Low-Level Laser Therapy with a 635 nm Diode Laser Affects Orthodontic Mini-Implants Stability: A Randomized Clinical Split-Mouth Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Orthodontic Treatment
2.3. Surgical Procedures
2.4. Laser Application
2.5. Measurement of Implants’ Stability
2.6. Measurement of Pain Value
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Park, H.S.; Bae, S.M.; Kyung, H.M.; Sung, J.H. Micro-implant anchorage for treatment of skeletal class I bialveolar protrusion. J. Clin. Orthod. 2001, 35, 417–422. [Google Scholar] [PubMed]
- Bae, S.M.; Park, H.S.; Kyung, H.M.; Kwon, O.W.; Sung, J.H. Clinical application of micro-implant anchorage. J. Clin. Orthod. 2002, 36, 298–302. [Google Scholar] [PubMed]
- Baek, S.H.; Kim, B.M.; Kyung, S.H.; Lim, J.K.; Kim, Y.H. Success rate and risk factors associated with mini-implants reinstalled in the maxilla. Angle Orthod. 2008, 78, 895–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karmarker, S.; Yu, W.; Kyung, H.M. Effect of surface anodization on stability of orthodontic microimplant. Korean J. Orthod. 2012, 42, 4–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matys, J.; Flieger, R.; Tenore, G.; Grzech-Leśniak, K.; Romeo, U.; Dominiak, M. Er: YAG laser, piezosurgery, and surgical drill for bone decortication during orthodontic mini-implant insertion: Primary stability analysis—An animal study. Lasers Med. Sci. 2017, 33, 489–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matys, J.; Świder, K.; Flieger, R.; Dominiak, M. Assessment of the primary stability of root analog zirconia implants designed using cone beam computed tomography software by means of the Periotest® device: An ex vivo study. A preliminary report. Adv. Clin. Exp. Med. 2017, 26, 803–809. [Google Scholar] [CrossRef] [Green Version]
- Meredith, N. Assessment of implant stability as a prognostic determinant. Int. J. Prosthodont. 1998, 11, 491–501. [Google Scholar]
- Javed, F.; Romanos, G.E. The role of primary stability for successful immediate loading of dental implants. A literature review. J. Dent. 2010, 38, 612–620. [Google Scholar] [CrossRef]
- AlSayed Hasan, M.M.A.; Sultan, K.; Hamadah, O. Evaluating low-level laser therapy effect on reducing orthodontic pain using two laser energy values: A split-mouth randomized placebo-controlled trial. Eur. J. Orthod. 2018, 40, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Lukas, D.; Schulte, W. Periotest—A dynamic procedure for the diagnosis of the human periodontium. Clin. Phys. Physiol. Meas. 1990, 11, 65–75. [Google Scholar] [CrossRef]
- Turner, P.S.; Nentwig, G.H. Evaluation of the value of bone training (progressive bone loading) by using the Periotest: A clinical study. Contemp. Clin. Dent. 2014, 5, 461–465. [Google Scholar] [CrossRef] [PubMed]
- García-Morales, J.M.; Tortamano-Neto, P.; Todescan, F.F.; de Andrade, J.C.S.; Marotti, J.; Zezell, D.M. Stability of dental implants after irradiation with an 830-nm low-level laser: A double-blind randomized clinical study. Lasers Med. Sci. 2012, 27, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Schindl, A.; Schindl, M.; Pernerstorfer-Schön, H.; Schindl, L. Low-intensity laser therapy: A review. J. Investig. Med. 2000, 48, 312–326. [Google Scholar]
