Platelet-Activating Factor (PAF) in Allergic Rhinitis: Clinical and Therapeutic Implications
Abstract
:1. Introduction
2. Role of PAF in Allergic Diseases
2.1. PAF in Allergic Rhinitis
2.2. PAF in other Respiratory, Cutaneous and Allergic Diseases
2.2.1. PAF in Asthma
2.2.2. PAF in Chronic Urticaria and Food Allergy
2.2.3. PAF in Anaphylaxis
3. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Benveniste, J. Platelet-activating factor, a new mediator of anaphylaxis and immune complex deposition from rabbit and human basophils. Nature 1974, 249, 581–582. [Google Scholar] [CrossRef] [PubMed]
- Shindou, H.; Ishii, S.; Uozumi, N.; Shimizu, T. Roles of cytosolic phospholipase A(2) and platelet-activating factor receptor in the Ca-induced biosynthesis of PAF. Biochem. Biophys. Res. Commun. 2000, 271, 812–817. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, R.; Shindou, H.; Tarui, M.; Shimizu, T. Rapid production of platelet-activating factor is induced by protein kinase Cα-mediated phosphorylation of lysophosphatidylcholine acyltransferase 2 protein. J. Biol. Chem. 2014, 289, 15566–15576. [Google Scholar] [CrossRef] [PubMed]
- Mullol, J.; Bousquet, J.; Bachert, C.; Canonica, W.G.; Gimenez-Arnau, A.; Kowalski, M.L.; Martí-Guadaño, E.; Maurer, M.; Picado, C.; Scadding, G.; et al. Rupatadine in allergic rhinitis and chronic urticaria. Allergy 2008, 63, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Stafforini, D.M. Biology of platelet-activating factor acetylhydrolase (PAF-AH, lipoprotein associated phospholipase A2). Cardiovasc. Drugs Ther. 2009, 23, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Sugatani, J.; Miwa, M.; Komiyama, Y.; Murakami, T. Quantitative analysis of platelet-activating factor in human plasma. Application to patients with liver cirrhosis and disseminated intravascular coagulation. J. Immunol. Methods 1993, 166, 251–261. [Google Scholar] [CrossRef]
- Perelman, B.; Adil, A.; Vadas, P. Relationship between platelet activating factor acetylhydrolase activity and apolipoprotein B levels in patients with peanut allergy. Allergy Asthma. Clin. Immunol. 2014, 10, 20. [Google Scholar] [CrossRef] [PubMed]
- Vadas, P.; Gold, M.; Perelman, B.; Liss, G.M.; Lack, G.; Blyth, T.; Simons, F.E.R.; Simons, K.J.; Cass, D.; Yeung, J. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N. Engl. J. Med. 2008, 358, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Braquet, P.; Rola-Pleszcynski, M. Platelet-activating factor and cellular immune responses. Immunol. Today 1987, 8, 345–351. [Google Scholar] [CrossRef]
- Chao, W.; Olson, M.S. Platelet-activating factor: Receptors and signal transduction. Biochem. J. 1993, 292 Pt 3, 617–629. [Google Scholar] [CrossRef]
- Kajiwara, N.; Sasaki, T.; Bradding, P.; Cruse, G.; Sagara, H.; Ohmori, K.; Saito, H.; Ra, C.; Okayama, Y. Activation of human mast cells through the platelet-activating factor receptor. J. Allergy Clin. Immunol. 2010, 125, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Pałgan, K.; Bartuzi, Z. Platelet activating factor in allergies. Int. J. Immunopathol. Pharmacol. 2015, 28, 584–589. [Google Scholar] [CrossRef] [PubMed]
- Kato, M.; Kita, H.; Tachibana, A.; Hayashi, Y.; Tsuchida, Y.; Kimura, H. Dual signaling and effector pathways mediate human eosinophil activation by platelet-activating factor. Int. Arch. Allergy Immunol. 2004, 134, 37–43. [Google Scholar] [CrossRef]
