Comparative Genomic Mapping Implicates LRRK2 for Intellectual Disability and Autism at 12q12, and HDHD1, as Well as PNPLA4, for X-Linked Intellectual Disability at Xp22.31
Abstract
:1. Introduction
2. Clinical Report
3. Materials and Methods
3.1. Cell Culture
3.2. Genomic DNA Isolation
3.3. Microarray
3.4. Quantitative PCR (qPCR) and RT-qPCR
3.5. Protein Network Analysis
4. Results
4.1. Comparative Deletion Mapping at 12q12
4.2. Comparative Deletion Mapping at Xp22.31
4.3. Microarray Analysis of DGDP289A and DGDP289B
4.4. LRRK2 Transcript Levels Were Significantly Reduced in Patient DGDP289A
4.5. Transcripts Levels of LRRK2 and MUC19 in the Brain and Other Tissues
4.6. Transcript Levels of HDHD1 and PNPLA4 in the Brain and Other Tissues
4.7. Inheritance of 12q12 and Xp22.31 Microdeletions in the DGDP289 Family
4.8. Delineation of Deletion Breakpoints by qPCR in DGDP289A and DGDP289B
4.9. LRRK2 Interacts with Proteins Previously Linked to Intellectual Disability
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kim, H.G.; Kim, H.T.; Leach, N.T.; Lan, F.; Ullmann, R.; Silahtaroglu, A.; Kurth, I.; Nowka, A.; Seong, I.S.; Shen, Y.; et al. Translocations disrupting PHF21A in the Potocki-Shaffer-syndrome region are associated with intellectual disability and craniofacial anomalies. Am. J. Hum. Genet. 2012, 91, 56–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleefstra, T.; Brunner, H.G.; Amiel, J.; Oudakker, A.R.; Nillesen, W.M.; Magee, A.; Genevieve, D.; Cormier-Daire, V.; van Esch, H.; Fryns, J.P.; et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am. J. Hum. Genet. 2006, 79, 370–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koolen, D.A.; Kramer, J.M.; Neveling, K.; Nillesen, W.M.; Moore-Barton, H.L.; Elmslie, F.V.; Toutain, A.; Amiel, J.; Malan, V.; Tsai, A.C.; et al. Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nat. Genet. 2012, 44, 639–641. [Google Scholar] [CrossRef] [PubMed]
- Talkowski, M.E.; Mullegama, S.V.; Rosenfeld, J.A.; van Bon, B.W.; Shen, Y.; Repnikova, E.A.; Gastier-Foster, J.; Thrush, D.L.; Kathiresan, S.; Ruderfer, D.M.; et al. Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder. Am. J. Hum. Genet. 2011, 89, 551–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jun, K.R.; Ullmann, R.; Khan, S.; Layman, L.C.; Kim, H.G. Interstitial microduplication at 2p11.2 in a patient with syndromic intellectual disability: 30-year follow-up. Mol. Cytogenet. 2014, 7, 52. [Google Scholar] [CrossRef] [Green Version]
- Labonne, J.D.; Graves, T.D.; Shen, Y.; Jones, J.R.; Kong, I.K.; Layman, L.C.; Kim, H.G. A microdeletion at Xq22.2 implicates a glycine receptor GLRA4 involved in intellectual disability, behavioral problems and craniofacial anomalies. BMC neurol. 2016, 16, 132. [Google Scholar] [CrossRef] [Green Version]
- Labonne, J.D.; Lee, K.H.; Iwase, S.; Kong, I.K.; Diamond, M.P.; Layman, L.C.; Kim, C.H.; Kim, H.G. An atypical 12q24.31 microdeletion implicates six genes including a histone demethylase KDM2B and a histone methyltransferase SETD1B in syndromic intellectual disability. Hum. Genet. 2016, 135, 757–771. [Google Scholar] [CrossRef]
- Labonne, J.D.; Shen, Y.; Kong, I.K.; Diamond, M.P.; Layman, L.C.; Kim, H.G. Comparative deletion mapping at 1p31.3-p32.2 implies NFIA responsible for intellectual disability coupled with macrocephaly and the presence of several other genes for syndromic intellectual disability. Mol. Cytogenet. 2016, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Nevado, J.; Mergener, R.; Palomares-Bralo, M.; Souza, K.R.; Vallespin, E.; Mena, R.; Martinez-Glez, V.; Mori, M.A.; Santos, F.; Garcia-Minaur, S.; et al. New microdeletion and microduplication syndromes: A comprehensive review. Genet. Mol. Biol. 2014, 37, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Weise, A.; Mrasek, K.; Klein, E.; Mulatinho, M.; Llerena, J.C., Jr.; Hardekopf, D.; Pekova, S.; Bhatt, S.; Kosyakova, N.; Liehr, T. Microdeletion and microduplication syndromes. J. Histochem. Cytochem. 2012, 60, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.T.; Marques-Bonet, T.; Sharp, A.J.; Mefford, H.C. The genetics of microdeletion and microduplication syndromes: An update. Annu. Rev. Genom. Hum. Genet. 