- Khadra, M.; Rønold, H.J.; Lyngstadaas, S.P.; Ellingsen, J.E.; Haanaes, H.R. Low-level laser therapy stimulates bone-implant interaction: An experimental study in rabbits. Clin. Oral Implants Res. 2004, 15, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Goymen, M.; Isman, E.; Taner, L.; Kurkcu, M. Histomorphometric Evaluation of the Effects of Various Diode Lasers and Force Levels on Orthodontic Mini Screw Stability. Photomed. Laser Surg. 2015, 33, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AlGhamdi, K.M.; Kumar, A.; Moussa, N.A. Low-level laser therapy: A useful technique for enhancing the proliferation of various cultured cells. Lasers Med. Sci. 2012, 27, 237–249. [Google Scholar] [CrossRef]
- Barbosa, D.; de Souza, R.A.; Xavier, M.; da Silva, F.F.; Arisawa, E.A.; Villaverde, A.G. Effects of low-level laser therapy (LLLT) on bone repair in rats: Optical densitometry analysis. Lasers Med. Sci. 2013, 28, 651–656. [Google Scholar] [CrossRef]
- Stein, A.; Benayahu, D.; Maltz, L.; Oron, U. Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed. Laser Surg. 2005, 23, 161–166. [Google Scholar] [CrossRef]
- Mohammed, I.F.; Al-Mustawfi, N.; Kaka, L.N. Promotion of regenerative processes in injured peripheral nerve induced by low-level laser therapy. Photomed. Laser Surg. 2007, 25, 107–111. [Google Scholar] [CrossRef]
- Omasa, S.; Motoyoshi, M.; Arai, Y.; Ejima, K.; Shimizu, N. Low-level laser therapy enhances the stability of orthodontic mini-implants via bone formation related to BMP-2 expression in a rat model. Photomed. Laser Surg. 2012, 30, 255–261. [Google Scholar] [CrossRef]
- Pinto, M.R.; dos Santos, R.L.; Pithon, M.M.; de Souza Araújo, M.T.; Braga, J.P.V.; Nojima, L.I. Influence of low-intensity laser therapy on the stability of orthodontic mini-implants: A study in rabbits. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, e26–e30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires Oliveira, D.A.; de Oliveira, R.F.; Zangaro, R.A.; Soares, C.P. Evaluation of low-level laser therapy of osteoblastic cells. Photomed. Laser Surg. 2008, 26, 401–404. [Google Scholar] [CrossRef] [PubMed]
- Matys, J.; Świder, K.; Grzech-Leśniak, K.; Dominiak, M.; Romeo, U. Photobiomodulation by a 635nm Diode Laser on Peri-Implant Bone: Primary and Secondary Stability and Bone Density Analysis-A Randomized Clinical Trial. Biomed. Res. Int. 2019, 22, 2785302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matys, J.; Jaszczak, E.; Flieger, R.; Kostrzewska-Kaminiarz, K.; Grzech-Leśniak, K.; Dominiak, M. Effect of ozone and diode laser (635 nm) in reducing orthodontic pain in the maxillary arch-a randomized clinical controlled trial. Lasers Med. Sci. 2019. [Google Scholar] [CrossRef] [Green Version]
- Bosshardt, D.D.; Salvi, G.E.; Huynh-Ba, G.; Ivanovski, S.; Donos, N.; Lang, N.P. The role of bone debris in early healing adjacent to hydrophilic and hydrophobic implant surfaces in man. Clin. Oral Implants Res. 2011, 22, 357–364. [Google Scholar] [CrossRef]
- Luppanapornlarp, S.; Kajii, T.S.; Surarit, R.; Iida, J. Interleukin-1beta levels, pain intensity, and tooth movement using two different magnitudes of continuous orthodontic force. Eur. J. Orthod. 2010, 32, 596–601. [Google Scholar] [CrossRef] [Green Version]
- Farzanegan, F.; Zebarjad, S.M.; Alizadeh, S.; Ahrari, F. Pain reduction after initial archwire placement in orthodontic patients: A randomized clinical trial. Am. J. Orthod. Dentofac. Orthop. 2012, 141, 169–173. [Google Scholar] [CrossRef]
- Marquezan, M.; Mattos, C.T.; Sant’Anna, E.F.; de Souza, M.M.; Maia, L.C. Does cortical thickness influence the primary stability of miniscrews? A systematic review and meta-analysis. Angle Orthod. 2014, 84, 1093–1103. [Google Scholar] [CrossRef] [Green Version]