- Giembycz, M.A.; Lynch, O.T.; De Souza, P.M.; Lindsay, M.A. Review: G-protein-coupled receptors on eosinophils. Pulm. Pharmacol. Ther. 2000, 13, 195–223. [Google Scholar] [CrossRef] [PubMed]
- Lotner, G.Z.; Lynch, J.M.; Betz, S.J.; Henson, P.M. Human neutrophil-derived platelet activating factor. J. Immunol. 1980, 124, 676–684. [Google Scholar] [PubMed]
- Jönsson, F.; Mancardi, D.A.; Zhao, W.; Kita, Y.; Iannascoli, B.; Khun, H.; van Rooijen, N.; Shimizu, T.; Schwartz, L.B.; Daëron, M.; et al. Human FcγRIIA induces anaphylactic and allergic reactions. Blood 2012, 119, 2533–2544. [Google Scholar] [CrossRef]
- Arias, K.; Baig, M.; Colangelo, M.; Chu, D.; Walker, T.; Goncharova, S.; Coyle, A.; Vadas, P.; Waserman, S.; Jordana, M. Concurrent blockade of platelet-activating factor and histamine prevents life-threatening peanut-induced anaphylactic reactions. J. Allergy Clin. Immunol. 2009, 124, 307–314. [Google Scholar] [CrossRef]
- Jönsson, F.; Mancardi, D.A.; Kita, Y.; Karasuyama, H.; Iannascoli, B.; Van Rooijen, N.; Shimizu, T.; Daëron, M.; Bruhns, P. Mouse and human neutrophils induce anaphlaxis. J. Clin. Invest. 2011, 121, 1484–1496. [Google Scholar] [CrossRef]
- Jönsson, F.; de Chaisemartin, L.; Granger, V.; Gouel-Chéron, A.; Gillis, C.M.; Zhu, Q.; Dib, F.; Nicaise-Roland, P.; Ganneau, C.; Hurtado-Nedelec, M.; et al. An IgG-induced neutrophil activation pathway contributes to human drug-induced anaphylaxis. Sci. Transl. Med. 2019. [Google Scholar] [CrossRef]
- Tedeschi, A.; Palumbo, G.; Milazzo, N.; Miadonna, A. Nasal neutrophilia and eosinophilia induced by challenge with platelet activating factor. J. Allergy Clin. Immunol. 1994, 93, 526–533. [Google Scholar] [CrossRef]
- Alfaro, V. Role of histamine and platelet-activating factor in allergic rhinitis. J. Physiol. Biochem. 2004, 60, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Cano, R.; Valero, A.; Roca-Ferrer, J.; Bartra, J.; Sanchez-Lopez, J.; Mullol, J.; Picado, C. Platelet-activating factor nasal challenge induces nasal congestion and reduces nasal volume in both healthy volunteers and allergic rhinitis patients. Am. J. Rhinol. Allergy 2013, 27, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Touqui, L.; Herpin-Richard, N.; Gene, R.M.; Jullian, E.; Aljabi, D.; Hamberger, C.; Vargaftig, B.B.; Dessange, J.F. Excretion of platelet activating factor-acetylhydrolase and phospholipase A2 into nasal fluids after allergenic challenge: Possible role in the regulation of platelet activating factor release. J. Allergy Clin. Immunol. 1994, 94, 109–119. [Google Scholar] [CrossRef]
- Austin, C.E.; Foreman, J.C. The effect of platelet-activating factor on the responsiveness of the human nasal airway. Br. J. Pharmacol. 1993, 110, 113–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leggieri, E.; Tedeschi, A.; Lorini, M.; Bianco, A.; Miadonna, A. Study of the effects of paf-acether on human nasal airways. Allergy 1991, 46, 466–471. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Cano, R.; Ainsua-Enrich, E.; Torres-Atencio, I.; Martin, M.; Sánchez-Lopez, J.; Bartra, J.; Picado, C.; Mullol, J.; Valero, A. Effects of Rupatadine on Platelet- Activating Factor–Induced Human Mast Cell Degranulation Compared With Desloratadine and Levocetirizine (The MASPAF Study). J. Investig. Allergol. Clin. Immunol. 2017, 27, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Roca-Ferrer, J.; Callejas, F.D.B.; Fuentes, M.; Pérez-González, M.; Alobid, I.; Muñoz-Cano, R.; Valero, A.; Izquierdo, I.; Mullol, J. Expression PAF receptor in cells and tissues from healthy and inflamed upper airway mucosa (Rinopaf-1 study). Allergy 2018, 73, 756. [Google Scholar]
