Indirect Calorimetry in Clinical Practice
Abstract
:1. Introduction
2. Indications
3. Practicalities
3.1. Acute Diseases
Critical Illness
3.2. Chronic Diseases
4. Benefits
5. Limitations
6. Current Developments
7. Alternative Methods to IC
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oshima, T.; Berger, M.M.; De Waele, E.; Guttormsen, A.B.; Heidegger, C.P.; Hiesmayr, M.; Singer, P.; Wernerman, J.; Pichard, C. Indirect calorimetry in nutritional therapy. A position paper by the ICALIC study group. Clin. Nutr. 2017, 36, 651–662. [Google Scholar] [CrossRef]
- Gupta, R.D.; Ramachandran, R.; Venkatesan, P.; Anoop, S.; Joseph, M.; Thomas, N. Indirect Calorimetry: From Bench to Bedside. Indian J. Endocrinol. Metab. 2017, 21, 594–599. [Google Scholar] [CrossRef]
- Fraipont, V.; Preiser, J.C. Energy Estimation and Measurement in Critically Ill Patients. J. Parenter. Enter. Nutr. 2013, 37, 705–713. [Google Scholar] [CrossRef]
- Singer, P.; Anbar, R.; Cohen, J.; Shapiro, H.; Shalita-Chesner, M.; Lev, S.; Grozovski, E.; Theilla, M.; Frishman, S.; Madar, Z. The tight calorie control study (TICACOS), a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensiv. Care Med. 2011, 37, 601–609. [Google Scholar] [CrossRef]
- Heidegger, C.P.; Berger, M.M.; Graf, S.; Zingg, W.; Darmon, P.; Costanza, M.C.; Thibault, R.; Pichard, C. Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: A randomised controlled clinical trial. Lancet 2013, 381, 385–393. [Google Scholar] [CrossRef]
- Petros, S.; Horbach, M.; Seidel, F.; Weidhase, L. Hypocaloric vs Normocaloric Nutrition in Critically Ill Patients: A Prospective Randomized Pilot Trial. J. Parenter. Enter. Nutr. 2016, 40, 242–249. [Google Scholar] [CrossRef]
- Allingstrup, M.J.; Kondrup, J.; Wiis, J.; Claudius, C.; Pedersen, U.G.; Hein-Rasmussen, R.; Bjerregaard, M.R.; Steensen, M.; Jensen, T.H.; Lange, T.; et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: The single-centre, randomised, outcome assessor-blinded EAT-ICU trial. Intensiv. Care Med. 2017, 43, 1637–1647. [Google Scholar] [CrossRef]
- Berger, M.M.; Pantet, O.; Jacquelin-Ravel, N.; Charriere, M.; Schmidt, S.; Becce, F.; Audran, R.; Spertini, F.; Tappy, L.; Pichard, C. Supplemental parenteral nutrition improves immunity with unchanged carbohydrate and protein metabolism in critically ill patients: The SPN2 randomized tracer study. Clin. Nutr. 2018. [Google Scholar] [CrossRef]
- Merritt, R. Use of indirect calorimetry in critically ill patients. In The ASPEN Nutrition Support Practice Manual, 2nd ed.; American Society for Parenteral and Enteral Nutrit: Silver Spring, MD, USA, 2006; pp. 277–280. [Google Scholar]
- Boullata, J.; Williams, J.; Cottrell, F.; Hudson, L.; Compher, C. Accurate determination of energy needs in hospitalized patients. J. Am. Diet. Assoc. 2007, 107, 393–401. [Google Scholar] [CrossRef]
- Wooley, J.A.; Sax, H.C. Indirect calorimetry: Applications to practice. Nutr. Clin. Pract. 2003, 18, 434–439. [Google Scholar] [CrossRef]
- Berger, M.M.; Reintam-Blaser, A.; Calder, P.C.; Casaer, M.; Hiesmayr, M.J.; Mayer, K.; Montejo, J.C.; Pichard, C.; Preiser, J.C.; van Zanten, A.R.H.; et al. Monitoring nutrition in the ICU. Clin. Nutr. 2019, 38, 584–593. [Google Scholar] [CrossRef]
- Singer, P.; Singer, J. Clinical Guide for the Use of Metabolic Carts: Indirect Calorimetry-No Longer the Orphan of Energy Estimation. Nutr. Clin. Pract. 2016, 31, 30–38. [Google Scholar] [CrossRef]
- Weissman, C.; Kemper, M.; Hyman, A.I. Variation in the resting metabolic rate of mechanically ventilated critically ill patients. Anesth. Analg. 1989, 68, 457–461. [Google Scholar] [CrossRef]