2014, 15, 215–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vries, B.B.; Pfundt, R.; Leisink, M.; Koolen, D.A.; Vissers, L.E.; Janssen, I.M.; Reijmersdal, S.; Nillesen, W.M.; Huys, E.H.; Leeuw, N.; et al. Diagnostic genome profiling in mental retardation. Am. J. Hum. Genet. 2005, 77, 606–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlsen, E.O.; Frengen, E.; Fannemel, M.; Misceo, D. Haploinsufficiency of ANO6, NELL2 and DBX2 in a boy with intellectual disability and growth delay. Am. J. Med. Genet. A 2015, 167, 1890–1896. [Google Scholar] [CrossRef]
- Adam, M.P.; Mehta, A.; Knight, L.; Hall, D.E.; Rossi, M.R. A family with a 1.17 Mb deletion of 12q12: Refining genotype-phenotype correlation. Am. J. Med. Genet. A 2010, 152A, 2394–2398. [Google Scholar] [CrossRef]
- Failla, P.; Romano, C.; Reitano, S.; Di Benedetto, D.; Grillo, L.; Fichera, M.; Castiglia, L. 12q12 deletion: A new patient contributing to genotype-phenotype correlation. Am. J. Med. Genet. A 2008, 146A, 1354–1357. [Google Scholar] [CrossRef] [PubMed]
- Miyake, N.; Tonoki, H.; Gallego, M.; Harada, N.; Shimokawa, O.; Yoshiura, K.; Ohta, T.; Kishino, T.; Niikawa, N.; Matsumoto, N. Phenotype-genotype correlation in two patients with 12q proximal deletion. J. Hum. Genet. 2004, 49, 282–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rapley, E.A.; Hargrave, D.; Persinguhe, N.; Barfoot, R.; Moore, I.; Radford, M.; Stratton, M.R.; Rahman, N.; Pritchard-Jones, K. Case of interstitial 12q deletion in association with Wilms tumor. Am. J. Med. Genet. 2001, 104, 246–249. [Google Scholar] [CrossRef] [PubMed]
- Tonoki, H.; Saitoh, S.; Kobayashi, K. Patient with del(12)(q12q13.12) manifesting abnormalities compatible with Noonan syndrome. Am. J. Med. Genet. 1998, 75, 416–418. [Google Scholar] [CrossRef]
- Ben Khelifa, H.; Soyah, N.; Ben-Abdallah-Bouhjar, I.; Gritly, R.; Sanlaville, D.; Elghezal, H.; Saad, A.; Mougou-Zerelli, S. Xp22.3 interstitial deletion: A recognizable chromosomal abnormality encompassing VCX3A and STS genes in a patient with X-linked ichthyosis and mental retardation. Gene 2013, 527, 578–583. [Google Scholar] [CrossRef]
- Fukami, M.; Kirsch, S.; Schiller, S.; Richter, A.; Benes, V.; Franco, B.; Muroya, K.; Rao, E.; Merker, S.; Niesler, B.; et al. A member of a gene family on Xp22.3, VCX-A, is deleted in patients with X-linked nonspecific mental retardation. Am. J. Hum. Genet. 2000, 67, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Shen, Y.; Kohler, U.; Sharkey, F.H.; Menon, D.; Coulleaux, L.; Malan, V.; Rio, M.; McMullan, D.J.; Cox, H.; et al. Interstitial microduplication of Xp22.31: Causative of intellectual disability or benign copy number variant? Eur. J. Med. Genet. 2010, 53, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Van Esch, H.; Hollanders, K.; Badisco, L.; Melotte, C.; Van Hummelen, P.; Vermeesch, J.R.; Devriendt, K.; Fryns, J.P.; Marynen, P.; Froyen, G. Deletion of VCX-A due to NAHR plays a major role in the occurrence of mental retardation in patients with X-linked ichthyosis. Hum. Mol. Genet. 2005, 14, 1795–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basler, E.; Grompe, M.; Parenti, G.; Yates, J.; Ballabio, A. Identification of point mutations in the steroid sulfatase gene of three patients with X-linked ichthyosis. Am. J. Hum. Genet. 1992, 50, 483–491. [Google Scholar] [PubMed]
- Webster, D.; France, J.T.; Shapiro, L.J.; Weiss, R. X-linked ichthyosis due to steroid-sulphatase deficiency. Lancet 1978, 1, 70–72. [Google Scholar] [PubMed]
- Lahn, B.T.; Page, D.C. A human sex-chromosomal gene family expressed in male germ cells and encoding variably charged proteins. Hum. Mol. Genet. 2000, 9, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimoto, H.K.; Ha, K.; Jones, J.R.; Dwivedi, A.; Cho, H.M.; Layman, L.C.; Kim, H.G. The historical Coffin-Lowry syndrome family revisited: Identification of two novel mutations of RPS6KA3 in three male patients. Am. J. Med. Genet. A 2014, 164A, 2172–2179. [Google Scholar] [CrossRef]
