Iodine Status, Thyroid Function, and Birthweight: A Complex Relationship in High-Risk Pregnancies
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Subjects
2.2. Laboratory Analysis
2.3. Statistical Analysis
3. Results
3.1. Clinical and Demographic Variables
3.2. Iodine Status and Consumption of Supplements
3.3. Thyroid Function Parameters in Maternal and Cord Blood
3.4. Conditions at the Time of Birth
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murphy, V.E.; Smith, R.; Giles, W.B.; Clifton, V.L. Endocrine regulation of human fetal growth: The role of the mother, placenta, and fetus. Endocr. Rev. 2006, 27, 141–169. [Google Scholar] [CrossRef] [PubMed]
- Forhead, A.J.; Fowden, A.L. Thyroid hormones in fetal growth and prepartum maturation. J. Endocrinol. 2014, 221, R87–R103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springer, D.; Jiskra, J.; Limanova, Z.; Zima, T.; Potlukova, E. Thyroid in pregnancy: From physiology to screening. Crit. Rev. Clin. Lab. Sci. 2017, 54, 102–116. [Google Scholar] [CrossRef]
- Zimmermann, M.B. The role of iodine in human growth and development. Semin. Cell Dev. Biol. 2011, 22, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Raymond, J.; LaFranchi, S.H. Fetal and neonatal thyroid function: Review and summary of significant new findings. Curr. Opin. Endocrinol. Diabetes. Obes. 2010, 17, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Burrow, G.N.; Fisher, D.A.; Larsen, P.R. Maternal and foetal thyroid function. N. Engl. J. Med. 1994, 331, 1072–1078. [Google Scholar]
- Glinoer, D. The regulation of thyroid function in pregnancy; pathways of endocrine adaptation from physiology to pathology. Endocr. Rev. 1997, 18, 404–433. [Google Scholar] [CrossRef]
- Holness, N. High-Risk Pregnancy. Nurs. Clin. N. Am. 2018, 53, 241–251. [Google Scholar] [CrossRef]
- Baud, O.; Berkane, N. Hormonal Changes Associated With Intra-Uterine Growth Restriction: Impact on the Developing Brain and Future Neurodevelopment. Front. Endocrinol. 2019, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Gardosi, J. Preterm standards for fetal growth and birthweight. Acta Paediatr. 2017, 106, 1383–1384. [Google Scholar] [CrossRef] [Green Version]
- Figueras, F.; Gratacos, E. An integrated approach to fetal growth restriction. Best Pr. Res. Clin. Obs. Gynaecol. 2017, 38, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Franco, B.; Laura, F.; Sara, N.; Salvatore, G. Thyroid function in small for gestational age newborns: A review. J. Clin. Res. Pediatr. Endocrinol. 2013, 5, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Xiaowen, Z.; Baomin, C.; Aihua, L.; Yingying, Z.; Weiping, T.; Zhongyan, S. The Effect of Subclinical Maternal Thyroid Dysfunction and Autoimmunity on Intrauterine Growth Restriction: A Systematic Review and Meta-Analysis. Medicine 2016, 95, e3677. [Google Scholar] [CrossRef] [PubMed]