- Cuthbertson, D.P.; Angeles Valero Zanuy, M.A.; Leon Sanz, M.L. Post-shock metabolic response. 1942. Nutr. Hosp. 2001, 16, 176–182. [Google Scholar]
- Rattanachaiwong, S.; Singer, P. Indirect Calorimetry as Point of Care Testing. Clin. Nutr. 2019. [Google Scholar] [CrossRef]
- Zusman, O.; Theilla, M.; Cohen, J.; Kagan, I.; Bendavid, I.; Singer, P. Resting energy expenditure, calorie and protein consumption in critically ill patients: A retrospective cohort study. Crit. Care 2016, 20, 367. [Google Scholar] [CrossRef]
- Plank, L.D.; Hill, G.L. Sequential metabolic changes following induction of systemic inflammatory response in patients with severe sepsis or major blunt trauma. World J. Surg. 2000, 24, 630–638. [Google Scholar] [CrossRef]
- Plank, L.D.; Connolly, A.B.; Hill, G.L. Sequential changes in the metabolic response in severely septic patients during the first 23 days after the onset of peritonitis. Ann. Surg. 1998, 228, 146–158. [Google Scholar] [CrossRef]
- Brandi, L.S.; Oleggini, M.; Lachi, S.; Frediani, M.; Bevilacqua, S.; Mosca, F.; Ferrannini, E. Energy metabolism of surgical patients in the early postoperative period: A reappraisal. Crit. Care Med. 1988, 16, 18–22. [Google Scholar] [CrossRef]
- Dickerson, R.N.; Vehe, K.L.; Mullen, J.L.; Feurer, I.D. Resting energy expenditure in patients with pancreatitis. Crit. Care Med. 1991, 19, 484–490. [Google Scholar] [CrossRef]
- Schneeweiss, B.; Graninger, W.; Stockenhuber, F.; Druml, W.; Ferenci, P.; Eichinger, S.; Grimm, G.; Laggner, A.N.; Lenz, K. Energy metabolism in acute and chronic renal failure. Am. J. Clin. Nutr. 1990, 52, 596–601. [Google Scholar] [CrossRef] [Green Version]
- Soncini Sanches, A.C.; de Góes, C.R.; Nogueira Berbel Bufarah, M.; Balbi, A.L.; Ponce, D. Does Acute Kidney Injury Alter Energy Metabolism of Septic Patients? Arch. Ren. Dis. Manag. 2016, 2, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Goes, C.R.; Balbi, A.L.; Ponce, D. Evaluation of Factors Associated with Hypermetabolism and Hypometabolism in Critically Ill AKI Patients. Nutrients 2018, 10, 505. [Google Scholar] [CrossRef]
- Sabatino, A.; Theilla, M.; Hellerman, M.; Singer, P.; Maggiore, U.; Barbagallo, M.; Regolisti, G.; Fiaccadori, E. Energy and Protein in Critically Ill Patients with AKI: A Prospective, Multicenter Observational Study Using Indirect Calorimetry and Protein Catabolic Rate. Nutrients 2017, 9, 802. [Google Scholar] [CrossRef]
- Kreymann, G.; Grosser, S.; Buggisch, P.; Gottschall, C.; Matthaei, S.; Greten, H. Oxygen consumption and resting metabolic rate in sepsis, sepsis syndrome, and septic shock. Crit. Care Med. 1993, 21, 1012–1019. [Google Scholar] [CrossRef]
- Wu, C.; Wang, X.Y.; Yu, W.K.; Tian, F.; Liu, S.T.; Li, P.; Li, J.; Li, N. Hypermetabolism in the Initial Phase of Intensive Care Is Related to a Poor Outcome in Severe Sepsis Patients. Ann. Nutr. Metab. 2015, 66, 188–195. [Google Scholar] [CrossRef]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Phadke, R.; Dew, T.; Sidhu, P.S.; et al. Acute skeletal muscle wasting in critical illness. JAMA 2013, 310, 1591–1600. [Google Scholar] [CrossRef]
- Jeon, J.; Kym, D.; Cho, Y.S.; Kim, Y.; Yoon, J.; Yim, H.; Hur, J.; Chun, W. Reliability of resting energy expenditure in major burns: Comparison between measured and predictive equations. Clin. Nutr. 2018. [Google Scholar] [CrossRef]
- McClave, S.A.; Martindale, R.G.; Kiraly, L. The use of indirect calorimetry in the intensive care unit. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 202–208. [Google Scholar] [CrossRef]