- Sambrook, J.; Russel, D. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001; Volume 3. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Pletscher-Frankild, S.; Palleja, A.; Tsafou, K.; Binder, J.X.; Jensen, L.J. DISEASES: Text mining and data integration of disease-gene associations. Methods 2015, 74, 83–89. [Google Scholar] [CrossRef]
- Rappaport, N.; Nativ, N.; Stelzer, G.; Twik, M.; Guan-Golan, Y.; Stein, T.I.; Bahir, I.; Belinky, F.; Morrey, C.P.; Safran, M.; et al. MalaCards: An integrated compendium for diseases and their annotation. Database J. Biol. Databases Curation 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
- Stark, C.; Breitkreutz, B.J.; Reguly, T.; Boucher, L.; Breitkreutz, A.; Tyers, M. BioGRID: A general repository for interaction datasets. Nucleic Acids Res. 2006, 34, D535–D539. [Google Scholar] [CrossRef] [Green Version]
- Snel, B.; Lehmann, G.; Bork, P.; Huynen, M.A. STRING: A web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 2000, 28, 3442–3444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Chahrour, M.; Ben-Shachar, S.; Lim, J. Ube3a/E6AP is involved in a subset of MeCP2 functions. Biochem. Biophys. Res. Commun. 2013, 437, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Kuhnle, S.; Kogel, U.; Glockzin, S.; Marquardt, A.; Ciechanover, A.; Matentzoglu, K.; Scheffner, M. Physical and functional interaction of the HECT ubiquitin-protein ligases E6AP and HERC2. J. Biol. Chem. 2011, 286, 19410–19416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nan, X.; Hou, J.; Maclean, A.; Nasir, J.; Lafuente, M.J.; Shu, X.; Kriaucionis, S.; Bird, A. Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation. Proc. Natl. Acad. Sci. USA 2007, 104, 2709–2714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon-Sanchez, J.; Schulte, C.; Bras, J.M.; Sharma, M.; Gibbs, J.R.; Berg, D.; Paisan-Ruiz, C.; Lichtner, P.; Scholz, S.W.; Hernandez, D.G.; et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 2009, 41, 1308–1312. [Google Scholar] [CrossRef]
- Smith, W.W.; Pei, Z.; Jiang, H.; Moore, D.J.; Liang, Y.; West, A.B.; Dawson, V.L.; Dawson, T.M.; Ross, C.A. Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc. Natl. Acad. Sci. USA 2005, 102, 18676–18681. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhao, Y.H.; Kalaslavadi, T.B.; Hamati, E.; Nehrke, K.; Le, A.D.; Ann, D.K.; Wu, R. Genome-wide search and identification of a novel gel-forming mucin MUC19/Muc19 in glandular tissues. Am. J. Respir. Cell Mol. Biol. 2004, 30, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Huang da, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Kaimal, V.; Bardes, E.E.; Tabar, S.C.; Jegga, A.G.; Aronow, B.J. ToppCluster: A multiple gene list feature analyzer for comparative enrichment clustering and network-based dissection of biological systems. Nucleic Acids Res. 2010, 38, W96–W102. [Google Scholar] [CrossRef] [Green Version]
- Firth, H.V.; Richards, S.M.; Bevan, A.P.; Clayton, S.; Corpas, M.; Rajan, D.; Van Vooren, S.; Moreau, Y.; Pettett, R.M.; Carter, N.P. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 2009, 84, 524–533. [Google Scholar] [CrossRef] [Green Version]
- Esplin, E.D.; Li, B.; Slavotinek, A.; Novelli, A.; Battaglia, A.; Clark, R.; Curry, C.; Hudgins, L. Nine patients with Xp22.31 microduplication, cognitive deficits, seizures, and talipes anomalies. Am. J. Med. Genet. A 2014, 164A, 2097–2103. [Google Scholar] [CrossRef]
- Hosomi, N.; Oiso, N.; Fukai, K.; Hanada, K.; Fujita, H.; Ishii, M. Deletion of distal promoter of VCXA in a patient with X-linked ichthyosis associated with borderline mental retardation. J. Dermatol. Sci. 2007, 45, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Preumont, A.; Rzem, R.; Vertommen, D.; Van Schaftingen, E. HDHD1, which is often deleted in X-linked ichthyosis, encodes a pseudouridine-5′-phosphatase. Biochem. J. 2010, 431, 237–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, P.H.; Ellison, J.; Salido, E.C.; Mohandas, T.; Shapiro, L. Isolation of a new gene from the distal short arm of the human X chromosome that escapes X-inactivation. Hum. Mol. Genet. 1992, 1, 47–52. [Google Scholar] [CrossRef]
