Altered White Matter Integrity after Mild to Moderate Traumatic Brain Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Evaluation of Post-concussion Symptoms, Cognitive and Physical Function
2.3. Image Acquisition
2.4. Data Preprocessing
2.5. Statistical Analyses
Comparing Diffusion-Anisotropy Findings between Groups and Estimating Correlation with the Cognitive and Physical Parameters
3. Results
3.1. Altered Diffusion-Based Anisotropy Findings Observed in the Mild-to-Moderate TBI Group
3.2. Correlations Between the Altered Diffusion-based Anisotropy Findings and Scores in CNT and Balance Testing
4. Discussions
4.1. Decreased FA Observed after TBI and Its Relationship with Cognitive Function
4.2. Decreased RD and AD Observed after TBI and Their Relationship with Postural Balance Control
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bazarian, J.J.; Veazie, P.; Mookerjee, S.; Lerner, E.B. Accuracy of mild traumatic brain injury case ascertainment using ICD-9 codes. Acad. Emerg. Med. 2006, 13, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Bruns, J., Jr.; Hauser, W.A. The epidemiology of traumatic brain injury: A review. Epilepsia 2003, 44, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, A.R.; Levin, H.S. Cognitive sequelae of traumatic brain injury. Psychiatr. Clin. N. Am. 2014, 37, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Maskell, F.; Chiarelli, P.; Isles, R. Dizziness after traumatic brain injury: Overview and measurement in the clinical setting. Brain Inj. 2006, 20, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Levin, H.S.; Mattis, S.; Ruff, R.M.; Eisenberg, H.M.; Marshall, L.F.; Tabaddor, K.; High, W.M., Jr.; Frankowski, R.F. Neurobehavioral outcome following minor head injury: A three-center study. J. Neurosurg. 1987, 66, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Bazarian, J.J.; Wong, T.; Harris, M.; Leahey, N.; Mookerjee, S.; Dombovy, M. Epidemiology and predictors of post-concussive syndrome after minor head injury in an emergency population. Brain Inj. 1999, 13, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, N.D.; Gardner, A.J.; Brubacher, J.R.; Panenka, W.J.; Li, J.J.; Iverson, G.L. Systematic review of multivariable prognostic models for mild traumatic brain injury. J. Neurotrauma 2015, 32, 517–526. [Google Scholar] [CrossRef]
- Belanger, H.G.; Vanderploeg, R.D.; Curtiss, G.; Warden, D.L. Recent neuroimaging techniques in mild traumatic brain injury. J. Neuropsychiatry Clin. Neurosci. 2007, 19, 5–20. [Google Scholar] [CrossRef]
- Eierud, C.; Craddock, R.C.; Fletcher, S.; Aulakh, M.; King-Casas, B.; Kuehl, D.; LaConte, S.M. Neuroimaging after mild traumatic brain injury: Review and meta-analysis. Neuroimage Clin. 2014, 4, 283–294. [Google Scholar] [CrossRef] [Green Version]
- Johnson, V.E.; Stewart, W.; Smith, D.H. Axonal pathology in traumatic brain injury. Exp. Neurol. 2013, 246, 35–43. [Google Scholar] [CrossRef]
- Alexander, A.L.; Lee, J.E.; Lazar, M.; Field, A.S. Diffusion tensor imaging of the brain. Neurotherapeutics 2007, 4, 316–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niogi, S.N.; Mukherjee, P. Diffusion tensor imaging of mild traumatic brain injury. J. Head Trauma Rehabil. 2010, 25, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Bazarian, J.J.; Zhong, J.; Blyth, B.; Zhu, T.; Kavcic, V.; Peterson, D. Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: A pilot study. J. Neurotrauma 2007, 24, 1447–1459. [Google Scholar] [CrossRef] [PubMed]
