Genetics of Degenerative Cervical Myelopathy: A Systematic Review and Meta-Analysis of Candidate Gene Studies
Abstract
:1. Introduction
2. Methods
- Primary clinical trial
- DCM is the primary condition being addressed
- Focus on genetics (specific gene identified)
- Human study
- English language
- Full text article
- Paediatric studies (patients < 18 years)
- Focus on acute trauma and acute spinal cord injury
- Focus on thoracic or lumbar spine
3. Results
3.1. What are the Genetic Effects on Susceptibility to Development of DCM?
3.1.1. Spinal Pathology
3.1.2. Spinal Cord Pathology
3.2. What Are the Genetic Effects on Clinical Severity of DCM?
3.3. What Are the Genetic Effects on Response to Surgery in DCM?
4. Discussion
4.1. Spinal Column Disease: Focus on OPLL
4.2. Spinal Cord Disease
4.3. Conflicting Evidence
4.4. Limitations of Current Work
4.5. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nouri, A.; Tetreault, L.; Singh, A.; Karadimas, S.K.; Fehlings, M.G. Degenerative Cervical Myelopathy: Epidemiology, Genetics, and Pathogenesis. Spine 2015, 40, E675–E693. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.M.; Mowforth, O.D.; Smith, E.K.; Kotter, M.R. Degenerative cervical myelopathy. BMJ 2018, 360, k186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tetreault, L.; Goldstein, C.L.; Arnold, P.; Harrop, J.; Hilibrand, A.; Nouri, A.; Fehlings, M.G. Degenerative Cervical Myelopathy: A Spectrum of Related Disorders Affecting the Aging Spine. Neurosurgery 2015, 77, S51–S67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalsi-Ryan, S.; Karadimas, S.K.; Fehlings, M.G. Cervical Spondylotic Myelopathy: The Clinical Phenomenon and the Current Pathobiology of an Increasingly Prevalent and Devastating Disorder. Neuroscientist 2013, 19, 409–421. [Google Scholar] [CrossRef]
- Nouri, A.; Tetreault, L.; Côté, P.; Zamorano, J.J.; Dalzell, K.; Fehlings, M.G. Does Magnetic Resonance Imaging Improve the Predictive Performance of a Validated Clinical Prediction Rule Developed to Evaluate Surgical Outcome in Patients with Degenerative Cervical Myelopathy? Spine 2015, 40, 1092–1100. [Google Scholar] [CrossRef]
- Witiw, C.D.; Mathieu, F.; Nouri, A.; Fehlings, M.G. Clinico-Radiographic Discordance: An Evidence-Based Commentary on the Management of Degenerative Cervical Spinal Cord Compression in the Absence of Symptoms or With Only Mild Symptoms of Myelopathy. Glob. Spine J. 2018, 8, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Tempest-Mitchell, J.; Hilton, B.; Davies, B.M.; Nouri, A.; Hutchinson, P.J.; Scoffings, D.J.; Mannion, R.J.; Trivedi, R.; Timofeev, I.; Crawford, J.R.; et al. A comparison of radiological descriptions of spinal cord compression with quantitative measures, and their role in non-specialist clinical management. PLoS ONE 2019, 14, e021938. [Google Scholar] [CrossRef]
- Yoon, S.T.; Raich, A.; Hashimoto, R.E.; Riew, K.D.; Shaffrey, C.I.; Rhee, J.M.; Tetreault, L.A.; Skelly, A.C.; Fehlings, M.G. Predictive factors affecting outcome after cervical laminoplasty. Spine 2013, 38, S232–S252. [Google Scholar] [CrossRef]