- Ballabio, A.; Parenti, G.; Carrozzo, R.; Sebastio, G.; Andria, G.; Buckle, V.; Fraser, N.; Craig, I.; Rocchi, M.; Romeo, G.; et al. Isolation and characterization of a steroid sulfatase cDNA clone: Genomic deletions in patients with X-chromosome-linked ichthyosis. Proc. Natl. Acad. Sci. USA 1987, 84, 4519–4523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, C.M.; Mancuso, D.J.; Yan, W.; Sims, H.F.; Gibson, B.; Gross, R.W. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem. 2004, 279, 48968–48975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meixner, A.; Boldt, K.; Van Troys, M.; Askenazi, M.; Gloeckner, C.J.; Bauer, M.; Marto, J.A.; Ampe, C.; Kinkl, N.; Ueffing, M. A QUICK screen for Lrrk2 interaction partners—Leucine-rich repeat kinase 2 is involved in actin cytoskeleton dynamics. Mol. Cell. Proteomics 2011. [Google Scholar] [CrossRef] [Green Version]
- Hein, M.Y.; Hubner, N.C.; Poser, I.; Cox, J.; Nagaraj, N.; Toyoda, Y.; Gak, I.A.; Weisswange, I.; Mansfeld, J.; Buchholz, F.; et al. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 2015, 163, 712–723. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.; Webber, P.J.; West, A.B. Dependence of leucine-rich repeat kinase 2 (LRRK2) kinase activity on dimerization. J. Biol. Chem. 2009, 284, 36346–36356. [Google Scholar] [CrossRef] [Green Version]
- Imai, Y.; Kobayashi, Y.; Inoshita, T.; Meng, H.; Arano, T.; Uemura, K.; Asano, T.; Yoshimi, K.; Zhang, C.L.; Matsumoto, G.; et al. The Parkinson’s Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway. PLoS Genet. 2015, 11, e1005503. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lee, J.; Krummey, S.; Lu, W.; Cai, H.; Lenardo, M.J. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat. Immunol. 2011, 12, 1063–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawakami, F.; Yabata, T.; Ohta, E.; Maekawa, T.; Shimada, N.; Suzuki, M.; Maruyama, H.; Ichikawa, T.; Obata, F. LRRK2 phosphorylates tubulin-associated tau but not the free molecule: LRRK2-mediated regulation of the tau-tubulin association and neurite outgrowth. PLoS ONE 2012. [Google Scholar] [CrossRef]
- Lee, S.; Liu, H.P.; Lin, W.Y.; Guo, H.; Lu, B. LRRK2 kinase regulates synaptic morphology through distinct substrates at the presynaptic and postsynaptic compartments of the Drosophila neuromuscular junction. J. Neurosci. 2010, 30, 16959–16969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, R.J.; Dzamko, N.; Morrice, N.A.; Campbell, D.G.; Deak, M.; Ordureau, A.; Macartney, T.; Tong, Y.; Shen, J.; Prescott, A.R.; et al. 14-3-3 binding to LRRK2 is disrupted by multiple Parkinson’s disease-associated mutations and regulates cytoplasmic localization. Biochem. J. 2010, 430, 393–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riviere, J.B.; van Bon, B.W.; Hoischen, A.; Kholmanskikh, S.S.; O’Roak, B.J.; Gilissen, C.; Gijsen, S.; Sullivan, C.T.; Christian, S.L.; Abdul-Rahman, O.A.; et al. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat. Genet. 2012, 44, 440–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbons, R.J.; Picketts, D.J.; Villard, L.; Higgs, D.R. Mutations in a putative global transcriptional regulator cause X-linked mental retardation with alpha-thalassemia (ATR-X syndrome). Cell 1995, 80, 837–845. [Google Scholar] [CrossRef] [Green Version]
- Villard, L.; Gecz, J.; Mattei, J.F.; Fontes, M.; Saugier-Veber, P.; Munnich, A.; Lyonnet, S. XNP mutation in a large family with Juberg-Marsidi syndrome. Nat. Genet. 1996, 12, 359–360. [Google Scholar] [CrossRef]
- Vissers, L.E.; de Ligt, J.; Gilissen, C.; Janssen, I.; Steehouwer, M.; de Vries, P.; van Lier, B.; Arts, P.; Wieskamp, N.; del Rosario, M.; et al. A de novo paradigm for mental retardation. Nat. Genet. 2010, 42, 1109–1112. [Google Scholar] [CrossRef]
- Puffenberger, E.G.; Jinks, R.N.; Wang, H.; Xin, B.; Fiorentini, C.; Sherman, E.A.; Degrazio, D.; Shaw, C.; Sougnez, C.; Cibulskis, K.; et al. A homozygous missense mutation in HERC2 associated with global developmental delay and autism spectrum disorder. Hum Mutat. 2012, 33, 1639–1646. [Google Scholar] [CrossRef]