- Farebrother, J.; Naude, C.E.; Nicol, L.; Sang, Z.; Yang, Z.; Jooste, P.L.; Andersson, M.; Zimmermann, M.B. Effects of Iodized Salt and Iodine Supplements on Prenatal and Postnatal Growth: A Systematic Review. Adv. Nutr. 2018, 9, 219–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Fuentes, E.; Gallo, M.; García, L.; Prieto, S.; Alcaide-Torres, J.; Santiago, P.; Velasco, I.; Soriguer, F. Amniotic fluid iodine concentrations do not vary in pregnant women with varying iodine intake. Br. J. Nutr 2008, 99, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Velasco, I.; Martín, J.; Gallego, M.; Gutiérrez-Repiso, C.; Santiago, P.; López-Siguero, J.P.; Mesa, E.G.; Peral, J.H.; Pérez, V.; García-Fuentes, E.; et al. Maternal-fetal thyroid function at the time of birth and its relation with iodine intake. Thyroid 2013, 23, 1619–1626. [Google Scholar] [CrossRef]
- González González, N.L.; Dávila, E.G.; Cabrera, F.; Padrón, E.; Castro, J.R.; García Hernández, J.A. Customized weight curves for Spanish fetuses and newborns. J. Matern. Fetal Neonatal Med. 2014, 27, 1495–1499. [Google Scholar] [CrossRef]
- Gutiérrez-Repiso, C.; Colomo, N.; Rojo-Martinez, G.; Valdés, S.; Tapia, M.J.; Esteva, I.; de Ruiz Adana, M.S.; Rubio-Martin, E.; Lago-Sampedro, A.; Santiago, P.; et al. Evolution of urinary iodine excretion over eleven years in an adult population. Clin. Nutr. 2015, 34, 712–718. [Google Scholar] [CrossRef]
- Bernal, J. Thyroid hormone regulated genes in cerebral cortex development. J. Endocrinol. 2017, 232, R83–R97. [Google Scholar] [CrossRef] [Green Version]
- Shallie, P.D.; Naicker, T. The placenta as a window to the brain: A review on the role of placental markers in prenatal programming of neurodevelopment. Int. J. Dev. Neurosci. 2019, 7, 41–49. [Google Scholar] [CrossRef]
- Andersen, S.L.; Carlé, A.; Karmisholt, J.; Pedersen, I.B.; Andersen, S. Mechanisms in endocrinology: Neurodevelopmental disorders in children born to mothers with thyroid dysfunction: Evidence of fetal programming? Eur. J. Endocrinol. 2017, 177, R27–R36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velasco, I.; Bath, S.C.; Rayman, M.P. Iodine as Essential Nutrient during the First 1000 Days of Life. Nutrients 2018, 10, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moleti, M.; Di Bella, B.; Giorgianni, G.; Mancuso, A.; De Vivo, A.; Alibrandi, A.; Trimarchi, F.; Vermiglio, F. Maternal thyroid function in different conditions of iodine nutrition in pregnant women exposed to mild-moderate iodine deficiency: An observational study. Clin. Endocrinol. 2011, 74, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Miranda, A.; Sousa, N. Maternal hormonal milieu influence on fetal brain development. Brain Behav. 2018, 8, e00920. [Google Scholar] [CrossRef]
- Hume, R.; Simpson, J.; Delahunty, C.; van Toor, H.; Wu, S.Y.; Williams, F.L.; Visser, T.J.; Scottish Preterm Thyroid Group. Human fetal and cord serum thyroid hormones: Developmental trends and interrelationships. J. Clin. Endocrinol. Metab. 2004, 89, 4097–4103. [Google Scholar] [CrossRef] [Green Version]
- Williams, F.L.; Simpson, J.; Delahunty, C.; Ogston, S.A.; Bongers-Schokking, J.J.; Murphy, N.; van Toor, H.; Wu, S.Y.; Visser, T.J.; Hume, R. Collaboration from the Scottish Preterm Thyroid Group. Developmental trends in cord and postpartum serum thyroid hormones in preterm infants. J. Clin. Endocrinol. Metab. 2004, 89, 5314–5320. [Google Scholar] [CrossRef] [Green Version]