- Patel, A.A.; Spiker, W.R.; Daubs, M.; Brodke, D.S.; Cannon-Albright, L.A. Evidence of an Inherited Predisposition for Cervical Spondylotic Myelopathy. Spine 2012, 37, 26–29. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.R.; Patel, A.A.; Brodt, E.D.; Dettori, J.R.; Brodke, D.S.; Fehlings, M.G. Genetics and Heritability of Cervical Spondylotic Myelopathy and Ossification of the Posterior Longitudinal Ligament: Results of a Systematic Review. Spine 2013, 38, S123–S146. [Google Scholar] [CrossRef]
- Wang, G.; Cao, Y.; Wu, T.; Duan, C.; Wu, J.; Hu, J.; Lu, H. Genetic factors of cervical spondylotic myelopathy-a systemic review. J. Clin. Neurosci. 2017, 44, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, T.P. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slim, K.; Nini, E.; Forestier, D.; Kwiatkowski, F.; Panis, Y.; Chipponi, J. Methodological index for non-randomized studies (MINORS): Development and validation of a new instrument. ANZ J. Surg. 2003, 73, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Balshem, H.; Helfand, M.; Schünemann, H.J.; Oxman, A.D.; Kunz, R.; Brozek, J.; Vist, G.E.; Falck-Ytter, Y.; Meerpohl, J.; Norris, S.; et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 2011, 64, 401–406. [Google Scholar] [CrossRef]
- Kim, D.H.; Yun, D.H.; Kim, H.-S.; Min, S.K.; Yoo, S.D.; Lee, K.H.; Kim, K.-T.; Jo, D.J.; Kim, S.K.; Chung, J.-H.; et al. The Insertion/Deletion Polymorphism of Angiotensin I Converting Enzyme Gene is Associated with Ossification of the Posterior Longitudinal Ligament in the Korean Population. Ann. Rehabil. Med. 2014, 38, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Setzer, M.; Hermann, E.; Seifert, V.; Marquardt, G. Apolipoprotein E gene polymorphism and the risk of cervical myelopathy in patients with chronic spinal cord compression. Spine 2008, 33, 497–502. [Google Scholar] [CrossRef]
- Diptiranjan, S.; Harshitha, S.M.; Sibin, M.K.; Arati, S.; Chetan, G.K.; Bhat, D.I. Role of APOE and IL18RAP gene polymorphisms in cervical spondylotic myelopathy in Indian population. J. Clin. Neurosci. 2019, 66, 83–86. [Google Scholar] [CrossRef]
- Chon, J.; Hong, J.-H.; Kim, J.; Han, Y.J.; Lee, B.W.; Kim, S.-C.; Kim, D.H.; Yoo, S.D.; Kim, H.-S.; Yun, D.H. Association between BH3 interacting domain death agonist (BID) gene polymorphism and ossification of the posterior longitudinal ligament in Korean population. Mol. Biol. Rep. 2014, 41, 895–899. [Google Scholar] [CrossRef]
- Wang, H.; Liu, D.; Yang, Z.; Tian, B.; Li, J.; Meng, X.; Wang, Z.; Yang, H.; Lin, X. Association of bone morphogenetic protein-2 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity in Chinese patients. Eur. Spine J. 2008, 17, 956–964. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhao, Y.; Chen, Y.; Shi, G.; Yuan, W. RUNX2 Polymorphisms Associated with OPLL and OLF in the Han Population. Clin. Orthop. Relat. Res. 2010, 468, 3333–3341. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Chang, Z.; Liu, Y.; Li, Y.-B.; He, B.-R.; Hao, D.-J. A single nucleotide polymorphism in the human bone morphogenetic protein-2 gene (109T>G) affects the Smad signaling pathway and the predisposition to ossification of the posterior longitudinal ligament of the spine. Chin. Med. J. 2013, 126, 1112–1118. [Google Scholar]