- Fitzgerald, T.W.; Gerety, S.S.; Jones, W.D.; van Kogelenberg, M.; King, D.A.; McRae, J.; Morley, K.I.; Parthiban, V.; Al-Turki, S.; Ambridge, K.; et al. Large-scale discovery of novel genetic causes of developmental disorders. Nature 2015, 519, 223–228. [Google Scholar]
- Keays, D.A.; Tian, G.; Poirier, K.; Huang, G.J.; Siebold, C.; Cleak, J.; Oliver, P.L.; Fray, M.; Harvey, R.J.; Molnar, Z.; et al. Mutations in alpha-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell 2007, 128, 45–57. [Google Scholar] [CrossRef]
- Van Tuinen, P.; Dobyns, W.B.; Rich, D.C.; Summers, K.M.; Robinson, T.J.; Nakamura, Y.; Ledbetter, D.H. Molecular detection of microscopic and submicroscopic deletions associated with Miller-Dieker syndrome. Am. J. Hum. Genet. 1988, 43, 587–596. [Google Scholar]
- Kleinjan, D.J.; van Heyningen, V. Position effect in human genetic disease. Hum. Mol. Genet. 1998, 7, 1611–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimprich, A.; Biskup, S.; Leitner, P.; Lichtner, P.; Farrer, M.; Lincoln, S.; Kachergus, J.; Hulihan, M.; Uitti, R.J.; Calne, D.B.; et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004, 44, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Kitada, T.; Asakawa, S.; Hattori, N.; Matsumine, H.; Yamamura, Y.; Minoshima, S.; Yokochi, M.; Mizuno, Y.; Shimizu, N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392, 605–608. [Google Scholar] [CrossRef] [PubMed]
- Shimura, H.; Schlossmacher, M.G.; Hattori, N.; Frosch, M.P.; Trockenbacher, A.; Schneider, R.; Mizuno, Y.; Kosik, K.S.; Selkoe, D.J. Ubiquitination of a new form of alpha-synuclein by parkin from human brain: Implications for Parkinson’s disease. Science 2001, 293, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Spratt, D.E.; Martinez-Torres, R.J.; Noh, Y.J.; Mercier, P.; Manczyk, N.; Barber, K.R.; Aguirre, J.D.; Burchell, L.; Purkiss, A.; Walden, H.; et al. A molecular explanation for the recessive nature of parkin-linked Parkinson’s disease. Nat. Commun. 2013, 4, 1983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, K.; Shen, Y.; Graves, T.; Kim, C.H.; Kim, H.G. The presence of two rare genomic syndromes, 1q21 deletion and Xq28 duplication, segregating independently in a family with intellectual disability. Mol. Cytogenet. 2016, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Bliss, T.V.; Collingridge, G.L. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993, 361, 31–39. [Google Scholar] [CrossRef]
- Gibbons, R.J.; Higgs, D.R. Molecular-clinical spectrum of the ATR-X syndrome. Am. J. Med. Genet. 2000, 97, 204–212. [Google Scholar] [CrossRef]
- Poirier, K.; Keays, D.A.; Francis, F.; Saillour, Y.; Bahi, N.; Manouvrier, S.; Fallet-Bianco, C.; Pasquier, L.; Toutain, A.; Tuy, F.P.; et al. Large spectrum of lissencephaly and pachygyria phenotypes resulting from de novo missense mutations in tubulin alpha 1A (TUBA1A). Hum. Mutat. 2007, 28, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Toyo-oka, K.; Shionoya, A.; Gambello, M.J.; Cardoso, C.; Leventer, R.; Ward, H.L.; Ayala, R.; Tsai, L.H.; Dobyns, W.; Ledbetter, D.; et al. 14-3-3epsilon is important for neuronal migration by binding to NUDEL: A molecular explanation for Miller-Dieker syndrome. Nat. Genet. 2003, 34, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Verloes, A.; Di Donato, N.; Masliah-Planchon, J.; Jongmans, M.; Abdul-Raman, O.A.; Albrecht, B.; Allanson, J.; Brunner, H.; Bertola, D.; Chassaing, N.; et al. Baraitser-Winter cerebrofrontofacial syndrome: Delineation of the spectrum in 42 cases. Eur. J. Hum. Genet. 2015, 23, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Willemsen, M.H.; Vissers, L.E.; Willemsen, M.A.; van Bon, B.W.; Kroes, T.; de Ligt, J.; de Vries, B.B.; Schoots, J.; Lugtenberg, D.; Hamel, B.C.; et al. Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects. J. Med. Genet. 2012, 49, 179–183. [Google Scholar] [CrossRef]
- Lasky, J.L.; Wu, H. Notch signaling, brain development, and human disease. Pediatr. Res. 2005, 57, 104R–109R. [Google Scholar] [CrossRef]
- MacLeod, D.; Dowman, J.; Hammond, R.; Leete, T.; Inoue, K.; Abeliovich, A. The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 2006, 52, 587–593. [Google Scholar] [CrossRef] [Green Version]
