Hemodynamic Predictors for Sepsis-Induced Acute Kidney Injury: A Preliminary Study
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Patients
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
Statement of Ethics
References
- Sakhuja, A.; Kumar, G.; Gupta, S.; Mittal, T.; Taneja, A.; Nanchal, R.S. Acute Kidney Injury Requiring Dialysis in Severe Sepsis. Am. J. Respir. Crit. Care Med. 2015, 192, 951–957. [Google Scholar] [CrossRef]
- Oppert, M.; Engel, C.; Brunkhorst, F.M.; Bogatsch, H.; Reinhart, K.; Frei, U.; Eckardt, K.U.; Loeffler, M.; John, S.; German Competence Network Sepsis (Sepnet). Acute renal failure in patients with severe sepsis and septic shock-a significant independent risk factor for mortality: Results from the German Prevalence Study. Nephrol. Dial. Transplant. 2008, 23, 904–909. [Google Scholar] [CrossRef]
- Bagshaw, S.M.; George, C.; Bellomo, R.; Committee, A.D.M. ANZICS Database Management Committee. Early acute kidney injury and sepsis: A multicentre evaluation. Crit. Care 2008, 12, R47. [Google Scholar] [CrossRef] [Green Version]
- Montomoli, J.; Donati, A.; Ince, C. Acute Kidney Injury and Fluid Resuscitation in Septic Patients: Are We Protecting the Kidney? Nephron Clin. Pract. 2019, 143, 170–173. [Google Scholar] [CrossRef]
- Plataki, M.; Kashani, K.; Cabello-Garza, J.; Maldonado, F.; Kashyap, R.; Kor, D.J.; Gajic, O.; Cartin-Ceba, R. Predictors of acute kidney injury in septic shock patients: An observational cohort study. Clin. J. Am. Soc. Nephrol. 2011, 6, 1744–1751. [Google Scholar] [CrossRef]
- Prowle, J.R.; Bellomo, R. Sepsis-associated acute kidney injury: Macrohemodynamic and microhemodynamic alterations in the renal circulation. Semin. Nephrol. 2015, 35, 64–74. [Google Scholar] [CrossRef]
- Poukkanen, M.; Wilkman, E.; Vaara, S.T.; Pettilä, V.; Kaukonen, K.M.; Korhonen, A.M.; Uusaro, A.; Hovilehto, S.; Inkinen, O.; Laru-Sompa, R.; et al. Hemodynamic variables and progression of acute kidney injury in critically ill patients with severe sepsis: Data from the prospective observational FINNAKI study. Crit. Care 2013, 17, R295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badin, J.; Boulain, T.; Ehrmann, S.; Skarzynski, M.; Bretagnol, A.; Buret, J.; Benzekri-Lefevre, D.; Mercier, E.; Runge, I.; Garot, D.; et al. Relation between mean arterial pressure and renal function in the early phase of shock: A prospective, explorative cohort study. Crit. Care. 2011, 15, R135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallabhajosyula, S.; Sakhuja, A.; Geske, J.B.; Kumar, M.; Kashyap, R.; Kashani, K.; Jentzer, J.C. Clinical profile and outcomes of acute cardiorenal syndrome type-5 in sepsis: An eight-year cohort study. PLoS ONE 2018, 13, e0190965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ince, C. Personalized physiological medicine. Crit. Care. 2017, 21 (Suppl. 3), 308. [Google Scholar] [CrossRef] [Green Version]
- Kidney Disease: Improving Global Outcomes (KDIGO). KDIGO Clinical Practice Guideline for acute kidney injury. Section 2: AKI definition. Kidney Int. Suppl. 2012, 2, 19–36. [Google Scholar]