- Klementsson, H.; Andersson, M. Eosinophil chemotactic activity of topical PAF on the human nasal mucosa. Eur. J. Clin. Pharmacol. 1992, 42, 295–299. [Google Scholar] [CrossRef]
- Rocklin, R.E.; Thistle, L.; Audera, C. Decreased sensitivity of atopic mononuclear cells to prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2). J. Immunol. 1985, 135, 2033–2039. [Google Scholar]
- Benninger, M. Diagnosis and Management of Nasal Congestion: The Role of Intranasal Corticosteroids. Postgrad. Med. 2009, 121, 122–131. [Google Scholar] [CrossRef]
- Brozek, J.L.; Bousquet, J.; Baena-Cagnani, C.E.; Bonini, S.; Canonica, G.W.; Casale, T.B.; van Wijk, R.G.; Ohta, K.; Zuberbier, T.; Schünemann, H.J.; et al. Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision. J. Allergy Clin. Immunol. 2010, 126, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Fromer, L.M.; Ortiz, G.; Ryan, S.F.; Stoloff, S.W. Insights on allergic rhinitis from the patient perspective. J. Fam. Pract. 2012, 61, S16–S22. [Google Scholar] [PubMed]
- Albert, D.H.; Malo, P.E.; Tapang, P.; Shaughnessy, T.K.; Morgan, D.W.; Wegner, C.D.; Curtin, M.L.; Sheppard, G.S.; Xu, L.; Davidsen, S.K.; et al. The role of platelet-activating factor (PAF) and the efficacy of ABT-491, a highly potent and selective PAF antagonist, in experimental allergic rhinitis. J. Pharmacol. Exp. Ther. 1998, 284, 83–88. [Google Scholar] [PubMed]
- Misawa, M.; Iwamura, S. Platelet-activating factor (PAF)-induced rhinitis and involvement of PAF in allergic rhinitis in guinea pigs. Jpn. J. Pharmacol. 1990, 54, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Queralt, M.; Merlos, M.; Giral, M.; Puigdement, A. Dual effect of rupatadine on enema induced by PAF and histamine in dogs: Comparison with antihistamines and PAF antagonists. Drug Dev. Res. 1996, 39, 12–18. [Google Scholar] [CrossRef]
- Merlos, M.; Giral, M.; Balsa, D.; Ferrando, R.; Queralt, M.; Puigdemont, A.; Garcia-Rafanell, J.; Forn, J.; García-Rafanell, J.; Forn, J. Rupatadine, a new potent, orally active dual antagonist of histamine and platelet-activating factor (PAF). J. Pharmacol. Exp. Ther. 1997, 280, 114–121. [Google Scholar] [PubMed]
- González-Núñez, V.; Bachert, C.; Mullol, J. Rupatadine: Global safety evaluation in allergic rhinitis and urticaria. Expert Opin. Drug Saf. 2016, 15, 1439–1448. [Google Scholar] [CrossRef]
- Mullol, J.; Bousquet, J.; Bachert, C.; Canonica, G.W.; Giménez-Arnau, A.; Kowalski, M.L.; Simons, F.E.; Maurer, M.; Ryan, D.; Scadding, G. Update on rupatadine in the management of allergic disorders. Allergy 2015, 70, 1–24. [Google Scholar] [CrossRef]
- Muñoz-Cano, R.; Valero, A.; Izquierdo, I.; Sánchez-López, J.; Doménech, A.; Bartra, J.; Mullol, J.; Picado, C. Evaluation of nasal symptoms induced by platelet activating factor, after nasal challenge in both healthy and allergic rhinitis subjects pretreated with rupatadine, levocetirizine or placebo in a cross-over design. Allergy Asthma Clin. Immunol. 2013, 9, 43. [Google Scholar] [CrossRef]