- Matys, J.; Flieger, R.; Dominiak, M. Effect of diode lasers with wavelength of 445 and 980 nm on a temperature rise when uncovering implants for second stage surgery: An ex-vivo study in pigs. Adv. Clin. Exp. Med. 2017, 26, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Matys, J.; Flieger, R.; Dominiak, M. Assessment of temperature rise and time of alveolar ridge splitting by means of Er: YAG laser, piezosurgery, and surgical saw: An ex vivo study. Biomed. Res. Int. 2016, 2016, 9654975. [Google Scholar] [CrossRef] [Green Version]
- Matys, J.; Hadzik, J.; Dominiak, M. Schneiderian membrane perforation rate and increase in bone temperature during maxillary sinus floor elevation by means of Er: YAG laser—An animal study in pigs. Implant Dent. 2017, 26, 238–244. [Google Scholar] [CrossRef]
- Matys, J.; Botzenhart, U.; Gedrange, T.; Dominiak, M. Thermodynamic effects after diode and Er: YAG laser irradiation of grade IV and V titanium implants placed in bone—An ex vivo study. Preliminary report. Biomed. Tech. 2016, 61, 499–507. [Google Scholar] [CrossRef]
- Matys, J.; Grzech-Leśniak, K.; Flieger, R.; Dominiak, M. Assessment of an impact of a diode laser mode with wavelength of 980 nm on a temperature rise measured by means of k-02 thermocouple: Preliminary results. Dent. Med. Probl. 2016, 53, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, A.R.; Albrektsson, T. Temperature threshold levels for heat-induced bone tissue injury: A vital-microscopic study in the rabbit. J. Prosthet. Dent. 1983, 50, 101–107. [Google Scholar] [CrossRef]
- Joensen, J.; Demmink, J.H.; Johnson, M.I.; Iversen, V.V.; Lopes-Martins, R.Á.B.; Bjordal, J.M. The thermal effects of therapeutic lasers with 810 and 904 nm wavelengths on human skin. Photomed. Laser Surg. 2011, 29, 145–153. [Google Scholar] [CrossRef]
Period | Laser | Std | Control | Std | df | p-Value |
---|---|---|---|---|---|---|
Baseline | −2.74 | 0.70 | −2.53 | 0.58 | 19 | 0.1231 |
3 days | −2.61 | 0.47 | −1.05 | 1.13 | 19 | 0.0000 |
6 days | −2.71 | 0.12 | −2.60 | 2.79 | 19 | 0.8644 |
9 days | −1.14 | 0.27 | −0.16 | 4.04 | 19 | 0.3212 |
12 days | −0.08 | 0.95 | 1.62 | 5.49 | 19 | 0.1590 |
15 days | 0.65 | 1.55 | 3.18 | 6.78 | 19 | 0.0582 |
30 days | 6.18 | 5.30 | 9.17 | 8.25 | 19 | 0.0003 |
60 days | 1.51 | 2.25 | 5.00 | 3.24 | 19 | 0.0000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flieger, R.; Gedrange, T.; Grzech-Leśniak, K.; Dominiak, M.; Matys, J. Low-Level Laser Therapy with a 635 nm Diode Laser Affects Orthodontic Mini-Implants Stability: A Randomized Clinical Split-Mouth Trial. J. Clin. Med. 2020, 9, 112. https://doi.org/10.3390/jcm9010112
Flieger R, Gedrange T, Grzech-Leśniak K, Dominiak M, Matys J. Low-Level Laser Therapy with a 635 nm Diode Laser Affects Orthodontic Mini-Implants Stability: A Randomized Clinical Split-Mouth Trial. Journal of Clinical Medicine. 2020; 9(1):112. https://doi.org/10.3390/jcm9010112
Chicago/Turabian StyleFlieger, Rafał, Tomasz Gedrange, Kinga Grzech-Leśniak, Marzena Dominiak, and Jacek Matys. 2020. "Low-Level Laser Therapy with a 635 nm Diode Laser Affects Orthodontic Mini-Implants Stability: A Randomized Clinical Split-Mouth Trial" Journal of Clinical Medicine 9, no. 1: 112. https://doi.org/10.3390/jcm9010112
APA StyleFlieger, R., Gedrange, T., Grzech-Leśniak, K., Dominiak, M., & Matys, J. (2020). Low-Level Laser Therapy with a 635 nm Diode Laser Affects Orthodontic Mini-Implants Stability: A Randomized Clinical Split-Mouth Trial. Journal of Clinical Medicine, 9(1), 112. https://doi.org/10.3390/jcm9010112