- Chevrier, J.; Harley, K.G.; Kogut, K.; Holland, N.; Johnson, C.; Eskenazi, B. Maternal Thyroid Function during the Second Half of Pregnancy and Child Neurodevelopment at 6, 12, 24, and 60 Months of Age. J. Thyroid. Res. 2011, 2011, 426427. [Google Scholar] [CrossRef] [Green Version]
- Shields, B.M.; Knight, B.A.; Hill, A.; Hattersley, A.T.; Vaidya, B. Fetal thyroid hormone level at birth is associated with fetal growth. J. Clin. Endocrinol. Metab. 2011, 96, E934–E938. [Google Scholar] [CrossRef] [Green Version]
- Korevaar, T.I.; Chaker, L.; Jaddoe, V.W.; Visser, T.J.; Medici, M.; Peeters, R.P. Maternal and Birth Characteristics Are Determinants of Offspring Thyroid Function. J. Clin. Endocrinol. Metab. 2016, 101, 206–213. [Google Scholar] [CrossRef]
- Johns, L.E.; Ferguson, K.K.; Cantonwine, D.E.; Mukherjee, B.; Meeker, J.D.; McElrath, T.F. Subclinical Changes in Maternal Thyroid Function Parameters in Pregnancy and Fetal Growth. J. Clin. Endocrinol. Metab. 2018, 103, 1349–1358. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Yang, X.; Zhang, Y.; Guo, F.; Yang, S.; Peeters, R.P.; Korevaar, T.I.M.; Fan, J.; Huang, H.F. Association Between Maternal Thyroid Hormones and Birth Weight at Early and Late Pregnancy. J. Clin. Endocrinol. Metab. 2019, 104, 5853–5863. [Google Scholar] [CrossRef] [PubMed]
- Baschat, A.A. Neurodevelopment after fetal growth restriction. Fetal Diagn. 2014, 36, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Turan, S.; Bereket, A.; Angaji, M.; Koroglu, O.A.; Bilgen, H.; Onver, T.; Akman, I.; Ozek, E. The effect of the mode of delivery on neonatal thyroid function. J. Matern. Fetal Neonatal Med. 2007, 20, 473–476. [Google Scholar] [CrossRef]
- Paul, D.A.; Mackley, A.; Yencha, E.M. Thyroid function in term and late preterm infants with respiratory distress in relation to severity of illness. Thyroid 2010, 20, 189–194. [Google Scholar] [CrossRef]
- Bale, T.L. Epigenetic and transgenerational reprogramming of brain development. Nat. Rev. Neurosci. 2015, 16, 332–344. [Google Scholar] [CrossRef]
- Álvarez-Pedrerol, M.; Guxens, M.; Mendez, M.; Canet, Y.; Martorell, R.; Espada, M.; Plana, E.; Rebagliato, M.; Sunyer, J. Iodine levels and thyroid hormones in healthy pregnant women and birth weight of their offspring. Eur. J. Endocrinol. 2009, 160, 423–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rydbeck, F.; Rahman, A.; Grandér, M.; Ekström, E.C.; Vahter, M.; Kippler, M. Maternal urinary iodine concentration up to 1.0 mg/L is positively associated with birth weight, length, and head circumference of male offspring. J. Nutr. 2014, 144, 1438–1444. [Google Scholar] [CrossRef] [Green Version]
- Leon, G.; Murcia, M.; Rebagliato, M.; Álvarez-Pedrerol, M.; Castilla, A.M.; Basterrechea, M.; Iñiguez, C.; Fernández-Somoano, A.; Blarduni, E.; Foradada, C.M.; et al. Maternal thyroid dysfunction during gestation, preterm delivery, and birth weight. The Infancia y Medio Ambiente Cohort, Spain. Paediatr. Perinat. Epidemiol. 2015, 29, 113–122. [Google Scholar] [CrossRef]