- Kim, K.H.; Kuh, S.U.; Park, J.Y.; Lee, S.J.; Park, H.S.; Chin, D.K.; Kim, K.S.; Cho, Y.E. Association between BMP-2 and COL6A1 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the cervical spine in Korean patients and family members. Genet. Mol. Res. 2014, 13, 2240–2247. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wang, H.; Yang, H.; Hai, Y.; Tian, B.; Lin, X. T allele at site 6007 of bone morphogenetic protein-4 gene increases genetic susceptibility to ossification of the posterior longitudinal ligament in male Chinese Han population. Chin. Med. J. 2010, 123, 2537–2542. [Google Scholar] [PubMed]
- Ren, Y.; Feng, J.; Liu, Z.; Wan, H.; Li, J.; Lin, X. A new haplotype in BMP4 implicated in ossification of the posterior longitudinal ligament (OPLL) in a Chinese population. J. Orthop. Res. 2012, 30, 748–756. [Google Scholar] [CrossRef]
- Wang, D.; Liu, W.; Cao, Y.; Yang, L.; Liu, B.; Yao, G.; Bi, Z. BMP-4 polymorphisms in the susceptibility of cervical spondylotic myelopathy and its outcome after anterior cervical corpectomy and fusion. Cell. Physiol. Biochem. 2013, 32, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Liu, Z.; Feng, J.; Wan, H.; Li, J.; Wang, H.; Lin, X. Association of a BMP9 Haplotype with Ossification of the Posterior Longitudinal Ligament (OPLL) in a Chinese Population. PLoS ONE 2012, 7, e40587. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jin, W.; Li, H. Genetic polymorphisms in bone morphogenetic protein receptor type IA gene predisposes individuals to ossification of the posterior longitudinal ligament of the cervical spine via the smad signaling pathway. BMC Musculoskelet. Disord. 2018, 19, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, T.; Ikari, K.; Furushima, K.; Okada, A.; Tanaka, H.; Furukawa, K.-I.; Yoshida, K.; Ikeda, T.; Ikegawa, S.; Hunt, S.C.; et al. Genomewide Linkage and Linkage Disequilibrium Analyses Identify COL6A1, on Chromosome 21, as the Locus for Ossification of the Posterior Longitudinal Ligament of the Spine. Am. J. Hum. Genet. 2003, 73, 812–822. [Google Scholar] [CrossRef] [Green Version]
- Kong, Q.; Ma, X.; Li, F.; Guo, Z.; Qi, Q.; Li, W.; Yuan, H.; Wang, Z.; Chen, Z. COL6A1 Polymorphisms Associated with Ossification of the Ligamentum Flavum and Ossification of the Posterior Longitudinal Ligament. Spine 2007, 32, 2834–2838. [Google Scholar] [CrossRef]
- Wang, Z.C.; Shi, J.G.; Chen, X.S.; Xu, G.H.; Li, L.J.; Jia, L.S. The role of smoking status and collagen IX polymorphisms in the susceptibility to cervical spondylotic myelopathy. Genet. Mol. Res. 2012, 11, 1238–1244. [Google Scholar] [CrossRef]