- Foley, N.; Marshall, S.; Pikul, J.; Salter, K.; Teasell, R. Hypermetabolism following moderate to severe traumatic acute brain injury: A systematic review. J. Neurotrauma 2008, 25, 1415–1431. [Google Scholar] [CrossRef]
- Berger, M.M.; Pichard, C. Feeding should be individualized in the critically ill patients. Curr. Opin. Crit. Care 2019, 25, 307–313. [Google Scholar] [CrossRef]
- Ndahimana, D.; Kim, E.K. Energy Requirements in Critically Ill Patients. Clin. Nutr. Res. 2018, 7, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayrh, M.; Mayeri, K.; Montejoj, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef]
- Zusman, O.; Kagan, I.; Bendavid, I.; Theilla, M.; Cohen, J.; Singer, P. Predictive equations versus measured energy expenditure by indirect calorimetry: A retrospective validation. Clin. Nutr. 2018. [Google Scholar] [CrossRef]
- Wolfe, R.R. Sepsis as a modulator of adaptation to low and high carbohydrate and low and high fat intakes. Eur. J. Clin. Nutr. 1999, 53, S136–S142. [Google Scholar] [CrossRef]
- Tappy, L.; Schwarz, J.M.; Schneiter, P.; Cayeux, C.; Revelly, J.P.; Fagerquist, C.K.; Jéquier, E.; Chioléro, R. Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism, de novo lipogenesis, and respiratory gas exchanges in critically ill patients. Crit. Care Med. 1998, 26, 860–867. [Google Scholar] [CrossRef]
- Viana, M.V.; Pantet, O.; Bagnoud, G.; Martinez, A.; Favre, E.; Charriere, M.; Favre, D.; Eckert, P.; Berger, M.M. Metabolic and Nutritional Characteristics of Long-Stay Critically Ill Patients. J. Clin. Med. 2019, 8, 985. [Google Scholar] [CrossRef]
- Reignier, J.; Boisrame-Helms, J.; Brisard, L.; Lascarrou, J.B.; Ait Hssain, A.; Anguel, N.; Argaud, L.; Asehnoune, K.; Asfar, P.; Bellec, F.; et al. Enteral versus parenteral early nutrition in ventilated adults with shock: A randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2). Lancet 2018, 391, 133–143. [Google Scholar] [CrossRef]
- Avesani, C.M.; Draibe, S.A.; Kamimura, M.A.; Dalboni, M.A.; Colugnati, F.A.; Cuppari, L. Decreased resting energy expenditure in non-dialysed chronic kidney disease patients. Nephrol. Dial. Transplant. 2004, 19, 3091–3097. [Google Scholar] [CrossRef] [Green Version]
- Neyra, R.; Chen, K.Y.; Sun, M.; Shyr, Y.; Hakim, R.M.; Ikizler, T.A. Increased resting energy expenditure in patients with end-stage renal disease. J. Parenter. Enteral. Nutr. 2003, 27, 36–42. [Google Scholar] [CrossRef]
- Kamimura, M.A.; Draibe, S.A.; Avesani, C.M.; Canziani, M.E.; Colugnati, F.A.; Cuppari, L. Resting energy expenditure and its determinants in hemodialysis patients. Eur. J. Clin. Nutr. 2007, 61, 362–367. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Wingard, R.L.; Sun, M.; Harvell, J.; Parker, R.A.; Hakim, R.M. Increased energy expenditure in hemodialysis patients. J. Am. Soc. Nephrol. 1996, 7, 2646–2653. [Google Scholar]
- Cekici, H.; Acar Tek, N. Determining energy requirement and evaluating energy expenditure in neurological diseases. Nutr. Neurosci. 2018, 1–11. [Google Scholar] [CrossRef]
- Huggett, R.J.; Scott, E.M.; Gilbey, S.G.; Stoker, J.B.; Mackintosh, A.F.; Mary, D.A. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation 2003, 108, 3097–3101. [Google Scholar] [CrossRef]
- Farooqi, N.; Carlsson, M.; Haglin, L.; Sandstrom, T.; Slinde, F. Energy expenditure in women and men with COPD. Clin. Nutr. ESPEN 2018, 28, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, I.P.; Elliott, S.A.; Siervo, M.; Padwal, R.; Bertoli, S.; Battezzati, A.; Prado, C.M. Is Obesity Associated with Altered Energy Expenditure? Adv. Nutr. 2016, 7, 476–487. [Google Scholar] [CrossRef] [Green Version]