- Charoenratana, C.; Leelapat, P.; Traisrisilp, K.; Tongsong, T. Maternal iodine insufficiency and adverse pregnancy outcomes. Matern. Child. Nutr. 2016, 12, 680–687. [Google Scholar] [CrossRef]
- Snart, C.J.P.; Keeble, C.; Taylor, E.; Cade, J.E.; Stewart, P.M.; Zimmermann, M.; Reid, S.; Threapleton, D.E.; Poston, L.; Myers, J.E.; et al. Maternal Iodine Status and Associations with Birth Outcomes in Three Major Cities in the United Kingdom. Nutrients 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Soriguer, F.; García-Fuentes, E.; Gutierrez-Repiso, C.; Rojo-Martínez, G.; Velasco, I.; Goday, A.; Bosch-Comas, A.; Bordiú, E.; Calle, A.; Carmena, R.; et al. Iodine intake in the adult population. [email protected] study. Clin. Nutr. 2012, 31, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B.; Andersson, M. Assessment of iodine nutrition in populations: Past, present, and future. Nutr. Rev. 2012, 70, 553–570. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.R.; Shankar, A.H.; Wu, L.S.; Aboud, S.; Adu-Afarwuah, S.; Ali, H.; Agustina, R.; Arifeen, S.; Ashorn, P.; Bhutta, Z.A.; et al. Modifiers of the effect of maternal multiple micronutrient supplementation on stillbirth, birth outcomes, and infant mortality: A meta-analysis of individual patient data from 17 randomised trials in low-income and middle-income countries. Lancet. Glob. Health. 2017, 5, e1090–e1100. [Google Scholar] [CrossRef] [Green Version]
- Underwood, M.A.; Gilbert, W.M.; Sherman, M.P. Amniotic fluid: Not just fetal urine anymore. J. Perinatol. 2005, 25, 341–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavado-Autric, R.; Calvo, R.M.; de Mena, R.M.; de Escobar, G.M.; Obregon, M.J. Deiodinase activities in thyroids and tissues of iodine-deficient female rats. Endocrinology 2013, 154, 529–536. [Google Scholar] [CrossRef] [PubMed]
Low-Risk Group (n = 233) | High-Risk Group (n = 108) | p-Value | |
---|---|---|---|
Maternal age (years) | 29.78 ± 5.26 | 31.05 ± 5.73 | 0.047 * |
Use of iodine supplements | |||
No | 26 (11.2%) | 31 (28.7%) | <0.001 ** |
Yes | 207 (88.8%) | 77 (71.3%) | |
Onset of labor | |||
Spontaneous | 187 (80.3%) | 17 (15.7%) | |
Induced | 46 (19.7%) | 66 (61.1%) | <0.001 ** |
Elective caesarean | 0 (0.0%) | 25 (23.2%) | |
Mode of delivery | |||
Eutocic | 176 (75.5%) | 26 (24.1%) | |
Instrumental | 37 (15.9%) | 42 (38.9%) | <0.001 ** |
Cesarean section | 20 (8.6%) | 40 (37.0%) | |
Gestational age (days) | 274.80 ± 8.65 | 270.69 ± 12.47 | 0.003 * |
Preterm (<270 days or 37 wks) | |||
No | 228 (97.9%) | 93 (86.1%) | <0.001 ** |
Yes | 5 (2.1%) | 15 (13.9%) | |
Birth weight (gr) | 3358.81 ± 451.60 | 2754.67 ± 644.26 | <0.001 * |
Weight in percentiles | |||
Below P10 | 15 (6.4%) | 55 (50.9%) | |
P10–P90 | 180 (77.3%) | 49 (45.4%) | <0.001 ** |
Above P90 | 38 (16.3%) | 4 (3.7%) | |
Sex | |||
Male | 109 (46.8%) | 65 (60.2%) | 0.025 ** |
Female | 124 (53.2%) | 43 (39.8%) | |
1-min Apgar score | |||
<5 | 2 (0.9%) | 4 (3.7%) | 0.083 ** |
≥5 | 231 (99.1%) | 104 (96.3%) | |
5-min Apgar score | |||