- Ilvesmaki, T.; Luoto, T.M.; Hakulinen, U.; Brander, A.; Ryymin, P.; Eskola, H.; Iverson, G.L.; Ohman, J. Acute mild traumatic brain injury is not associated with white matter change on diffusion tensor imaging. Brain 2014, 137, 1876–1882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lipton, M.L.; Gulko, E.; Zimmerman, M.E.; Friedman, B.W.; Kim, M.; Gellella, E.; Gold, T.; Shifteh, K.; Ardekani, B.A.; Branch, C.A. Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Radiology 2009, 252, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Bigler, E.D.; McCauley, S.R.; Wu, T.C.; Yallampalli, R.; Shah, S.; MacLeod, M.; Chu, Z.; Hunter, J.V.; Clifton, G.L.; Levin, H.S.; et al. The temporal stem in traumatic brain injury: Preliminary findings. Brain Imaging Behav. 2010, 4, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Caeyenberghs, K.; Leemans, A.; Geurts, M.; Taymans, T.; Linden, C.V.; Smits-Engelsman, B.C.; Sunaert, S.; Swinnen, S.P. Brain-behavior relationships in young traumatic brain injury patients: DTI metrics are highly correlated with postural control. Hum. Brain Mapp. 2010, 31, 992–1002. [Google Scholar] [CrossRef]
- Smith, S.M.; Jenkinson, M.; Johansen-Berg, H.; Rueckert, D.; Nichols, T.E.; Mackay, C.E.; Watkins, K.E.; Ciccarelli, O.; Cader, M.Z.; Matthews, P.M.; et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 2006, 31, 1487–1505. [Google Scholar] [CrossRef]
- Inglese, M.; Makani, S.; Johnson, G.; Cohen, B.A.; Silver, J.A.; Gonen, O.; Grossman, R.I. Diffuse axonal injury in mild traumatic brain injury: A diffusion tensor imaging study. J. Neurosurg. 2005, 103, 298–303. [Google Scholar] [CrossRef]
- Association Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- Kohen-Raz, R. Application of tetra-ataxiametric posturography in clinical and developmental diagnosis. Percept. Mot. Skills 1991, 73, 635–656. [Google Scholar] [CrossRef]
- Smith, S.M.; Jenkinson, M.; Woolrich, M.W.; Beckmann, C.F.; Behrens, T.E.; Johansen-Berg, H.; Bannister, P.R.; De Luca, M.; Drobnjak, I.; Flitney, D.E.; et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004, 23, S208–S219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrens, T.E.; Woolrich, M.W.; Jenkinson, M.; Johansen-Berg, H.; Nunes, R.G.; Clare, S.; Matthews, P.M.; Brady, J.M.; Smith, S.M. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med. 2003, 50, 1077–1088. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Nichols, T.E. Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 2009, 44, 83–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.K.; Yoshino, J.; Le, T.Q.; Lin, S.J.; Sun, S.W.; Cross, A.H.; Armstrong, R.C. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 2005, 26, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Mac Donald, C.L.; Dikranian, K.; Song, S.K.; Bayly, P.V.; Holtzman, D.M.; Brody, D.L. Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of traumatic brain injury. Exp. Neurol. 2007, 205, 116–131. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Macey, P.M.; Woo, M.A.; Harper, R.M. Rostral brain axonal injury in congenital central hypoventilation syndrome. J. Neurosci. Res. 2010, 88, 2146–2154. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Nguyen, H.D.; Macey, P.M.; Woo, M.A.; Harper, R.M. Regional brain axial and radial diffusivity changes during development. J. Neurosci. Res. 2012, 90, 346–355. [Google Scholar] [CrossRef]
- Song, S.K.; Sun, S.W.; Ramsbottom, M.J.; Chang, C.; Russell, J.; Cross, A.H. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 2002, 17, 1429–1436. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Smith, E.E.; Eichler, F.S.; Filley, C.M. Cerebral white matter: Neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann. N.Y. Acad. Sci. 2008, 1142, 266–309. [Google Scholar] [CrossRef]
- Karlsgodt, K.H.; van Erp, T.G.M.; Poldrack, R.A.; Bearden, C.E.; Nuechterlein, K.H.; Cannon, T.D. Diffusion tensor imaging of the superior longitudinal fasciculus and working memory in recent-onset schizophrenia. Biol. Psychiatry 2008, 63, 512–518. [Google Scholar] [CrossRef]