- Alevizos, M.; Karagkouni, A.; Vasiadi, M.; Sismanopoulos, N.; Makris, M.; Kalogeromitros, D.; Theoharides, T.C. Rupatadine inhibits inflammatory mediator release from human laboratory of allergic diseases 2 cultured mast cells stimulated by platelet-activating factor. Ann. Allergy Asthma Immunol. 2013, 111, 542–547. [Google Scholar] [CrossRef]
- Shindo, K.; Fukumura, M.; Hirai, Y.; Koide, K. Effect of azelastine hydrochloride on release and production of platelet activating factor in human neutrophils. Prostaglandins. Leukot. Essent. Fatty Acids 1997, 56, 373–377. [Google Scholar] [CrossRef]
- Shindo, K.; Fukumura, M. Oxatomide inhibits synthesis and release of platelet-activating factor in human neutrophils. Prostaglandins. Leukot. Essent. Fatty Acids 1998, 58, 99–104. [Google Scholar] [CrossRef]
- Kamei, C.; Mio, M.; Kitazumi, K.; Tsujimoto, S.; Yoshida, T.; Adachi, Y.; Tasaka, K. Antiallergic Effect of Epinastine (WAL 801 CL) on Immediate Hypersensitivity Reactions: (II) Antagonistic Effect of Epinastine on Chemical Mediators, Mainly Antihistamine and Anti-PAF Effects. Immunopharmacol. Immunotoxicol. 1992, 14, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Devillier, P.; Arnoux, B.; Lalau Keraly, C.; Landes, A.; Marsac, J.; Benveniste, J. Inhibition of human and rabbit platelet activation by Ketotifen. Fundam. Clin. Pharmacol. 1990, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Joly, F.; Bessou, G.; Benveniste, J.; Ninio, E. Ketotifen inhibits paf-acether biosynthesis and β-hexosaminidase release in mouse mast cells stimulated with antigen. Eur. J. Pharmacol. 1987, 144, 133–139. [Google Scholar] [CrossRef]
- McNeely, W.; Wiseman, L.R. Intranasal Azelastine. Drugs 1998, 56, 91–114. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.M.; Goa, K.L.; Fitton, A.; Sorkin, E.M. Ketotifen. Drugs 1990, 40, 412–448. [Google Scholar] [CrossRef] [PubMed]
- Gotoh, M.; Hashiguchi, K.; Okubo, K. Efficacy of Epinastine Hydrochloride for Antigen-Provoked Nasal Symptoms in Subjects with Orchard Grass Pollinosis. Allergol. Int. 2011, 60, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Kuitert, L.; Barnes, N. PAF and asthma—Time for an appraisal? Clin. Exp. Allergy 1995, 12, 1159–1162. [Google Scholar] [CrossRef]
- Cuss, F.M.; Dixon, C.M.; Barnes, P.J. Effects of inhaled platelet activating factor on pulmonary function and bronchial responsiveness in man. Lancet (London, England) 1986, 2, 189–192. [Google Scholar] [CrossRef]
- Kasperska-Zajac, A.; Brzoza, Z.; Rogala, B. Platelet-activating factor (PAF): A review of its role in asthma and clinical efficacy of PAF antagonists in the disease therapy. Recent Pat. Inflamm. Allergy Drug Discov. 2008, 2, 72–76. [Google Scholar] [CrossRef] [PubMed]
- Chan-Yeung, M.; Lam, S.; Chan, H.; Tse, K.S.; Salari, H. The release of platelet-activating factor into plasma during allergen-induced bronchoconstriction. J. Allergy Clin. Immunol. 1991, 87, 667–673. [Google Scholar] [CrossRef]