- Parisiadou, L.; Yu, J.; Sgobio, C.; Xie, C.; Liu, G.; Sun, L.; Gu, X.L.; Lin, X.; Crowley, N.A.; Lovinger, D.M.; et al. LRRK2 regulates synaptogenesis and dopamine receptor activation through modulation of PKA activity. Nat. Neurosci. 2014, 17, 367–376. [Google Scholar] [CrossRef]
- Daniels, V.; Baekelandt, V.; Taymans, J.M. On the road to leucine-rich repeat kinase 2 signalling: Evidence from cellular and in vivo studies. Neuro Signals 2011, 19, 1–15. [Google Scholar] [CrossRef]
- Westerlund, M.; Ran, C.; Borgkvist, A.; Sterky, F.H.; Lindqvist, E.; Lundstromer, K.; Pernold, K.; Brene, S.; Kallunki, P.; Fisone, G.; et al. Lrrk2 and alpha-synuclein are co-regulated in rodent striatum. Mol. Cell. Neurosci. 2008, 39, 586–591. [Google Scholar] [CrossRef]
- Bassuk, A.G.; Wallace, R.H.; Buhr, A.; Buller, A.R.; Afawi, Z.; Shimojo, M.; Miyata, S.; Chen, S.; Gonzalez-Alegre, P.; Griesbach, H.L.; et al. A homozygous mutation in human PRICKLE1 causes an autosomal-recessive progressive myoclonus epilepsy-ataxia syndrome. Am. J. Hum. Genet. 2008, 83, 572–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olah, J.; Vincze, O.; Virok, D.; Simon, D.; Bozso, Z.; Tokesi, N.; Horvath, I.; Hlavanda, E.; Kovacs, J.; Magyar, A.; et al. Interactions of pathological hallmark proteins: Tubulin polymerization promoting protein/p25, beta-amyloid, and alpha-synuclein. J. Biol. Chem. 2011, 286, 34088–34100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goate, A.; Chartier-Harlin, M.C.; Mullan, M.; Brown, J.; Crawford, F.; Fidani, L.; Giuffra, L.; Haynes, A.; Irving, N.; James, L.; et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991, 349, 704–706. [Google Scholar] [CrossRef] [PubMed]
- Havugimana, P.C.; Hart, G.T.; Nepusz, T.; Yang, H.; Turinsky, A.L.; Li, Z.; Wang, P.I.; Boutz, D.R.; Fong, V.; Phanse, S.; et al. A census of human soluble protein complexes. Cell 2012, 150, 1068–1081. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, R.M.; Otto, P.A.; de Brouwer, A.P.; Vianna-Morgante, A.M. UBE2A, which encodes a ubiquitin-conjugating enzyme, is mutated in a novel X-linked mental retardation syndrome. Am. J. Hum. Genet. 2006, 79, 549–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahle, J.J.; Gulbahce, N.; Shaw, C.A.; Lim, J.; Hill, D.E.; Barabasi, A.L.; Zoghbi, H.Y. Comparison of an expanded ataxia interactome with patient medical records reveals a relationship between macular degeneration and ataxia. Hum. Mol. Genet. 2011, 20, 510–527. [Google Scholar] [CrossRef] [PubMed]
- Damaj, L.; Lupien-Meilleur, A.; Lortie, A.; Riou, E.; Ospina, L.H.; Gagnon, L.; Vanasse, C.; Rossignol, E. CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur. J. Hum. Genet. 2015, 23, 1505–1512. [Google Scholar] [CrossRef]
- Ishikawa, K.; Tanaka, H.; Saito, M.; Ohkoshi, N.; Fujita, T.; Yoshizawa, K.; Ikeuchi, T.; Watanabe, M.; Hayashi, A.; Takiyama, Y.; et al. Japanese families with autosomal dominant pure cerebellar ataxia map to chromosome 19p13.1-p13.2 and are strongly associated with mild CAG expansions in the spinocerebellar ataxia type 6 gene in chromosome 19p13.1. Am. J. Hum. Genet. 1997, 61, 336–346. [Google Scholar] [CrossRef] [Green Version]
- Ophoff, R.A.; Terwindt, G.M.; Vergouwe, M.N.; van Eijk, R.; Oefner, P.J.; Hoffman, S.M.; Lamerdin, J.E.; Mohrenweiser, H.W.; Bulman, D.E.; Ferrari, M.; et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996, 87, 543–552. [Google Scholar] [CrossRef] [Green Version]
- David, G.; Abbas, N.; Stevanin, G.; Durr, A.; Yvert, G.; Cancel, G.; Weber, C.; Imbert, G.; Saudou, F.; Antoniou, E.; et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat. Genet. 1997, 17, 65–70. [Google Scholar] [CrossRef]
- Ma, P.; Zhao, S.; Zeng, W.; Yang, Q.; Li, C.; Lv, X.; Zhou, Q.; Mao, B. Xenopus Dbx2 is involved in primary neurogenesis and early neural plate patterning. Biochem. Biophys. Res. Commun. 2011, 412, 170–174. [Google Scholar] [CrossRef]