- Koga, H.; Sakou, T.; Taketomi, E.; Hayashi, K.; Numasawa, T.; Harata, S.; Yone, K.; Matsunaga, S.; Otterud, B.; Inoue, I.; et al. Genetic mapping of ossification of the posterior longitudinal ligament of the spine. Am. J. Hum. Genet. 1998, 62, 1460–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, S.; Ishidou, Y.; Koga, H.; Taketomi, E.; Ikari, K.; Komiya, S.; Takeda, J.; Sakou, T.; Inoue, I. Functional Impact of Human Collagen α2(XI) Gene Polymorphism in Pathogenesis of Ossification of the Posterior Longitudinal Ligament of the Spine. J. Bone Miner. Res. 2001, 16, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, T.; Maeda, K.; Kawaguchi, Y.; Chiba, K.; Mori, K.; Koshizuka, Y.; Hirabayashi, S.; Sugimori, K.; Matsumoto, M.; Kawaguchi, H.; et al. A large-scale genetic association study of ossification of the posterior longitudinal ligament of the spine. Hum. Genet. 2006, 119, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.-K.; Kim, S.-M. Association Study of Fibroblast Growth Factor 2 and Fibroblast Growth Factor Receptors Gene Polymorphism in Korean Ossification of the Posterior Longitudinal Ligament Patients. J. Korean Neurosurg. Soc. 2012, 52, 7–13. [Google Scholar] [CrossRef]
- Wang, Z.-C.; Hou, X.-W.; Shao, J.; Ji, Y.-J.; Li, L.; Zhou, Q.; Yu, S.-M.; Mao, Y.-L.; Zhang, H.-J.; Zhang, P.-C.; et al. HIF-1α polymorphism in the susceptibility of cervical spondylotic myelopathy and its outcome after anterior cervical corpectomy and fusion treatment. PLoS ONE 2014, 9, e110862. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Jeong, Y.S.; Chon, J.; Yoo, S.D.; Kim, H.-S.; Kang, S.W.; Chung, J.-H.; Kim, K.-T.; Yun, D.H. Association between interleukin 15 receptor, alpha (IL15RA) polymorphism and Korean patients with ossification of the posterior longitudinal ligament. Cytokine 2011, 55, 343–346. [Google Scholar] [CrossRef]
- Guo, Q.; Lv, S.-Z.; Wu, S.-W.; Tian, X.; Li, Z.-Y. Association between single nucleotide polymorphism of IL15RA gene with susceptibility to ossification of the posterior longitudinal ligament of the spine. J. Orthop. Surg. Res. 2014, 9, 103. [Google Scholar] [CrossRef] [Green Version]
- Tahara, M.; Aiba, A.; Yamazaki, M.; Ikeda, Y.; Goto, S.; Moriya, H.; Okawa, A. The extent of ossification of posterior longitudinal ligament of the spine associated with nucleotide pyrophosphatase gene and leptin receptor gene polymorphisms. Spine 2005, 30, 877–880. [Google Scholar] [CrossRef]
- Nakamura, I.; Ikegawa, S.; Okawa, A.; Okuda, S.; Koshizuka, Y.; Kawaguchi, H.; Nakamura, K.; Koyama, T.; Goto, S.; Toguchida, J.; et al. Association of the human NPPS gene with ossification of the posterior longitudinal ligament of the spine (OPLL). Hum. Genet. 1999, 104, 492–497. [Google Scholar] [CrossRef]
- Koshizuka, Y.; Kawaguchi, H.; Ogata, N.; Ikeda, T.; Mabuchi, A.; Seichi, A.; Nakamura, Y.; Nakamura, K.; Ikegawa, S. Nucleotide Pyrophosphatase Gene Polymorphism Associated with Ossification of the Posterior Longitudinal Ligament of the Spine. J. Bone Miner. Res. 2002, 17, 138–144. [Google Scholar] [CrossRef]