- Bae, R.; Arteaga, A.; Raj, J.U.; Ibe, B.O. Albuterol isomers modulate platelet-activating factor synthesis and receptor signaling in human bronchial smooth muscle cells. Int. Arch. Allergy Immunol. 2012, 158, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Bewtra, A.K.; Hopp, R.J.; Nair, N.; Townley, R.G. Alpha- and beta-adrenergic-receptor systems in bronchial asthma and in subjects without asthma: Reduced mononuclear cell beta-receptors in bronchial asthma. J. Allergy Clin. Immunol. 1990, 86, 839–850. [Google Scholar] [CrossRef]
- Stafforini, D.M.; Numao, T.; Tsodikov, A.; Vaitkus, D.; Fukuda, T.; Watanabe, N.; Fueki, N.; McIntyre, T.M.; Zimmerman, G.A.; Makino, S.; et al. Deficiency of platelet-activating factor acetylhydrolase is a severity factor for asthma. J. Clin. Invest. 1999, 103, 989–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitag, A.; Watson, R.M.; Matsos, G.; Eastwood, C.; O’Byrne, P.M. Effect of a platelet activating factor antagonist, WEB 2086, on allergen induced asthmatic responses. Thorax 1993, 48, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Henig, N.R.; Aitken, M.L.; Liu, M.C.; Yu, A.S.; Henderson, W.R. Effect of recombinant human platelet-activating factor-acetylhydrolase on allergen-induced asthmatic responses. Am. J. Respir. Crit. Care Med. 2000, 162, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Henderson, W.R.; Lu, J.; Poole, K.M.; Dietsch, G.N.; Chi, E.Y. Recombinant human platelet-activating factor-acetylhydrolase inhibits airway inflammation and hyperreactivity in mouse asthma model. J. Immunol. 2000, 164, 3360–3367. [Google Scholar] [CrossRef]
- Tasaka, K.; Kamei, C.; Nakamura, S. Inhibitory effect of epinastine on bronchoconstriction induced by histamine, platelet activating factor and serotonin in guinea pigs and rats. Arzneimittelforschung 1994, 44, 327–329. [Google Scholar] [PubMed]
- Pretolani, M.; Lefort, J.; Venco, C.; Perrisoud, D.; Vargaftig, B.B. Inhibition by azelastine of the effects of platelet-activating factor in lungs from actively sensitised guinea-pigs. Eur. J. Pharmacol. 1992, 216, 141–147. [Google Scholar] [CrossRef]
- Nijkamp, F.P.; Folkerts, G.; Beetens, J.R.; De Clerck, F. Suppression of PAF-induced bronchoconstriction in the guinea-pig by oxatomide: Mechanism of action. Naunyn. Schmiedebergs. Arch. Pharmacol. 1989, 340, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Ichinose, M.; Sugiura, H.; Nagase, H.; Yamaguchi, M.; Inoue, H.; Sagara, H.; Tamaoki, J.; Tohda, Y.; Munakata, M.; Yamauchi, K.; et al. Japanese guidelines for adult asthma 2017. Allergol. Int. 2017, 66, 163–189. [Google Scholar] [CrossRef] [PubMed]
- Bassler, D.; Mitra, A.A.; Ducharme, F.M.; Forster, J.; Schwarzer, G. Ketotifen alone or as additional medication for long-term control of asthma and wheeze in children. Cochrane Database Syst. Rev. 2004. [Google Scholar] [CrossRef] [PubMed]
- Billah, M.M.; Egan, R.W.; Ganguly, A.K.; Green, M.J.; Kreutner, W.; Piwinski, J.J.; Siegel, M.I.; Villani, F.J.; Wong, J.K. Discovery and preliminary pharmacology of Sch 37370, a dual antagonist of PAF and histamine. Lipids 1991, 26, 1172–1174. [Google Scholar] [CrossRef] [PubMed]
- Ramamoorthy, S.; Cidlowski, J.A. Corticosteroids. Rheum. Dis. Clin. North. Am. 2016, 42, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, J.A.; Lang, D.M.; Khan, D.A.; Craig, T.; Dreyfus, D.; Hsieh, F.; Sheikh, J.; Weldon, D.; Zuraw, B.; Bernstein, D.I.; et al. The diagnosis and management of acute and chronic urticaria: 2014 update. J. Allergy Clin. Immunol. 2014, 133, 1270–1277. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, A.P. Chronic urticaria: Pathogenesis and treatment. J. Allergy Clin. Immunol. 2004, 114, 465–474. [Google Scholar] [CrossRef]