<7 | 1 (0.4%) | 2 (1.9%) | 0.238 ** |
≥7 | 232 (99.6%) | 106 (98.1%) | |
pH in umbilical cord | |||
arteria | 7.26 ± 0.08 | 7.27 ± 0.07 | 0.600 * |
venous | 7.30 ± 0.07 | 7.30 ± 0.07 | 0.483 * |
Low-Risk Group (n = 233) | High-Risk Group (n = 108) | p-Value | |
---|---|---|---|
Urinary iodine concentration (µg/L) | 147.91 ± 99.07 | 116.49 ± 71.31 | 0.002 |
Iodine in amniotic fluid (µg/L) | 12.85 ± 6.90 | 18.62 ± 13.23 | <0.001 |
Maternal TSH (mIU/L) | 3.31 ± 2.22 | 2.70 ± 1.96 | 0.025 |
Maternal FT4 (pmol/L) | 13.18 ± 2.16 | 12.85 ± 6.51 | 0.078 |
Neonatal TSH (mIU/L) | 12.20 ± 9.17 | 8.48 ± 4.79 | <0.001 |
Neonatal FT4 (pmol/L) | 17.26 ± 2.14 | 15.24 ± 3.12 | <0.001 |
Iodine Supplementation (n = 284) | No Iodine Supplementation (n = 57) | p-Value | |
---|---|---|---|
Maternal age (years) | 30.12 ± 5.38 | 30.58 ± 5.95 | 0.599 |
Gestational age (days) | 274.22 ± 9.75 | 269.29 ± 11.48 | 0.002 * |
Birth weight (gr) | 3213.78 ± 564.38 | 2839.78 ± 677.35 | <0.001 * |
Weight percentile (mean) | 48.58 ± 32.77 | 32.18 ± 32.05 | 0.002 |
Weight in | |||
percentiles | 51 (18.1%) | 18 (40%) | |
Below P10 | 195 (69.1%) | 24 (53.3%) | 0.003 ** |
P10–P90 | 36 (12.8%) | 3 (6.7%) | |
Above P90 |
Elective Cesarean | Spontaneous Labor | Induced Labor | p-Value | |
---|---|---|---|---|
Maternal TSH (mIU/L) | 3.16 ± 1.98 | 3.37 ± 2.42 | 2.64 ± 1.58 | 0.033 |
Maternal FT4 (pmol/L) | 16.24 ± 8.23 | 13.29 ± 2.30 | 12.55 ± 4.42 | 0.045 |
Neonatal TSH (mIU/L) | 8.32 ± 3.23 | 11.73 ± 8.97 | 9.51 ± 6.38 | 0.070 |
Neonatal FT4 (pmol/L) | 15.36 ± 1.84 | 17.16 ± 2.36 | 15.78 ± 3.10 | <0.001 |
Eutocic Delivery | Instrumental Delivery | Caesarean Section | p-Value | |
---|---|---|---|---|
Neonatal FT4 (pmol/L) | 17.29 ± 2.26 | 15.71 ± 3.17 | 15.50 ± 2.51 | <0.001 |
Iodine in amniotic fluid (µg/L) | 12.58 ± 6.89 | 19.82 ± 14.37 | 15.52 ± 9.64 | <0.001 |
Birth weight (grams) | 3292.42 ± 458.74 | 3034.74 ± 617.53 | 2900.86 ± 818.74 | <0.001 |
Weight percentile | 54.67 ± 29.55 | 38.51 ± 34.56 | 31.53 ± 35.72 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasco, I.; Sánchez-Gila, M.; Manzanares, S.; Taylor, P.; García-Fuentes, E. Iodine Status, Thyroid Function, and Birthweight: A Complex Relationship in High-Risk Pregnancies. J. Clin. Med. 2020, 9, 177. https://doi.org/10.3390/jcm9010177
Velasco I, Sánchez-Gila M, Manzanares S, Taylor P, García-Fuentes E. Iodine Status, Thyroid Function, and Birthweight: A Complex Relationship in High-Risk Pregnancies. Journal of Clinical Medicine. 2020; 9(1):177. https://doi.org/10.3390/jcm9010177
Chicago/Turabian StyleVelasco, Inés, Mar Sánchez-Gila, Sebastián Manzanares, Peter Taylor, and Eduardo García-Fuentes. 2020. "Iodine Status, Thyroid Function, and Birthweight: A Complex Relationship in High-Risk Pregnancies" Journal of Clinical Medicine 9, no. 1: 177. https://doi.org/10.3390/jcm9010177
APA StyleVelasco, I., Sánchez-Gila, M., Manzanares, S., Taylor, P., & García-Fuentes, E. (2020). Iodine Status, Thyroid Function, and Birthweight: A Complex Relationship in High-Risk Pregnancies. Journal of Clinical Medicine, 9(1), 177. https://doi.org/10.3390/jcm9010177