- He, Z.; Zhu, H.; Ding, L.; Xiao, H.; Chen, D.; Xue, F. Association of NPP1 polymorphism with postoperative progression of ossification of the posterior longitudinal ligament in Chinese patients. Genet. Mol. Res. 2013, 12, 4648–4655. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-M.; Chen, X.-L.; Wei, W.; Yao, X.-D.; Sun, J.-Q.; Su, X.-T.; Lin, S.-F. Effect of osteoprotegerin gene polymorphisms on the risk of cervical spondylotic myelopathy in a Chinese population. Clin. Neurol. Neurosurg. 2018, 175, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wu, D.; Guo, K.; Yuan, F.; Ran, B. OPN Polymorphism is Associated with the Susceptibility to Cervical Spondylotic Myelopathy and its Outcome After Anterior Cervical Corpectomy and Fusion. CPB 2014, 34, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Chang, F.; Li, L.; Gao, G.; Ding, S.; Yang, J.; Zhang, T.; Zuo, G. Role of Runx2 polymorphisms in risk and prognosis of ossification of posterior longitudinal ligament. J. Clin. Lab. Anal. 2017, 31, e22068. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, M.; Harada, A.; Mizuno, M.; Iwata, H.; Yamada, Y. Association between a polymorphism of the transforming growth factor-beta1 gene and genetic susceptibility to ossification of the posterior longitudinal ligament in Japanese patients. Spine 2001, 26, 1264–1266. [Google Scholar] [CrossRef] [PubMed]
- Han, I.B.; Ropper, A.E.; Jeon, Y.J.; Park, H.S.; Shin, D.A.; Teng, Y.D.; Kuh, S.-U.; Kim, N.-K. Association of transforming growth factor-beta 1 gene polymorphism with genetic susceptibility to ossification of the posterior longitudinal ligament in Korean patients. Genet. Mol. Res. 2013, 12, 4807–4816. [Google Scholar] [CrossRef]
- Jekarl, D.W.; Paek, C.-M.; An, Y.J.; Kim, Y.J.; Kim, M.; Kim, Y.; Lee, J.; Sung, C.H. TGFBR2 gene polymorphism is associated with ossification of the posterior longitudinal ligament. J. Clin. Neurosci. 2013, 20, 453–456. [Google Scholar] [CrossRef]
- Chung, W.-S.; Nam, D.-H.; Jo, D.-J.; Lee, J.-H. Association of Toll-Like Receptor 5 Gene Polymorphism with Susceptibility to Ossification of the Posterior Longitudinal Ligament of the Spine in Korean Population. J. Korean Neurosurg. Soc. 2011, 49, 8–12. [Google Scholar] [CrossRef]
- Song, D.; Wu, Y.; Tian, D. Association of VDR-FokI and VDBP-Thr420Lys polymorphisms with cervical spondylotic myelopathy: A case-control study in the population of China. J. Clin. Lab. Anal. 2018, 33, e22669. [Google Scholar] [CrossRef] [Green Version]
- Kobashi, G.; Ohta, K.; Washio, M.; Okamoto, K.; Sasaki, S.; Yokoyama, T.; Miyake, Y.; Sakamoto, N.; Hata, A.; Tamashiro, H.; et al. FokI Variant of Vitamin D Receptor Gene and Factors Related to Atherosclerosis Associated With Ossification of the Posterior Longitudinal Ligament of the Spine: A Multi-Hospital Case-Control Study. Spine 2008, 33, E553–E558. [Google Scholar] [CrossRef]
- Wang, Z.C.; Chen, X.S.; Wang, D.W.; Shi, J.G.; Jia, L.S.; Xu, G.H.; Huang, J.H.; Fan, L. The genetic association of Vitamin D receptor polymorphisms and cervical spondylotic myelopathy in Chinese subjects. Clin. Chim. Acta 2010, 411, 794–797. [Google Scholar] [CrossRef] [PubMed]
- Chin, D.-K.; Han, I.-B.; Ropper, A.E.; Jeon, Y.-J.; Kim, D.-H.; Kim, Y.-S.; Park, Y.; Teng, Y.D.; Kim, N.-K.; Kuh, S.-U. Association of VKORC1-1639G> A polymorphism with susceptibility to ossification of the posterior longitudinal ligament of the spine: A Korean study. Acta Neurochir. 2013, 155, 1937–1942. [Google Scholar] [CrossRef] [PubMed]