- Hennino, A.; Bérard, F.; Guillot, I.; Saad, N.; Rozières, A.; Nicolas, J.-F. Pathophysiology of urticaria. Clin. Rev. Allergy Immunol. 2006, 30, 3–11. [Google Scholar] [CrossRef]
- Luquin, E.; Kaplan, A.P.; Ferrer, M. Increased responsiveness of basophils of patients with chronic urticaria to sera but hypo-responsiveness to other stimuli. Clin. Exp. Allergy 2005, 35, 456–460. [Google Scholar] [CrossRef]
- Spickett, G. Urticaria and angioedema. J. R. Coll. Physicians Edinb. 2014, 44, 50–54. [Google Scholar] [CrossRef]
- Ulambayar, B.; Yang, E.-M.; Cha, H.-Y.; Shin, Y.-S.; Park, H.-S.; Ye, Y.-M. Increased platelet activating factor levels in chronic spontaneous urticaria predicts refractoriness to antihistamine treatment: An observational study. Clin. Transl. Allergy 2019. [Google Scholar] [CrossRef] [PubMed]
- Kozel, M.M.; Mekkes, J.R.; Bossuyt, P.M.; Bos, J.D. Natural course of physical and chronic urticaria and angioedema in 220 patients. J. Am. Acad. Dermatol. 2001, 45, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Caslake, M.J.; Packard, C.J.; Suckling, K.E.; Holmes, S.D.; Chamberlain, P.; Macphee, C.H. Lipoprotein-associated phospholipase A(2), platelet-activating factor acetylhydrolase: A potential new risk factor for coronary artery disease. Atherosclerosis 2000, 150, 413–419. [Google Scholar] [CrossRef]
- Stone, S.F.; Cotterell, C.; Isbister, G.K.; Holdgate, A.; Brown, S.G.A. Emergency Department Anaphylaxis Investigators Elevated serum cytokines during human anaphylaxis: Identification of potential mediators of acute allergic reactions. J. Allergy Clin. Immunol. 2009, 124, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Müller, U.R. Elevated baseline serum tryptase, mastocytosis and anaphylaxis. Clin. Exp. Allergy 2009, 39, 620–622. [Google Scholar] [CrossRef] [PubMed]
- Vadas, P.; Perelman, B.; Liss, G. Platelet-activating factor, histamine, and tryptase levels in human anaphylaxis. J. Allergy Clin. Immunol. 2013, 131, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Pravettoni, V.; Piantanida, M.; Primavesi, L.; Forti, S.; Pastorello, E.A. Basal platelet-activating factor acetylhydrolase: Prognostic marker of severe Hymenoptera venom anaphylaxis. J. Allergy Clin. Immunol. 2014, 133, 1218–1220. [Google Scholar] [CrossRef]
- Ishii, S.; Kuwaki, T.; Nagase, T.; Maki, K.; Tashiro, F.; Sunaga, S.; Cao, W.-H.; Kume, K.; Fukuchi, Y.; Ikuta, K.; et al. Impaired Anaphylactic Responses with Intact Sensitivity to Endotoxin in Mice Lacking a Platelet-activating Factor Receptor. J. Exp. Med. 1998, 187, 1779. [Google Scholar] [CrossRef]
- Brandt, E.B.; Strait, R.T.; Hershko, D.; Wang, Q.; Muntel, E.E.; Scribner, T.A.; Zimmermann, N.; Finkelman, F.D.; Rothenberg, M.E. Mast cells are required for experimental oral allergen-induced diarrhea. J. Clin. Invest. 2003, 112, 1666–1677. [Google Scholar] [CrossRef]
Allergic Rhinitis | |
---|---|
In vivo effects | Reproduces rhinitis symptoms (PAF concentration 10 to 500 nmol) [20,22,25,39] Increases vascular permeability (associated with rhinorrhea and nasal congestion) [21] Nasal hyperreactivity [20,22,24] Priming phenomenon [25] |