- Cuerda, C.; Ruiz, A.; Velasco, C.; Breton, I.; Camblor, M.; Garcia-Peris, P. How accurate are predictive formulas calculating energy expenditure in adolescent patients with anorexia nervosa? Clin. Nutr. 2007, 26, 100–106. [Google Scholar] [CrossRef]
- Yeh, D.D.; Fuentes, E.; Quraishi, S.A.; Cropano, C.; Kaafarani, H.; Lee, J.; King, D.R.; DeMoya, M.; Fagenholz, P.; Butler, K.; et al. Adequate Nutrition May Get You Home: Effect of Caloric/Protein Deficits on the Discharge Destination of Critically Ill Surgical Patients. JPEN 2016, 40, 37–44. [Google Scholar] [CrossRef]
- Milte, R.K.; Ratcliffe, J.; Miller, M.D.; Crotty, M. Economic evaluation for protein and energy supplementation in adults: Opportunities to strengthen the evidence. Eur. J. Clin. Nutr. 2013, 67, 1243–1250. [Google Scholar] [CrossRef]
- Correia, M.; Perman, M.I.; Pradelli, L.; Omaralsaleh, A.J.; Waitzberg, D.L. Economic burden of hospital malnutrition and the cost-benefit of supplemental parenteral nutrition in critically ill patients in Latin America. J. Med. Econ. 2018, 21, 1047–1056. [Google Scholar] [CrossRef]
- Pradelli, L.; Graf, S.; Pichard, C.; Berger, M.M. Supplemental parenteral nutrition in intensive care patients: A cost saving strategy. Clin. Nutr. 2018, 37, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Berger, M.M.; Pichard, C. Parenteral nutrition in the ICU: Lessons learned over the past few years. Nutrition 2019, 59, 188–194. [Google Scholar] [CrossRef]
- Haugen, H.A.; Chan, L.N.; Li, F. Indirect calorimetry: A practical guide for clinicians. Nutr. Clin. Pract. 2007, 22, 377–388. [Google Scholar] [CrossRef]
- De Waele, E.; van Zwam, K.; Mattens, S.; Staessens, K.; Diltoer, M.; Honore, P.M.; Czapla, J.; Nijs, J.; La Meir, M.; Huyghens, L.; et al. Measuring resting energy expenditure during extracorporeal membrane oxygenation: Preliminary clinical experience with a proposed theoretical model. Acta Anaesthesiol. Scand. 2015, 59, 1296–1302. [Google Scholar] [CrossRef]
- Wollersheim, T.; Frank, S.; Muller, M.C.; Skrypnikov, V.; Carbon, N.M.; Pickerodt, P.A.; Spies, C.; Mai, K.; Spranger, J.; Weber-Carstens, S. Measuring Energy Expenditure in extracorporeal lung support Patients (MEEP)-Protocol, feasibility and pilot trial. Clin. Nutr. 2018, 37, 301–307. [Google Scholar] [CrossRef]
- Graf, S.; Karsegard, V.L.; Viatte, V.; Heidegger, C.P.; Fleury, Y.; Pichard, C.; Genton, L. Evaluation of three indirect calorimetry devices in mechanically ventilated patients: Which device compares best with the Deltatrac II(®)? A prospective observational study. Clin. Nutr. 2015, 34, 60–65. [Google Scholar] [CrossRef]
- Graf, S.; Karsegard, V.L.; Viatte, V.; Maisonneuve, N.; Pichard, C.; Genton, L. Comparison of three indirect calorimetry devices and three methods of gas collection: A prospective observational study. Clin. Nutr. 2013, 32, 1067–1072. [Google Scholar] [CrossRef]
- Sundstrom, M.; Tjader, I.; Rooyackers, O.; Wernerman, J. Indirect calorimetry in mechanically ventilated patients. A systematic comparison of three instruments. Clin. Nutr. 2013, 32, 118–121. [Google Scholar] [CrossRef]
- Cooper, J.A.; Watras, A.C.; O’Brien, M.J.; Luke, A.; Dobratz, J.R.; Earthman, C.P.; Schoeller, D.A. Assessing validity and reliability of resting metabolic rate in six gas analysis systems. J. Am. Diet. Assoc. 2009, 109, 128–132. [Google Scholar] [CrossRef]
- Hipskind, P.; Glass, C.; Charlton, D.; Nowak, D.; Dasarathy, S. Do handheld calorimeters have a role in assessment of nutrition needs in hospitalized patients? A systematic review of literature. Nutr. Clin. Pract. 2011, 26, 426–433. [Google Scholar] [CrossRef]
- Hlynsky, J.; Birmingham, C.L.; Johnston, M.; Gritzner, S. The agreement between the MedGem indirect calorimeter and a standard indirect calorimeter in anorexia nervosa. Eat. Weight Disord. 2005, 10, e83–e87. [Google Scholar] [CrossRef]