- Abode-Iyamah, K.O.; Stoner, K.E.; Grossbach, A.J.; Viljoen, S.V.; McHenry, C.L.; Petrie, M.A.; Dahdaleh, N.S.; Grosland, N.M.; Shields, R.K.; Howard, M.A.; et al. Effects of brain derived neurotrophic factor Val66Met polymorphism in patients with cervical spondylotic myelopathy. J. Clin. Neurosci. 2016, 24, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Setzer, M.; Vrionis, F.D.; Hermann, E.J.; Seifert, V.; Marquardt, G. Effect of apolipoprotein E genotype on the outcome after anterior cervical decompression and fusion in patients with cervical spondylotic myelopathy. J. Neurosurg. Spine 2009, 11, 659–666. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, M.; Mundy, G.R. Bone morphogenetic proteins. Growth Factors 2004, 22, 233–241. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Qu, S.; Yang, J.; Wang, Z.; Gao, C.; Su, Q. Hyperbaric oxygen intervention on expression of hypoxia-inducible factor-1α and vascular endothelial growth factor in spinal cord injury models in rats. Chin. Med. J. 2013, 126, 3897–3903. [Google Scholar]
- Cantuti-Castelvetri, L.; Fitzner, D.; Bosch-Queralt, M.; Weil, M.-T.; Su, M.; Sen, P.; Ruhwedel, T.; Mitkovski, M.; Trendelenburg, G.; Lütjohann, D.; et al. Defective cholesterol clearance limits remyelination in the aged central nervous system. Science 2018, 359, 684–688. [Google Scholar] [CrossRef] [Green Version]
- Kalsi-Ryan, S.; Singh, A.R.; Massicotte, E.M.M.; Arnold, P.M.M.; Brodke, D.S.M.; Norvell, D.C.; Hermsmeyer, J.T.; Fehlings, M.G. Ancillary Outcome Measures for Assessment of Individuals with Cervical Spondylotic Myelopathy. Spine 2013, 38, S111–S122. [Google Scholar] [CrossRef]
- Davies, B.M.; McHugh, M.; Elgheriani, A.; Kolias, A.G.; Tetreault, L.A.; Hutchinson, P.J.A.; Fehlings, M.G.; Kotter, M.R.N. Reported Outcome Measures in Degenerative Cervical Myelopathy: A Systematic Review. PLoS ONE 2016, 11, e0157263. [Google Scholar] [CrossRef] [Green Version]
- Davies, B.M.; McHugh, M.; Elgheriani, A.; Kolias, A.G.; Tetreault, L.; Hutchinson, P.J.A.; Fehlings, M.G.; Kotter, M.R.N. The reporting of study and population characteristics in degenerative cervical myelopathy: A systematic review. PLoS ONE 2017, 12, e0172564. [Google Scholar] [CrossRef]
- Kopjar, B.; Tetreault, L.; Kalsi-Ryan, S.; Fehlings, M. Psychometric properties of the modified japanese Orthopaedic association scale in patients with cervical spondylotic myelopathy. Spine 2015, 40, E23–E28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, B.M.; Khan, D.Z.; Mowforth, O.D.; McNair, A.G.K.; Gronlund, T.; Kolias, A.G.; Tetreault, L.; Starkey, M.L.; Sadler, I.; Sarewitz, E.; et al. RE-CODE DCM (REsearch Objectives and Common Data Elements for Degenerative Cervical Myelopathy): A Consensus Process to Improve Research Efficiency in DCM, Through Establishment of a Standardized Dataset for Clinical Research and the Definition of the Research Priorities. Glob. Spine J. 2019, 9, 65S–76S. [Google Scholar]
Candidate Gene | Papers Investigating | Study Population Location | No. of Patients | No. of Controls | Matching of Controls | Radiological or Clinical Onset of DCM | Proposed Mechanism | Odds Ratio (Susceptibility) | p-Value (Susceptibility) |