- Teboul, J.L.; Saugel, B.; Cecconi, M.; De Backer, D.; Hofer, C.K.; Monnet, X.; Perel, A.; Pinsky, M.R.; Reuter, D.A.; Rhodes, A.; et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016, 42, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Taton, O.; Fagnoul, D.; De Backer, D.; Vincent, J.L. Evaluation of cardiac output in intensive care using a noninvasive arterial pulse contour technique (Nexfin1) compared with echocardiography. Anaesthesia 2013, 68, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, R.P.; Levy, M.M.; Rhodes, A.; Annane, D.; Gerlach, H.; Opal, S.M.; Sevransky, J.E.; Sprung, C.L.; Douglas, I.S.; Jaeschke, R.; et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013, 39, 165–228. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Iwakiri, Y.; Shah, V.; Rockey, D.C. Vascular pathobiology in chronic liver disease and cirrhosis – Current status and future directions. J. Hepatol. 2014, 61, 912–924. [Google Scholar] [CrossRef] [Green Version]
- Varin, R.; Mulder, P.; Tamion, F.; Richard, V.; Henry, J.P.; Lallemand, F.; Lerebours, G.; Thuillez, C. Improvement of endothelial function by chronic angiotensin-converting enzyme inhibition in heart failure: Role of nitric oxide, prostanoids, oxidant stress, and bradykinin. Circulation 2000, 102, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H.; et al. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, G.F.; Parise, H.; Benjamin, E.J.; Larson, M.G.; Keyes, M.J.; Vita, J.A.; Vasan, R.S.; Levy, D. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: The Framingham Heart Study. Hypertension 2004, 43, 1239–1245. [Google Scholar] [CrossRef] [Green Version]
- Cruz, D.N.; Antonelli, M.; Fumagalli, R.; Foltran, F.; Brienza, N.; Donati, A.; Malcangi, V.; Petrini, F.; Volta, G.; Bobbio Pallavicini, F.M.; et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: The EUPHAS randomized controlled trial. JAMA 2009, 301, 2445–2452. [Google Scholar] [CrossRef] [Green Version]
- Lambden, S.; Creagh-Brown, B.C.; Hunt, J.; Summers, C.; Forni, L.G. Definitions and pathophysiology of vasoplegic shock. Crit. Care 2018, 22, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L.; Herzog, C.A.; Joannidis, M.; Kribben, A.; Levey, A.S.; et al. Kidney Disease: Improving Global Outcomes KDIGO Acute Kidney Injury Work Group KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- Mehta, R.L.; Kellum, J.A.; Shah, S.V.; Molitoris, B.A.; Ronco, C.; Warnock, D.G.; Levin, A.; Acute Kidney Injury Network. Acute Kidney Injury Network: Report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007, 11, R31. [Google Scholar] [CrossRef] [Green Version]
- Macedo, E.; Malhotra, R.; Bouchard, J.; Wynn, S.K.; Mehta, R.L. Oliguria is an early predictor of higher mortality in critically ill patients. Kidney Int. 2011, 80, 760–767. [Google Scholar] [CrossRef] [Green Version]
