |
Sensitivity to light | 0.30 ± 0.13 (0–3) | 1.68 ± 0.33 (0–8) | p < 0.001 ** |
Thirst | 0.79 ± 0.22 (0–4) | 3.44 ± 0.37 (0–8) | p < 0.001 ** |
Heart racing | 0.15 ± 0.08 (0–2) | 0.65 ± 0.26 (0–6) | p = 0.084 |
Anxiety | 0.48 ± 0.16 (0–3) | 1.24 ± 0.35 (0–9) | p = 0.016 * |
Depression | 0.21 ± 0.16 (0–5) | 0.76 ± 0.29 (0–9) | p = 0.011 * |
Reduced appetite | 0.21 ± 0.16 (0–5) | 2.12 ± 0.44 (0–9) | p < 0.001 ** |
Sleeping problems | 0.21 ± 0.14 (0–4) | 1.00 ± 0.35 (0–8) | p = 0.018 * |
Effect | BF | PBIC(H0|D) | PBIC(H1|D) |
---|---|---|---|
Main effect hangover status | 5.56 | 0.848 | 0.152 |
Interaction hangover status x condition | 0.06 | 0.057 | 0.943 |
Interaction hangover status x congruency | 5.77 | 0.852 | 0.148 |
Interaction hangover status x condition x congruency | 5.92 | 0.855 | 0.145 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opitz, A.; Hubert, J.; Beste, C.; Stock, A.-K. Alcohol Hangover Slightly Impairs Response Selection but not Response Inhibition. J. Clin. Med. 2019, 8, 1317. https://doi.org/10.3390/jcm8091317
Opitz A, Hubert J, Beste C, Stock A-K. Alcohol Hangover Slightly Impairs Response Selection but not Response Inhibition. Journal of Clinical Medicine. 2019; 8(9):1317. https://doi.org/10.3390/jcm8091317
Chicago/Turabian StyleOpitz, Antje, Jan Hubert, Christian Beste, and Ann-Kathrin Stock. 2019. "Alcohol Hangover Slightly Impairs Response Selection but not Response Inhibition" Journal of Clinical Medicine 8, no. 9: 1317. https://doi.org/10.3390/jcm8091317
APA StyleOpitz, A., Hubert, J., Beste, C., & Stock, A. -K. (2019). Alcohol Hangover Slightly Impairs Response Selection but not Response Inhibition. Journal of Clinical Medicine, 8(9), 1317. https://doi.org/10.3390/jcm8091317