---|---|---|---|---|---|---|---|---|---|
ACE | Kim et al. (2014) [15] | South Korea | 95 OPLL | 274 | Controlled for age and sex in logistic regression models | Radiological | D/D genotype | 2.20 | 0.002 |
APOE | Setzer et al. (2008) [16] | Germany | 60 CSM | 46 | Age, sex. Controls were patients with cervical spondylosis without CSM | Clinical | ε4 allele | 3.50 | 0.008 |
Diptiranhan et al. (2019) [17] | India | 100 CSM | 100 | Clinical | ε2 allele vs. ε3 allele | 4.4 | 0.002 | ||
ε2 allele vs. ε4 allele | 6.69 | 0.009 | |||||||
BID | Chon et al. (2014) [18] | Korea | 157 OPLL | 209 | Controlled for age and sex in logistic regression models | Radiological | rs8190315 (Ser10 Gly) G allele | 2.66 | 0.005 |
rs2072392 (Asp60Asp) C allele | 2.66 | 0.005 | |||||||
BMP2 | Wang et al. (2008) [19] | China | 57 OPLL | 135 | Age, sex | Radiological | Ser87Ser A/G allele | 0.081 | |
Ser37Ala G allele | <0.001 | ||||||||
Liu et al. (2010) [20] | China | 82 (48 OPLL, 12 OLF, 22 both) | 118 | Age, sex | Radiological | rs1005464 G allele | 0.435 | ||
Yan et al. (2013) [21] | China | 420 OPLL | 506 | Age, sex | Radiological | 109T>G G allele (Ser37Ala G allele) | <0.001 | ||
570A>T T allele | 0.005 | ||||||||
Kim et al. (2014) [22] | South Korea | 110 OPLL | 211 | No. Controls were family members | Radiological | Ser87Ser A/G allele | 0.411 | ||
Ser37Ala G allele | 0.670 | ||||||||
BMP4 | Meng et al. (2010) [23] | China | 179 OPLL | 288 | Radiological | −5826G>A A allele | 0.495 | ||
6007C>T T allele | 1.57 (only males) | 0.014 | |||||||
Ren et al. (2012)a [24] | China | 450 OPLL | 550 | Age, sex, BMI, bone mineral density, exercise level, sleeping habit, smoking status, alcohol consumption. | Radiological | rs762642 T>G G allele | 0.353 | ||
intron 2 (54422783) G>T T allele | 0.868 | ||||||||
rs762643 C>A A allele | 0.365 | ||||||||
rs2855530 C>G G allele | 0.661 | ||||||||
rs2761884 C>A A allele | 0.469 | ||||||||
intron 5 (54419501) G>A A allele | 0.684 | ||||||||
intron 5 (54419206) C>T T allele | 0.598 | ||||||||
intron 5 (54419150) C>T T allele | 3.48 | <0.001 | |||||||
rs10130587 C>G G allele | 0.926 | ||||||||
rs35107139 T>G G allele | 0.953 | ||||||||
rs2761880 A>G G allele | 0.221 | ||||||||
rs74486266 T>C C allele | 0.861 | ||||||||
rs17563 C>T T allele | 2.22 | <0.001 | |||||||
rs76335800 A>T T allele | 1.99 | <0.001 | |||||||
3’-UTR (54416600) A>T T allele | 0.190 | ||||||||
rs11335370 T>- deletion | 0.608 | ||||||||
intron 6 (54416219) C>T T allele | 0.344 | ||||||||
rs59702220 TT>- deletion | 0.220 | ||||||||
Haplotype TGGGCTT | 2.54 | <0.001 | |||||||
Wang et al. (2013) [25] | China | 499 CSM | 602 | Age, sex, BMI | Clinical | −5826G>A A allele | 0.214 | ||
6007C>T T allele | 0.51 | <0.001 | |||||||
BMP9 | Ren et al. (2012)b [26] | China | 450 OPLL | 550 | Age, sex, BMI, bone mineral density, exercise level, sleeping habit, smoking status, alcohol consumption. | Radiological | rs3758496 | 0.301 | |
rs12252199 | 0.233 | ||||||||
rs7923671 | 0.163 | ||||||||
rs75024165 | 1.82 | <0.001 | |||||||