- Suzuki, J.; Umeda, M.; Sims, P.J.; Nagata, S. Calcium-dependent phospholipid scrambling by TMEM16F. Nature 2010, 468, 834–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gohlke, B.C.; Haug, K.; Fukami, M.; Friedl, W.; Noeker, M.; Rappold, G.A.; Haverkamp, F. Interstitial deletion in Xp22.3 is associated with X linked ichthyosis, mental retardation, and epilepsy. J. Med. Genet. 2000, 37, 600–602. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Haas, S.A.; Chelly, J.; Van Esch, H.; Raynaud, M.; de Brouwer, A.P.; Weinert, S.; Froyen, G.; Frints, S.G.; Laumonnier, F.; et al. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes. Mol. Psychiatry 2016, 21, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Ropers, H.H.; Hamel, B.C. X-linked mental retardation. Nat. Rev. Genet. 2005, 6, 46–57. [Google Scholar] [CrossRef]
- Jamain, S.; Quach, H.; Betancur, C.; Rastam, M.; Colineaux, C.; Gillberg, I.C.; Soderstrom, H.; Giros, B.; Leboyer, M.; Gillberg, C.; et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 2003, 34, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Jamain, S.; Radyushkin, K.; Hammerschmidt, K.; Granon, S.; Boretius, S.; Varoqueaux, F.; Ramanantsoa, N.; Gallego, J.; Ronnenberg, A.; Winter, D.; et al. Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proc. Natl. Acad. Sci. USA 2008, 105, 1710–1715. [Google Scholar] [CrossRef] [Green Version]
- Cuevas-Covarrubias, S.A.; Gonzalez-Huerta, L.M. Analysis of the VCX3A, VCX2 and VCX3B genes shows that VCX3A gene deletion is not sufficient to result in mental retardation in X-linked ichthyosis. Br. J. Dermatol. 2008, 158, 483–486. [Google Scholar] [CrossRef]
- Mochel, F.; Missirian, C.; Reynaud, R.; Moncla, A. Normal intelligence and social interactions in a male patient despite the deletion of NLGN4X and the VCX genes. Eur. J. Med. Genet. 2008, 51, 68–73. [Google Scholar] [CrossRef]
Gene | Gene Symbol | OMIM # | Remarks |
---|---|---|---|
Leucin-rich repeat kinase 2 | LRRK2 | 609007 | Interacts with Parkin and is associated with Parkinson’s Disease. Mutant LRRK2 induces neuronal degeneration [36,37]. |
Mucin 19 | MUC19 | 612170 | MUC19 is a gel-forming mucin expressed predominantly in mucous cells of various glandular tissues [38]. MUC19 is excluded as a candidate gene because of its expression pattern. |
Gene | Gene Symbol | OMIM # | Remarks |
---|---|---|---|
Variably charged, X Chromosome 3A | VCX3A | 300533 | VCX3A is associated with intellectual disability [20,22]. |
Haloacid dehalogenase-like hydrolase domain containing 1A | HDHD1 | 306480 | HDHD1 dephosporylate pseudouridine 5’-phosphate [44,45]. Expressed at higher levels in the human brain, fetal brain and skeletal muscle. |
Steroid Sulfatase | STS | 300747 | STS is causative for X-linked ichthyosis, a skin disorder. It also has important roles in placental production of estriol during the later stages of pregnancy [23,46]. |
Variably charge X chromosome | VCX | 300229 | VCX gene appears to be expressed only in male germ cells [25]. |
Patatin-like phospholinasedomain containing 4 | PNPLA4 | 300102 | PNPLA4 highly expressed in brain and skeletal muscle. It has both triacylglycerol lipase and may be involved in adipocyte triglyceride homeostasis [47]. |
Protein Abbreviation | Protein Name | Disease Name | OMIM Phenotype # |
---|---|---|---|
ACTB | Actin, beta | Baraitser-Winter Syndrome 1 [56] | 243310 |
ACTG1 | Actin, gamma 1 | Baraitser-Winter syndrome 2 [56] | 614583 |
ATRX | ATRX, chromatin remodeler | (1) Alpha-thalassemia/mental retardation syndrome [57]; (2) intellectual disability-hypotonic facies syndrome, X-linked [58] | 301040 309580 |
DYNC1H1 | Dynein cytoplasmic 1 heavy chain 1 | intellectual disability, autosomal dominant 13 [59] | 614563 |
HERC2 | HECT and RLD domain containing E3 ubiquitin protein ligase 2 | intellectual disability, autosomal recessive 38 [60] | 615516 |
PPP2R1A | Protein phosphatase 2 scaffold subunit alpha | intellectual disability, autosomal dominant 36 [61] | 616362 |
TUBA1A | Tubulin alpha 1a | Lissencephaly 3 [62] | 611603 |
YWHAE | Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon | Miller-Dieker Lissencephaly Syndrome [63] | 247200 |