- Alam, D.S.; Hulshof, P.J.; Roordink, D.; Meltzer, M.; Yunus, M.; Salam, M.A.; van Raaij, J.M. Validity and reproducibility of resting metabolic rate measurements in rural Bangladeshi women: Comparison of measurements obtained by Medgem and by Deltatrac device. Eur. J. Clin. Nutr. 2005, 59, 651–657. [Google Scholar] [CrossRef]
- Frankenfield, D.C.; Coleman, A. An evaluation of a handheld indirect calorimeter against a standard calorimeter in obese and nonobese adults. JPEN 2013, 37, 652–658. [Google Scholar] [CrossRef]
- Schock, L.; Lam, L.; Tandon, P.; Taylor, L.; Raman, M. Indirect Calorimetry Performance Using a Handheld Device Compared to the Metabolic Cart in Outpatients with Cirrhosis. Nutrients 2019, 11, 1030. [Google Scholar] [CrossRef]
- Anderson, E.J.; Sylvia, L.G.; Lynch, M.; Sonnenberg, L.; Lee, H.; Nathan, D.M. Comparison of energy assessment methods in overweight individuals. J. Acad. Nutr. Diet. 2014, 114, 273–278. [Google Scholar] [CrossRef]
- White, D.A.; Staggs, V.S.; Williams, V.; Edwards, T.C.; Shook, R.; Shakhnovich, V. Handheld Indirect Calorimetry as a Clinical Tool for Measuring Resting Energy Expenditure in Children with and without Obesity. Child. Obes. 2019, 15, 280–287. [Google Scholar] [CrossRef]
- Fields, D.A.; Kearney, J.T.; Copeland, K.C. MedGem hand-held indirect calorimeter is valid for resting energy expenditure measurement in healthy children. Obesity (Silver Spring) 2006, 14, 1755–1761. [Google Scholar] [CrossRef]
- Woo, P.; Murthy, G.; Wong, C.; Hursh, B.; Chanoine, J.P.; Elango, R. Assessing resting energy expenditure in overweight and obese adolescents in a clinical setting: Validity of a handheld indirect calorimeter. Pediatr Res. 2017, 81, 51–56. [Google Scholar] [CrossRef]
- Oshima, T.; Dupertuis, Y.M.; Delsoglio, M.; Graf, S.; Heidegger, C.P.; Pichard, C. In vitro validation of indirect calorimetry device developed for the ICALIC project against mass spectrometry. Clin. Nutr. ESPEN. 2019, 32, 50–55. [Google Scholar] [CrossRef]
- Delsoglio, M.; Dupertuis, Y.M.; Oshima, T.; van der Plas, M.; Pichard, C. Evaluation of the accuracy and precision of a new generation indirect calorimeter in canopy dilution mode. Clin. Nutr. 2019, in press. [Google Scholar]
- Xiaojun, X.; Quach, A.; Bridgeman, D.; Tsow, F.; Forzani, E.; Tao, N. Personalized Indirect Calorimeter for Energy Expenditure (EE) Measurement. Glob. J. Obes. Diabetes Metab. Syndr. 2015. [Google Scholar] [CrossRef]
- Jesus, P.; Achamrah, N.; Grigioni, S.; Charles, J.; Rimbert, A.; Folope, V.; Petit, A.; Déchelotte, P.; Coëffier, M. Validity of predictive equations for resting energy expenditure according to the body mass index in a population of 1726 patients followed in a Nutrition Unit. Clin. Nutr. 2015, 34, 529–535. [Google Scholar] [CrossRef]
- Soussi, S.; Vallee, F.; Roquet, F.; Bevilacqua, V.; Benyamina, M.; Ferry, A.; Cupaciu, A.; Chaussard, M.; De Tymowski, C.; Boccara, D.; et al. Measurement of Oxygen Consumption Variations in Critically Ill Burns Patients: Are the Fick Method and Indirect Calorimetry Interchangeable? Shock 2017, 48, 532–538. [Google Scholar] [CrossRef]
- Inadomi, C.; Terao, Y.; Yamashita, K.; Fukusaki, M.; Takada, M.; Sumikawa, K. Comparison of oxygen consumption calculated by Fick’s principle (using a central venous catheter) and measured by indirect calorimetry. J. Anesth. 2008, 22, 163–166. [Google Scholar] [CrossRef]