In vitro findings | PAF receptor is expressed in multiple cell types (mast cells, eosinophils, platelets, endothelial cells, basophils, neutrophils, epithelial cells, etc.) [9] Potent chemoattractant (eosinophils and neutrophils) [12,13] |
Treatments | No PAF antagonists available for AR [33,34] Dual histamine and PAF antagonists available: rupatadine, ketotifen, epinastine, azelastine, oxatomide, etc. [35,36,37,39,41,42,43,44,45] |
Asthma | |
In vivo effects | Induces bronchoconstriction, airway hyperreactivity and mucus production [49,50] Increases vascular permeability [50] |
In vitro findings | Induces cysteinyl leukotrienes production [51] Mediates smooth muscle proliferation induced by salbutamol [52] Alteration of PAF and PAF-AH levels (see Figure 2) |
Treatments | PAF antagonists have failed to show any beneficial effect on asthma [51,52] Some antihistamine with anti-PAF effect are approved for asthma in some Asian countries as an add-on treatment [62] |
Chronic Urticaria | |
In vivo effects | No available data of the direct effect of PAF in human skin PAF activates LAD2, lung mast cells and mast cells derived from peripheral progenitors [11,26] PAF does not activate skin mast cells [11] |
In vitro findings | Increase vascular permeability enhancing the effect of other mediators and the development of wheals [12,70] Alteration of PAF and PAF-AH levels (see Figure 2) |
Treatments | No PAF antagonists are available Some dual antihistamines, such as as rupatadine [4], have shown greater control of symptoms and improvement of quality of life, compared to antihistamines with no anti-PAF effect as desloratadine |
Anaphylaxis | |
In vivo effects | No available data in humans PAF is the most important mediator compared to histamine or leukotrienes in several mouse models [17,78] Induces vascular leakage and release of vasoactive mediators [17,78] |
In vitro findings | Alteration of PAF and PAF-AH levels (see Figure 2) |
Treatments | No PAF antagonists are available Strategies blocking PAF along other inflammatory mediators reduces severity of anaphylaxis in mouse models [17,79] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Cano, R.M.; Casas-Saucedo, R.; Valero Santiago, A.; Bobolea, I.; Ribó, P.; Mullol, J. Platelet-Activating Factor (PAF) in Allergic Rhinitis: Clinical and Therapeutic Implications. J. Clin. Med. 2019, 8, 1338. https://doi.org/10.3390/jcm8091338
Muñoz-Cano RM, Casas-Saucedo R, Valero Santiago A, Bobolea I, Ribó P, Mullol J. Platelet-Activating Factor (PAF) in Allergic Rhinitis: Clinical and Therapeutic Implications. Journal of Clinical Medicine. 2019; 8(9):1338. https://doi.org/10.3390/jcm8091338
Chicago/Turabian StyleMuñoz-Cano, Rosa M., Rocio Casas-Saucedo, Antonio Valero Santiago, Irina Bobolea, Paula Ribó, and Joaquim Mullol. 2019. "Platelet-Activating Factor (PAF) in Allergic Rhinitis: Clinical and Therapeutic Implications" Journal of Clinical Medicine 8, no. 9: 1338. https://doi.org/10.3390/jcm8091338
APA StyleMuñoz-Cano, R. M., Casas-Saucedo, R., Valero Santiago, A., Bobolea, I., Ribó, P., & Mullol, J. (2019). Platelet-Activating Factor (PAF) in Allergic Rhinitis: Clinical and Therapeutic Implications. Journal of Clinical Medicine, 8(9), 1338. https://doi.org/10.3390/jcm8091338