Clinical Feature | DGDP289A | Adam 2010 | Gallego 2000 | Tonoki 1998 | Failla 2008 | Carlsen 2015 | DCP255553 | DCP256710 | DCP263528 | DCP250361 | DCP139 | DCP285576 | DCP259419 | DCP280346 | DCP257543 | DCP261503 | DCP262066 | DCP285836 | DCP275780 | DCP285836 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DD/ID | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | n/a | n/a | n/a | n/a | n/a |
Autism | + | − | − | − | − | − | n/a | + | + | n/a | n/a | n/a | n/a | n/a | + | n/a | n/a | n/a | n/a | n/a |
Impaired motor skills | + | + | + | + | + | + | n/a | n/a | n/a | n/a | n/a | n/a | + | + | n/a | n/a | n/a | n/a | n/a | n/a |
Craniofacial anomalies | + | + | + | + | + | + | + | + | n/a | + | + | + | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
Eye anomalies | − | − | + | + | + | + | n/a | n/a | + | n/a | + | + | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
Microcephaly | − | + | - | + | + | − | n/a | − | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
Small hands | − | + | + | + | - | + | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
Clinodactyly | − | − | + | + | + | + | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
Hypotonia | − | − | − | + | + | + | + | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
Sensorineural hearing loss | − | − | - | + | + | − | n/a | n/a | + | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
Cardiac anomalies | − | − | - | - | n/a | + | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
Genital anomalies | − | − | - | + | + | − | n/a | + | n/a | n/a | + | n/a | n/a | n/a | + | n/a | n/a | n/a | n/a | n/a |
Clinical Features | DGDP289B | Hosomi 2007 | Khelifa 2013 | Esplin 2014 Pt 1 | Esplin 2014 Pt 2 | Esplin 2014 Pt 7 | Esplin 2014 Pt 9 | DCP251863 | DCP256781 | DCP283561 | DCP255300 | DCP1719 | DCP280938 | DCP250671 | DCP251340 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gender | M | M | M | M | M | M | M | F | F | F | M | M | M | M | M |
DD/ID | + | + | + | − | + | + | + | + | + | + | + | + | + | + | + |
Ichthyosis | + | + | + | n/a | n/a | − | n/a | n/a | n/a | n/a | n/a | + | + | n/a | n/a |
Craniofacial anomalies | + | − | + | − | + | + | + | n/a | n/a | n/a | n/a | n/a | + | + | n/a |
Seizures | − | − | + | + | − | + | − | n/a | n/a | + | n/a | + | n/a | n/a | n/a |
Sensorineural hearing impairment | − | − | − | − | − | − | − | n/a | n/a | n/a | n/a | + | n/a | n/a | n/a |
Hypotonia | − | − | − | − | − | + | + | − | − | − | − | − | − | − | − |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labonne, J.D.J.; Driessen, T.M.; Harris, M.E.; Kong, I.-K.; Brakta, S.; Theisen, J.; Sangare, M.; Layman, L.C.; Kim, C.-H.; Lim, J.; et al. Comparative Genomic Mapping Implicates LRRK2 for Intellectual Disability and Autism at 12q12, and HDHD1, as Well as PNPLA4, for X-Linked Intellectual Disability at Xp22.31. J. Clin. Med. 2020, 9, 274. https://doi.org/10.3390/jcm9010274
Labonne JDJ, Driessen TM, Harris ME, Kong I-K, Brakta S, Theisen J, Sangare M, Layman LC, Kim C-H, Lim J, et al. Comparative Genomic Mapping Implicates LRRK2 for Intellectual Disability and Autism at 12q12, and HDHD1, as Well as PNPLA4, for X-Linked Intellectual Disability at Xp22.31. Journal of Clinical Medicine. 2020; 9(1):274. https://doi.org/10.3390/jcm9010274
Chicago/Turabian StyleLabonne, Jonathan D. J., Terri M. Driessen, Marvin E. Harris, Il-Keun Kong, Soumia Brakta, John Theisen, Modibo Sangare, Lawrence C. Layman, Cheol-Hee Kim, Janghoo Lim, and et al. 2020. "Comparative Genomic Mapping Implicates LRRK2 for Intellectual Disability and Autism at 12q12, and HDHD1, as Well as PNPLA4, for X-Linked Intellectual Disability at Xp22.31" Journal of Clinical Medicine 9, no. 1: 274. https://doi.org/10.3390/jcm9010274
APA StyleLabonne, J. D. J., Driessen, T. M., Harris, M. E., Kong, I. -K., Brakta, S., Theisen, J., Sangare, M., Layman, L. C., Kim, C. -H., Lim, J., & Kim, H. -G. (2020). Comparative Genomic Mapping Implicates LRRK2 for Intellectual Disability and Autism at 12q12, and HDHD1, as Well as PNPLA4, for X-Linked Intellectual Disability at Xp22.31. Journal of Clinical Medicine, 9(1), 274. https://doi.org/10.3390/jcm9010274