- Ogawa, A.M.; Shikora, S.A.; Burke, L.M.; Heetderks-Cox, J.E.; Bergren, C.T.; Muskat, P.C. The thermodilution technique for measuring resting energy expenditure does not agree with indirect calorimetry for the critically ill patient. J. Parenter. Enter. Nutr. 1998, 22, 347–351. [Google Scholar] [CrossRef]
- Oshima, T.; Graf, S.; Heidegger, C.P.; Genton, L.; Pugin, J.; Pichard, C. Can calculation of energy expenditure based on CO2 measurements replace indirect calorimetry? Crit. Care 2017, 21, 13. [Google Scholar] [CrossRef] [Green Version]
- Stapel, S.N.; de Grooth, H.J.S.; Alimohamad, H.; Elbers, P.W.G.; Girbes, A.R.J.; Weijs, P.J.M.; Oudemans-van Straaten, H.M. Ventilator-derived carbon dioxide production to assess energy expenditure in critically ill patients: Proof of concept. Crit. Care 2015, 19, 370. [Google Scholar] [CrossRef]
- Rousing, M.L.; Hahn-Pedersen, M.H.; Andreassen, S.; Pielmeier, U.; Preiser, J.C. Energy expenditure in critically ill patients estimated by population-based equations, indirect calorimetry and CO2-based indirect calorimetry. Ann. Intensiv. Care 2016, 6, 16. [Google Scholar] [CrossRef]
- Kagan, I.; Zusman, O.; Bendavid, I.; Theilla, M.; Cohen, J.; Singer, P. Validation of carbon dioxide production (VCO2) as a tool to calculate resting energy expenditure (REE) in mechanically ventilated critically ill patients: A retrospective observational study. Crit. Care 2018, 22, 186. [Google Scholar] [CrossRef]
- de Carvalho Bastone, A.; Ferriolli, E.; Pfrimer, K.; de Souza Moreira, B.; Diz, J.B.M.; Dias, J.M.D.; Dias, R.C. Energy Expenditure in Older Adults Who Are Frail: A Doubly Labeled Water Study. J. Geriatr. Phys. Ther. 2017. [Google Scholar] [CrossRef]
- Schutz, Y. Respiration chamber calorimetry and doubly labeled water: Two complementary aspects of energy expenditure? Eur. J. Clin. Nutr. 2018, 72, 1310–1313. [Google Scholar] [CrossRef]
- Wahl, Y.; Duking, P.; Droszez, A.; Wahl, P.; Mester, J. Criterion-Validity of Commercially Available Physical Activity Tracker to Estimate Step Count, Covered Distance and Energy Expenditure during Sports Conditions. Front. Physiol. 2017, 8, 725. [Google Scholar] [CrossRef]
- Hashizume, N.; Tanaka, Y.; Yoshida, M.; Fukahori, S.; Ishii, S.; Saikusa, N.; Masui, D.; Higashidate, N.; Sakamoto, S.; Tsuruhisa, S.; et al. Resting energy expenditure prediction using bioelectrical impedance analysis in patients with severe motor and intellectual disabilities. Brain Dev. Jpn. 2019, 41, 352–358. [Google Scholar] [CrossRef]
- Jesus, P.; Marin, B.; Fayemendy, P.; Nicol, M.; Lautrette, G.; Sourisseau, H.; Preux, P.M.; Couratier, P.; Desport, J.C. Resting energy expenditure equations in amyotrophic lateral sclerosis, creation of an ALS-specific equation. Clin. Nutr. 2019, 38, 1657–1665. [Google Scholar] [CrossRef]
- Barak, N.; Wall-Alonso, E.; Cheng, A.; Sitrin, M.D. Use of bioelectrical impedance analysis to predict energy expenditure of hospitalized patients receiving nutrition support. JPEN 2003, 27, 43–46. [Google Scholar] [CrossRef]
- Kruizenga, H.M.; Hofsteenge, G.H.; Weijs, P.J. Predicting resting energy expenditure in underweight, normal weight, overweight, and obese adult hospital patients. Nutr. Metab. (Lond.) 2016, 13, 85. [Google Scholar] [CrossRef] [Green Version]
- Achamrah, N.; Jesus, P.; Grigioni, S.; Rimbert, A.; Petit, A.; Dechelotte, P.; Folope, V.; Coëffier, M. Validity of Predictive Equations for Resting Energy Expenditure Developed for Obese Patients: Impact of Body Composition Method. Nutrients 2018, 10, 63. [Google Scholar] [CrossRef]
- Orozco-Ruiz, X.; Pichardo-Ontiveros, E.; Tovar, A.R.; Torres, N.; Medina-Vera, I.; Prinelli, F.; Lafortuna, C.L.; Guevara-Cruz, M. Development and validation of new predictive equation for resting energy expenditure in adults with overweight and obesity. Clin. Nutr. 2018, 37 Pt A, 2198–2205. [Google Scholar] [CrossRef]