- Jang, S.H. The corticospinal tract from the viewpoint of brain rehabilitation. J. Rehabil. Med. 2014, 46, 193–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobowitz, D.M.; Cole, J.T.; McDaniel, D.P.; Pollard, H.B.; Watson, W.D. Microglia activation along the corticospinal tract following traumatic brain injury in the rat: A neuroanatomical study. Brain Res. 2012, 1465, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Glickstein, M. The cerebellum and motor learning. Curr. Opin. Neurobiol. 1992, 2, 802–806. [Google Scholar] [CrossRef]
- Marsden, J.; Harris, C. Cerebellar ataxia: Pathophysiology and rehabilitation. Clin. Rehabil. 2011, 25, 195–216. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.H.; Yi, J.H.; Kwon, H.G. Injury of the inferior cerebellar peduncle in patients with mild traumatic brain injury: A diffusion tensor tractography study. Brain Inj. 2016, 30, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Drijkoningen, D.; Caeyenberghs, K.; Leunissen, I.; Vander Linden, C.; Leemans, A.; Sunaert, S.; Duysens, J.; Swinnen, S.P. Training-induced improvements in postural control are accompanied by alterations in cerebellar white matter in brain injured patients. NeuroImage Clin. 2015, 7, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.H.; Kim, O.L.; Kim, S.H.; Lee, M.Y.; Jang, S.H. Cerebellar peduncle injury in patients with ataxia following diffuse axonal injury. Brain Res. Bull. 2009, 80, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.G.; Jang, S.H. The usefulness of diffusion tensor imaging in detection of diffuse axonal injury in a patient with head trauma. Neural Regen. Res. 2012, 7, 475–478. [Google Scholar] [CrossRef]
- Delouche, A.; Attye, A.; Heck, O.; Grand, S.; Kastler, A.; Lamalle, L.; Renard, F.; Krainik, A. Diffusion MRI: Pitfalls, literature review and future directions of research in mild traumatic brain injury. Eur. J. Radiol. 2016, 85, 25–30. [Google Scholar] [CrossRef]
- Qin, W.; Shui Yu, C.; Zhang, F.; Du, X.Y.; Jiang, H.; Xia Yan, Y.; Cheng Li, K. Effects of echo time on diffusion quantification of brain white matter at 1.5 T and 3.0 T. Magn. Reson. Med. 2009, 61, 755–760. [Google Scholar] [CrossRef]
- Smith, D.H.; Nonaka, M.; Miller, R.; Leoni, M.; Chen, X.H.; Alsop, D.; Meaney, D.F. Immediate coma following inertial brain injury dependent on axonal damage in the brainstem. J. Neurosurg. 2000, 93, 315–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ID | Diagnose | Gender | Age | GCS | LOC | PTA | Duration | RPCSQ | GOSE | GOAT |
---|---|---|---|---|---|---|---|---|---|---|
P01 | mild | F | 46 | 15 | < 30 min | < 30 min | 56 | 17 | NA | NA |
P02 | moderate | M | 57 | NA | ~3 h | 1 day–1 week | 174 | 9 | NA | NA |
P03 | moderate | M | 20 | NA | (+) but no details available | 1 day–1 week | 33 | 23 | 7 | 64 |
P04 | moderate1 | M | 49 | 15 | (+) but no details available | 1 day | 80 | 29 | 6 | 80 |
P05 | moderate | F | 43 | NA | 1 h | 1 day–1 week | 1336 | 33 | 5 | 90 |
P06 | moderate | F | 37 | NA | (+) but no details available | 3 day | 1334 | 44 | 5 | 99 |
P07 | mild | F | 53 | 15 | (+) a few min | 1 h | 201 | 37 | 6 | NA |
P08 | mild | F | 53 | NA | (+) but no details available | (+) but no details available | 873 | NA | NA | 93 |
P09 | mild | F | 60 | 15 | (+) but no details available | (+) a few min | 150~1802 | 39 | 6 | 100 |
P10 | mild | F | 54 | 15 | (+) but no details available | (+) but no details available | 107 | 56 | 5 | 88 |
P11 | mild | F | 56 | NA | < 30 min | 6 h | 1380 | NA | NA | NA |
P12 | moderate | F | 43 | 15 | < 5 h | 1 day-1 week | 29 | 55 | 4 | 94 |
P13 | mild | F | 49 | NA | 5–10 min | 3–5 min | 46 | NA | NA | 98 |
P14 | moderate | M | 61 | NA | (+) but no details available | 4–5 day | 111 | NA | NA | 79 |
P15 | mild | F | 56 | 15 | - | 1 h | 31 | 25 | 7 | NA |
ID | Cognitive Function Test | Balance Test | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Auditory Continuous Performance Test | Verbal Learning Test | Digit Span Test | Card Sorting Test | Standing on a Foam-Rubber Pillow with Eyes Open | Standing on a Foam-Rubber Pillow with Eyes Closed | |||||||