- D’Orio, V.; Wahlen, C.; Naldi, M.; Fossion, A.; Juchmes, J.; Marcelle, R. Contribution of peripheral blood pooling to central hemodynamic disturbances during endotoxin insult in intact dogs. Crit. Care Med. 1989, 17, 1314–1319. [Google Scholar] [CrossRef]
- Teule, G.J.; von Lingen, A.; Verwey von Vught, M.A.; Kester, A.D.; Mackaay, R.C.; Bezemer, P.D.; Heidenal, G.A.; Thijs, L.G. Role of peripheral pooling in porcine Escherichia coli sepsis. Circ. Shock 1984, 12, 115–123. [Google Scholar]
- Trancă, S.; Petrișor, C.; Hagău, N.; Ciuce, C. Can APACHE II, SOFA, ISS, and RTS Severity Scores be used to Predict Septic Complications in Multiple Trauma Patients? J. Crit. Care Med. (Targu Mures) 2016, 10, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Kellum, J.A.; Sileanu, F.E.; Murugan, R.; Lucko, N.; Shaw, A.D.; Clermont, G. Classifying AKI by Urine Output versus Serum Creatinine Level. J. Am. Soc. Nephrol. 2015, 26, 2231–2238. [Google Scholar] [CrossRef]
- Lopes, J.A.; Jorge, S.; Resina, C.; Santos, C.; Pereira, A.; Neves, J.; Antunes, F.; Prata, M.M. Acute renal failure in patients with sepsis. Crit. Care 2007, 11, 411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleischmann, C.; Thomas-Rueddel, D.O.; Hartmann, M.; Hartog, C.S.; Welte, T.; Heublein, S.; Dennler, U.; Reinhart, K. Hospital Incidence and Mortality Rates of Sepsis. An Analysis of Hospital Episode (DRG) Statistics in Germany from 2007 to 2013. Dtsch. Arztebl. Int. 2016, 113, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagshaw, S.M.; Uchino, S.; Bellomo, R.; Morimatsu, H.; Morgera, S.; Schetz, M.; Tan, I.; Bouman, C.; Macedo, E.; Gibney, N.; et al. Septic acute kidney injury in critically ill patients: Clinical characteristics and outcomes. Clin. J. Am. Soc. Nephrol. 2007, 2, 431–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagshaw, S.M.; Mortis, G.; Doig, C.J.; Godinez-Luna, T.; Fick, G.H.; Laupland, K.B. One-year mortality in critically ill patients by severity of kidney dysfunction: A population-based assessment. Am. J. Kidney Dis. 2006, 48, 402–409. [Google Scholar] [CrossRef]
All Patients Included in the Study | Oliguric/Anuric Group | Normal Urinary Output Group | p Value * | |
---|---|---|---|---|
Number of patients N | 71 | 19 | 52 | |
Age Mean ± SD | 62.6 ± 14.7 | 61.4 ± 10.7 | 62.9 ± 15.1 | 0.57 |
Weight (actual) kg Mean ± SD | 82.5 ± 20.0 | 88.5 ± 21.4 | 79.9 ± 19.6 | 0.14 |
Body Surface Area Mean ± SD | 1.9 ± 0.2 | 2.0 ± 0.2 | 1.9 ± 0.2 | 0.09 |
Diagnosis N (%) | ||||
Sepsis | 37 (52.1) | 13 (68.4) | 21 (40.4) | 0.03 |
Septic shock | 34 (47.9) | 6 (31.6) | 31 (59.6) | 0.03 |
Type of sepsis N (%) | N (%) | |||
Medical | 26 (36.6) | 8 (42.1) | 19 (36.5) | 0.66 |
Surgical | 45 (63.4) | 11 (57.9) | 33 (63.5) | 0.66 |
Ventilation N (%) | N (%) | |||
Mechanically ventilated | 49 (69) | 18 (94.7) | 31 (59.6) | 0.04 |
Spontaneous ventilation | 22 (31) | 1 (5.3) | 21 (40.4) | 0.04 |
PEEP for Mechanically ventilated at study inclusion (T0) Mean ± SD | 5.7 ± 1.1 | 6 ± 1.2 | 5.5 ± 0.9 | 0.16 |
SOFA Score at study inclusion (T0) Mean ± SD points | 9.5 ± 3.2 | 11.3 ± 2.9 | 8.8 ± 3.2 | 0.02 |