- Cancello, R.; Soranna, D.; Brunani, A.; Scacchi, M.; Tagliaferri, A.; Mai, S.; Marzullo, P.; Zambon, A.; Invitti, C. Analysis of Predictive Equations for Estimating Resting Energy Expenditure in a Large Cohort of Morbidly Obese Patients. Front. Endocrinol. (Lausanne) 2018, 9, 367. [Google Scholar] [CrossRef]
- Kross, E.K.; Sena, M.; Schmidt, K.; Stapleton, R.D. A comparison of predictive equations of energy expenditure and measured energy expenditure in critically ill patients. J. Crit. Care 2012, 27, 321.e5. [Google Scholar] [CrossRef]
- Costa, N.A.; Marinho, A.D.; Cancado, L.R. Nutritional requirements of the critically ill patient. Rev. Bras. Ter. Intensiv. 2012, 24, 270–277. [Google Scholar] [CrossRef]
- MacDonald, A.; Hildebrandt, L. Comparison of formulaic equations to determine energy expenditure in the critically ill patient. Nutrition 2003, 19, 233–239. [Google Scholar] [CrossRef]
- Pichard, C.; Oshima, T.; Berger, M.M. Energy deficit is clinically relevant for critically ill patients: Yes. Intensiv. Care Med. 2015, 41, 335–338. [Google Scholar] [CrossRef]
- Frankenfield, D.C.; Ashcraft, C.M. Estimating energy needs in nutrition support patients. J. Parenter. Enter. Nutr. 2011, 35, 563–570. [Google Scholar] [CrossRef]
- Graf, S.; Pichard, C.; Genton, L.; Oshima, T.; Heidegger, C.P. Energy expenditure in mechanically ventilated patients: The weight of body weight! Clin. Nutr. 2017, 36, 224–228. [Google Scholar] [CrossRef]
- Ramos, F.M.; Rossato, L.T.; Ramires, B.R.; Pimentel, G.D.; Venancio, L.S.; Orsatti, F.L.; de Oliveira, E.P. Comparison of predictive equations of resting energy expenditure in older adults with chronic obstructive pulmonary disease. Rev. Port. Pneumol. (2006) 2017, 23, 40–42. [Google Scholar] [CrossRef]
- Kamimura, M.A.; Avesani, C.M.; Bazanelli, A.P.; Baria, F.; Draibe, S.A.; Cuppari, L. Are prediction equations reliable for estimating resting energy expenditure in chronic kidney disease patients? Nephrol. Dial. Transplant. 2011, 26, 544–550. [Google Scholar] [CrossRef]
- Behera, K.K.; Joseph, M.; Shetty, S.K.; Chacko, A.; Sahoo, M.K.; Mahendri, N.V.; Nair, V.; Nadig, S.; Thomas, N. Resting energy expenditure in subjects with fibro-calculous pancreatic diabetes. J. Diabetes 2014, 6, 158–163. [Google Scholar] [CrossRef]
- Khor, S.M.; Mohd, B.B. Assessing the resting energy expenditure of cancer patients in the Penang General Hospital. Malays. J. Nutr. 2011, 17, 43–53. [Google Scholar]
- Eslamparast, T.; Vandermeer, B.; Raman, M.; Gramlich, L.; Den Heyer, V.; Belland, D.; Ma, M.; Tandon, P. Are Predictive Energy Expenditure Equations Accurate in Cirrhosis? Nutrients 2019, 11, 334. [Google Scholar] [CrossRef]
- Frankenfield, D.C. Bias and accuracy of resting metabolic rate equations in non-obese and obese adults. Clin. Nutr. 2013, 32, 976–982. [Google Scholar] [CrossRef]
Effects on REE | Factors | |
---|---|---|
↑ |
|
|
↓ |
|
|
Condition | Effect on REE | |
---|---|---|
Anorexia nervosa | ↓ | Low energy intake and reduced lean body mass |
Cancer | ↑ ↓ | Cancer growth and inflammation Progressive reduction of lean body mass |
Chronic kidney diseases | ↑ ↓ | Metabolic acidosis and inflammation Acute and chronic renal failure |
Chronic obstructive pulmonary disease | ↑ | Increased respiratory efforts |
Diabetes | ↑ | Increased metabolism |
Obesity | ↑ ↓ | Increased lean body mass Sarcopenia |
Neuromuscular degenerative diseases | ↑ ↓ | Inflammation and endocrine disorders Dysfunction of muscle tissue |
Factors Limiting IC Measurement |
---|
|
|
|
|
|
|