Correct Response | Commission Error | A1 | A5 | Delayed Recall | Forward | Backward | Length | Length/Area | Length | Length/Area | ||
P01 | NA | NA | ||||||||||
P02 | 70 | 70 | 45 | 38 | 27 | 44 | 34 | 40 | NA | |||
P03 | 70 | 77 | 45 | 50 | 55 | 35 | 47 | 77 | NA | |||
P04 | 77 | 77 | 39 | 30 | 27 | 46 | 53 | 52 | NA | |||
P05 | 27 | 27 | 50 | 54 | 30 | 44 | 50 | 58 | 42.3 | 11.3 | 122.8 | 16.7 |
P06 | 27 | 27 | 45 | 38 | 36 | 42 | 47 | 51 | 41.1 | 16 | 91.9 | 4.7 |
P07 | 41 | 45 | 55 | 70 | 70 | 34 | 38 | 36 | 34.9 | 21.6 | 78.4 | 27.9 |
P08 | 27 | 30 | 45 | 38 | 30 | 27 | 30 | 46 | 37.4 | 14.8 | 23.8 | 8.7 |
P09 | 70 | 56 | 45 | 42 | 27 | 44 | 47 | 46 | 29.6 | 38.2 | 39.6 | 27.2 |
P10 | 27 | 27 | 39 | 38 | 41 | 27 | 34 | 47 | 84.6 | 3.6 | 142.5 | 5.3 |
P11 | 27 | 27 | 63 | 42 | 36 | 44 | 53 | 64 | 134.9 | 14.5 | 196.2 | 20.4 |
P12 | 53 | 56 | 45 | 50 | 36 | 77 | 53 | 59 | 171.3 | 3 | NA | |
P13 | 27 | 27 | 39 | 27 | 27 | 27 | 27 | 8 | 135.4 | 5.9 | 220.3 | 4.8 |
P14 | 27 | 27 | 30 | 27 | 27 | 42 | 43 | 30 | 50.4 | 18.4 | 92.5 | 22 |
P15 | 53 | 77 | 55 | 54 | 55 | 49 | 53 | 46 | 37.8 | 19.5 | 88.6 | 10.4 |
RPCSQ | Cognitive Function Test | Balance Test | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Auditory Continuous Performance Test | Verbal Learning Test | Digit Span Test | Card Sorting Test | Standing on a Foam-Rubber Pillow with Eyes Open | Standing on a Foam-Rubber Pillow with Eyes Closed | ||||||||
Correct Response | Commiss-Ion Error | A1 | A5 | Delayed Recall | For-Ward | Back-Ward | Length | Length/Area | Length | Length/Area | |||
Age | −0.072 | 0.012 | −0.044 | −0.049 | −0.211 | −0.338 | 0.079 | −0.153 | −0.539* | −0.252 | 0.499 | −0.146 | 0.592 |
Duration | 0.118 | −0.477 | −0.552* | 0.384 | 0.042 | −0.095 | −0.219 | −0.125 | 0.033 | −0.291 | 0.200 | −0.030 | 0.152 |
Contrast | Voxel Coordinates of Local Maxima (MNI Coordinates) | Side | Voxels | White Matter Tract | |||
---|---|---|---|---|---|---|---|
x | y | z | JHU-WM Tractography Atlas | JHU-ICBM-DTI-81 WM Labels | |||
CON > PAT | |||||||
Fractional anisotropy | |||||||
5 | –22 | –30 | R | 14 | Corticospinal tract | Corticospinal tract | |
–53 | –11 | –22 | L | 10 | Unclassified | Superior longitudinal fasciculus | |
Radial diffusivity | |||||||
–17 | –63 | –31 | L | 16 | Unclassified | Unclassified | |
Axial diffusivity | |||||||
–10 | –47 | –29 | L | 22 | Inferior cerebellar peduncle | ||
48 | –24 | –17 | R | 15 | Unclassified | Inferior longitudinal fasciculus | |
PAT > CON | |||||||
Axial diffusivity | |||||||
–51 | –31 | 6 | L | 11 | Unclassified | Superior longitudinal fasciculus |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.; Seo, H.G.; Lee, H.H.; Lee, S.H.; Choi, S.H.; Yoo, R.-E.; Cho, W.-S.; Wagner, A.K.; Oh, B.-M. Altered White Matter Integrity after Mild to Moderate Traumatic Brain Injury. J. Clin. Med. 2019, 8, 1318. https://doi.org/10.3390/jcm8091318
Kim E, Seo HG, Lee HH, Lee SH, Choi SH, Yoo R-E, Cho W-S, Wagner AK, Oh B-M. Altered White Matter Integrity after Mild to Moderate Traumatic Brain Injury. Journal of Clinical Medicine. 2019; 8(9):1318. https://doi.org/10.3390/jcm8091318
Chicago/Turabian StyleKim, Eunkyung, Han Gil Seo, Hyun Haeng Lee, Seung Hak Lee, Seung Hong Choi, Roh-Eul Yoo, Won-Sang Cho, Amy K. Wagner, and Byung-Mo Oh. 2019. "Altered White Matter Integrity after Mild to Moderate Traumatic Brain Injury" Journal of Clinical Medicine 8, no. 9: 1318. https://doi.org/10.3390/jcm8091318
APA StyleKim, E., Seo, H. G., Lee, H. H., Lee, S. H., Choi, S. H., Yoo, R. -E., Cho, W. -S., Wagner, A. K., & Oh, B. -M. (2019). Altered White Matter Integrity after Mild to Moderate Traumatic Brain Injury. Journal of Clinical Medicine, 8(9), 1318. https://doi.org/10.3390/jcm8091318