SOFA Score without renal SOFA at study inclusion (T0) Mean ± SD points | 7.1 ± 2.5 | 8.2 ± 2.2 | 6.8 ± 2.6 | 0.06 |
Cardiovascular SOFA at study inclusion (T0) Mean ± SD points | 2.8 ± 1.4 | 3.4 ± 1.2 | 2.5 ± 1.3 | 0.03 |
APACHE II Score at study inclusion (T0) Mean ± SD points | 21.9 ± 8.6 | 23.3 ± 8.5 | 20.8 ± 8.4 | 0.17 |
Heart Rate at study inclusion (T0) Mean ± SD beats/min | 105.0 ± 20.6 | 108.5 ± 19.2 | 101.6 ± 18.0 | 0.15 |
Mean arterial blood pressure (MAP) at study inclusion (T0) Mean ± SD mm Hg | 75.2 ± 13.6 | 74.3 ± 16.4 | 75.8 ± 12.8 | 0.68 |
Lactate at study inclusion (T0) Mean ± SD mmol/l | 2.52 ± 2.2 | 4.1 ± 2.0 | 3.5±2.3 | 0.12 |
Norepinephrine at study inclusion (T0) Mean ± SD mcg/kg/min | 0.09 ± 0.1 | 0.18 ± 0.1 | 0.06 ± 0.07 | 0.001 |
VDI Mean ± SD at study inclusion (T0) | 0.14 ± 0.2 | 0.26 ± 0.27 | 0.08 ± 0.1 | 0.001 |
Creatinine Mean ± SD at study inclusion (T0) µmol/l | 218.3 ± 192.7 | 291.7 ± 226.3 | 192.76 ± 179.5 | 0.06 |
Urea Mean ± SD at study inclusion (T0) mmol/l | 16.4 ± 12.0 | 20.3 ± 13.7 | 14.6 ± 11.2 | 0.09 |
T0 | H3 | H6 | H24 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oliguric/Anuric Group | Normal Urinary Output Group | p Value | Oliguric/Anuric Group | Normal Urinary Output Group | p Value | Oliguric/Anuric Group | Normal Urinary Output Group | p Value | Oliguric/Anuric Group | Normal Urinary Output Group | p Value | |
SOFA Mean ± SD points | 11.3 ± 2.9 | 8.8 ± 3.2 | 0.02 | not calculated at the 3rd h | 10.1 ± 3.1 | 8.4 ± 3.6 | 0.11 | 10.0 ± 2.5 | 7.2 ± 3.6 | 0.02 | ||
SOFAcv Mean ± SD points | 3.4 ± 1.2 | 2.5 ± 1.3 | 0.03 | 3.0 ± 1.6 | 2.8 ± 1.5 | 0.22 | 3.0 ± 1.6 | 2.3 ± 1.5 | 0.03 | |||
SOFAr Mean ± SD points | 3.1 ± 1.4 | 1.9 ± 1.6 | 0.03 | 2.8 ± 1.5 | 1.3 ± 1.5 | 0.01 | 2.7 ± 1.3 | 1.1 ± 1.3 | 0.00 | |||
SOFAp Mean ± SD points | 2.4 ± 1.2 | 1.8 ± 1.2 | 0.02 | 2.2 ± 1.2 | 1.0 ± 1.0 | 0.18 | 2.1 ± 0.9 | 1.6 ± 1.0 | 0.12 | |||
APACHE II Mean ± SD points | 23.3 ± 8.5 | 20.8 ± 8.4 | 0.17 | not calculated at 6th h | not calculated at 24th h | |||||||
SBD Mean ± SD mm Hg | 121.1 ± 23.9 | 117.5 ± 19.9 | 0.53 | 124.2 ± 18.5 | 123.0 ± 17.9 | 0.80 | 126.1 ± 17.3 | 127.9 ± 18.5 | 0.70 | 130.5 ± 17.9 | 130.1 ± 20.0 | 0.93 |
DBP Mean ± SD mm Hg | 57.7 ± 14.5 | 55.6 ± 10.0 | 0.67 | 58.0 ± 11.9 | 55.0 ± 11.9 | 0.34 | 60.5 ± 12.0 | 56.5 ± 11.7 | 0.21 | 60.4 ± 12.3 | 59.5 ± 13.3 | 0.80 |
MAP Mean ± SD mm Hg | 74.3 ± 16.4 | 75.8 ± 12.8 | 0.68 | 75.4 ± 10.9 | 75.2 ± 11.9 | 0.94 | 78.7 ± 14.1 | 78.6 ± 11.7 | 0.97 | 78.5 ± 15.2 | 82.4 ± 12.7 | 0.29 |
Heart rate Mean ± SD beats/min | 108.5 ± 19.2 | 101.5±17.9 | 0.15 | 101.7 ± 18.7 | 96.5 ± 18.3 | 0.26 | 100.1 ± 21.0 | 98.1 ± 19.5 | 0.90 | 101.1 ± 14.9 | 95.5±17.4 | 0.25 |
CVP Mean ± SD mm Hg | 8.5 ± 4.2 | 6.8 ± 4.7 | 0.08 | 10.7 ± 3.9 | 7.6 ± 4.9 | 0.006 | 11.2 ± 3.7 | 8.2 ± 4.9 | 0.01 | 7.7 ± 3.9 | 8.3 ± 4.6 | 0.96 |
CI Mean ± SD l/min | not monitored at time 0 | 3.2 ± 0.8 | 3.5 ± 0.9 | 0.20 | 3.1 ± 0.8 | 3.7 ± 0.9 | 0.03 | 3.2 ± 0.6 | 3.5 ± 0.7 | 0.23 | ||