Equations | Parameters Used for Calculation | Accuracy Rate * |
---|---|---|
General Hospitalized Population | ||
25 kcal/kg | 25 × WT | 43% [10] 23% [87] |
Harris & Benedict (1919) | M: 13.75 × WT + 5.00 × HT − 6.75 × age + 66.47 F: 9.56 × WT + 1.85 × HT − 0.67 × age + 655.09 | 43% [10] 38% [87] |
Ireton-Jones (1992) | 1925 − 10 × age + 5 × WT + (281 if male) + (292 if trauma) + (851 if burn) | 28% [10] |
Mifflin-St Jeor (1990) | M: 10 × WT + 6.25 × HT − 5 × age + 5 F: 10 × WT + 6.25 × HT − 5 × age − 161 | 35% [10] 32% [87] |
Schofield (1985) | 8.4 × WT + 4.7 × HT + 200 | 42% [87] |
Anorexic Patients (BMI < 16) | ||
Bernstein et al. (1983) | M: 11.02 × WT + 10.23 × HT − 5.8 × age − 1032 F: 7.48 × WT − 0.42 × HT − 3 × age + 844 | 40% [73] |
Harris & Benedict (1919) | M: 13.75 × WT + 5.00 × HT − 6.75 × age + 66.47 F: 9.56 × WT + 1.85 × HT − 0.67 × age + 655.09 | 39% [73] |
Huang et al. (2004) | 10.16 × WT + 3.93 × HT − 1.44 × age + 273.82 × sex + 60.65 | 43% [73] |
Lazzer et al. (2007) | M: 0.05 × WT + 4.65 × HT − 0.02 × age − 3.60 F: 0.04 × WT + 3.62 × HT − 2.68 | 39% [73] |
Mifflin-St Jeor (1990) | M: 10 × WT + 6.25 × HT − 5 × age + 5 F: 10 × WT + 6.25 × HT − 5 × age − 161 | 40% [73] |
Müller et al. (2004) | 0.05 × WT + 1.01 × sex + 0.015 × age + 3.21 | 37% [73] |
Owen (1987) | M: WT × 10.2 + 879 F: WT × 7.18 + 795 | 41% [73] |
Obese Patients (BMI > 30) | ||
Bernstein et al. (1983) | M: 11.02 × WT + 10.23 × HT − 5.8 × age − 1032 F: 7.48 × WT − 0.42 × HT − 3 × age + 844 | 16% [88] 21% [89] |
Harris & Benedict (1919) | M: 13.75 × WT + 5.00 × HT − 6.75 × age + 66.47 F: 9.56 × WT + 1.85 × HT − 0.67 × age + 655.09 | 64% [88] |
Huang et al. (2004) | 10.16 × WT + 3.93 × HT − 1.44 × age + 273.82 × sex + 60.65 | 66% [88] 53% [89] 54% [90] |
Lazzer et al. (2007) | M: 0.05 × WT + 4.65 × HT − 0.02 × age − 3.60 F: 0.04 × WT + 3.62 × HT − 2.68 | 58% [88] 46% [90] |
Mifflin-St Jeor (1990) | M: 10 × WT + 6.25 × HT − 5 × age + 5 F: 10 × WT + 6.25 × HT − 5 × age − 161 | 52% [89] 56% [90] |
Müller et al. (2004) | 0.05 × WT + 1.10 × sex + 0.016 × age + 2.92 | 60% [88] 58% [89] 47% [90] |
Owen (1987) | M: WT × 10.2 + 879 F: WT × 7.18 + 795 | 38% [73] 40% [89] |
Critically Ill Patients | ||
25 Kcal/Kg | 25 × WT | 12% [91] |
Harris-Benedict (1919) | M: 13.75 × WT + 5.00 × HT − 6.75 × age + 66.47 F: 9.56 × WT + 1.85 × HT − 0.67 × age + 655.09 | 31% [91] 32% [92] |
Ireton-Jones (1997) | 1925 − 10 × age + 5 × WT + (281 if M) + (292 if trauma) + (851 if burn) | 37% [93] |
Mifflin-St Jeor (1990) | M: 10 × WT + 6.25 × HT − 5 × age + 5 F: 10 × WT + 6.25 × HT − 5 × age − 161 | 18% [91] 35% [10] |
Owen (1987) | M: WT × 10.2 + 879 F: WT × 7.18 + 795 | 12% [91] |
Penn State (2003) | 0.85 × HB + 175 × Tmax + 33 × Ve − 6433 | 43% [10] |
Swinamer (1990) | 945 × BSA − 6.4 × age + 108 T + 24.2 × RR + 81.7 × VT − 4349 | 55% [93] 45% [10] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delsoglio, M.; Achamrah, N.; Berger, M.M.; Pichard, C. Indirect Calorimetry in Clinical Practice. J. Clin. Med. 2019, 8, 1387. https://doi.org/10.3390/jcm8091387
Delsoglio M, Achamrah N, Berger MM, Pichard C. Indirect Calorimetry in Clinical Practice. Journal of Clinical Medicine. 2019; 8(9):1387. https://doi.org/10.3390/jcm8091387
Chicago/Turabian StyleDelsoglio, Marta, Najate Achamrah, Mette M. Berger, and Claude Pichard. 2019. "Indirect Calorimetry in Clinical Practice" Journal of Clinical Medicine 8, no. 9: 1387. https://doi.org/10.3390/jcm8091387
APA StyleDelsoglio, M., Achamrah, N., Berger, M. M., & Pichard, C. (2019). Indirect Calorimetry in Clinical Practice. Journal of Clinical Medicine, 8(9), 1387. https://doi.org/10.3390/jcm8091387