SVI Mean ± SD mL/m2/beat | 31.5 ± 9.4 | 37.0 ± 9.6 | 0.03 | 34.1 ± 12.2 | 38.0 ± 10.0 | 0.27 | 33.1 ± 8.6 | 38.0 ± 10.4 | 0.07 | |||
GEDI Mean ± SD mL/kg | 565.8 ± 133.6 | 661.8 ± 158.4 | 0.037 | 530.9 ± 199.3 | 651.9 ± 203.0 | 0.07 | 605.1 ± 120.6 | 707.4 ± 153.6 | 0.009 | |||
ITBI Mean ± SD mL/m2 | 754.5 ± 215.6 | 764.6 ± 153.0 | 0.15 | 761.9 ± 247.0 | 858.3 ± 262.2 | 0.20 | 776.4 ± 247.8 | 931.4 ± 229.8 | 0.009 | |||
ELWI Mean ± SD mL/kg | 7.9 ± 2.0 | 8.7 ± 3.3 | 0.88 | 8.88 ± 3.03 | 8.9 ± 4.0 | 0.49 | 8.8 ± 2.2 | 8.5 ± 3.0 | 0.45 | |||
GEF Mean ± SD | 23.6 ± 8.7 | 22.3 ± 5.8 | 0.91 | 23.6 ± 9.8 | 22.7 ± 6.2 | 0.96 | 22.7 ± 7.0 | 21.1 ± 6.2 | 0.64 | |||
SVRI Mean ± SD dynes * sec/cm5/m2 | 1584.4 ± 477.4 | 1638.9 ± 476.4 | 0.97 | 1554.3 ± 472.3 | 1623.7 ± 512.1 | 0.85 | 1678.0 ± 588.0 | 1765.6 ± 536.0 | 0.69 | |||
Norepinephrine Mean ± SD mcg/kg/min | 0.18 ± 0.19 | 0.06 ± 0.07 | 0.001 | 0.14 ± 0.14 | 0.08 ± 0.08 | 0.08 | 0.17 ± 0.16 | 0.10 ± 0.12 | 0.11 | 0.24 ± 0.30 | 0.12 ± 0.19 | 0.02 |
VDI Mean ± SD | 0.26 ± 0.27 | 0.08 ± 0.1 | 0.001 | 0.19 ± 0.19 | 0.12 ± 0.13 | 0.14 | 0.24 ± 0.25 | 0.16 ± 0.21 | 0.19 | 0.35 ± 0.43 | 0.12 ± 0.19 | 0.01 |
Creatinine Mean ± SD) µmol/L | 291.7 ± 226.3 | 192.76 ± 179.5 | 0.06 | not monitored at these time frames | 249.3 ± 191.8 | 184.8 ± 165.3 | 0.14 | |||||
Urea Mean ± SD mmol/L | 20.32 ± 13.7 | 14.6 ± 11.28 | 0.09 | 19.0 ± 10.7 | 15.3 ± 11.6 | 0.11 | ||||||
Mean urinary output Mean ± SD mL/kg/hour | 0.12 ± 0.12 | 1.26 ± 0.75 | <0.001 | |||||||||
Lactate (septic shock patients) mean ± SD mmol/L | 4.1 ± 2.0 | 3.5 ± 2.3 | 0.12 | 3.6 ± 2.0 | 3.6 ± 3.4 | 0.08 | 3.5 ± 1.5 | 3.7 ± 3.4 | 0.18 | 2.2 ± 1.2 | 2.5 ± 2.7 | 0.18 |
Lactate clearance ≥ 10% (septic shock patients) % | not monitored between time of presentation and time zero | 53.8 | 44.4 | 0.60 | 53.8 | 44.4 | 0.60 | 84.6 | 94.4 | 0.36 | ||
Capilary refill time > 3 sec % | 31.60 | 16.30 | 0.16 | 26.30 | 10.10 | 0.09 | 21.10 | 6.2% | 0.06 | 5.30 | 4.10 | 0.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antal, O.; Ștefănescu, E.; Mleșnițe, M.; Bălan, A.M.; Caziuc, A.; Hagău, N. Hemodynamic Predictors for Sepsis-Induced Acute Kidney Injury: A Preliminary Study. J. Clin. Med. 2020, 9, 151. https://doi.org/10.3390/jcm9010151
Antal O, Ștefănescu E, Mleșnițe M, Bălan AM, Caziuc A, Hagău N. Hemodynamic Predictors for Sepsis-Induced Acute Kidney Injury: A Preliminary Study. Journal of Clinical Medicine. 2020; 9(1):151. https://doi.org/10.3390/jcm9010151
Chicago/Turabian StyleAntal, Oana, Elena Ștefănescu, Monica Mleșnițe, Andrei Mihai Bălan, Alexandra Caziuc, and Natalia Hagău. 2020. "Hemodynamic Predictors for Sepsis-Induced Acute Kidney Injury: A Preliminary Study" Journal of Clinical Medicine 9, no. 1: 151. https://doi.org/10.3390/jcm9010151
APA StyleAntal, O., Ștefănescu, E., Mleșnițe, M., Bălan, A. M., Caziuc, A., & Hagău, N. (2020). Hemodynamic Predictors for Sepsis-Induced Acute Kidney Injury: A Preliminary Study. Journal of Clinical Medicine, 9(1), 151. https://doi.org/10.3390/jcm9010151