rs34379100 | 1.95 | 0.003 | |||||||
rs9421799 | 0.69 | 0.004 | |||||||
Haplotype CTCA | 2.37 | <0.001 | |||||||
BMPR1A | Wang et al. (2018) [27] | China | 356 OPLL | 617 | Age, sex | Radiological | −349C>T T allele | <0.001 | |
4A>C C allele | <0.001 | ||||||||
1327C>T T allele | 0.311 | ||||||||
1395G>C | 0.586 | ||||||||
COL6A1 | Tanaka et al. (2003) [28] | Japan | 342 | 298 | Age | Radiological | rs7671 G>C allele | 0.020 | |
rs2072699 G>A allele | 0.958 | ||||||||
intron 2 (+758) C allele | 0.019 | ||||||||
rs760437 C>T allele | 0.435 | ||||||||
rs754507 A>C allele | 0.062 | ||||||||
intron 4 (+20) C allele | 0.267 | ||||||||
intron 4 (+37) G allele | 0.010 | ||||||||
rs2839076 G>C allele | 0.043 | ||||||||
intron 9 (+62) C allele | 0.007 | ||||||||
rs2277813 C>G allele | 0.057 | ||||||||
rs2277814 G>A allele | 0.205 | ||||||||
rs1980982 T>C allele | 0.0008 | ||||||||
intron 15 (+39) T allele | 0.008 | ||||||||
rs760439 G>A allele | 0.048 | ||||||||
rs2850173 C>A allele | 0.053 | ||||||||
rs2075893 T>C allele | 0.021 | ||||||||
rs2742071 T>C allele | 0.219 | ||||||||
rs2850174 T>G allele | 0.238 | ||||||||
rs2850175 A>C allele | 0.001 | ||||||||
rs2839077 C>T allele | 0.005 | ||||||||
rs2276254 A>C allele | 0.00009 | ||||||||
rs2276255 A>G allele | 0.048 | ||||||||
rs2276256 G>C allele | 0.504 | ||||||||
Intron 32 (-29) C allele | 0.000003 | ||||||||
rs2236485 G>A allele | 0.0002 | ||||||||
rs2236486 A>G allele | 0.00005 | ||||||||
rs2236487 A>G allele | 0.00006 | ||||||||
rs2236488 C>T allele | 0.020 | ||||||||
rs1053312 G>A allele | 0.044 | ||||||||
rs1053315 G>A allele | 0.040 | ||||||||
exon 35 (+205) T allele | 0.677 | ||||||||
rs1053320 C>T allele | 0.021 | ||||||||
Kong et al. (2007) [29] | China | 183 (90 OPLL, 61 OLF, 32 OPLL and OLF) | 155 | Sex | Radiological | Promoter (−572) T allele | 2.94 | 0.00003 | |
intron 32 (-29) C allele | 1.89 | 0.004 | |||||||
Liu et al. (2010) [20] | China | 82 (48 OPLL, 12 OLF, 22 both) | 118 | Age, sex | Radiological | rs9978314 T allele | 0.7618 | ||
rs2276255 G allele | 0.7354 | ||||||||
Kim et al. (2014) [22] | South Korea | 110 OPLL | 211 | No. Controls were family members | Radiological | Promoter (−572) T allele | 0.282 | ||
intron 33 (+20) G allele | 0.625 | ||||||||
COL9A2 | Wang et al. (2012) [30] | China | 172 CSM | 176 | Age, sex, BMI | Clinical | Trp2+ allele | 1.78 | 0.048 |
Trp3+ allele | 0.087 | ||||||||
COL11A2 | Koga et al. (1998) [31] | Japan | 124 paired siblings, 137 OPLL patients | 212 | No | Clinical | Promoter (−182) C allele | 0.0240 | |
intron 6 (−4) T allele | 0.0004 | ||||||||
exon 43 (+24) G allele | 0.0210 | ||||||||
exon 46 (+18) T allele | 0.0333 | ||||||||
Maeda et al. (2001) [32] | Japan | 195 OPLL | 187 | No | Radiological | intron 6 (−4) T allele | 1.99 | 0.0003 | |
exon 6 (+28) G allele | 1.84 | 0.0012 | |||||||
Horikoshi et al. (2006) [33] | Japan | 711 OPLL | 896 | Age | Clinical | rs9277933 (IVS6-4T>A) | 0.130 | ||
rs2071025 (IVS29+37C>T) | 0.270 | ||||||||
FGF2 | Jun & Kim (2012) [34] | South Korea | 157 OPLL | 222 | Age, sex | Radiological | rs1476217 C allele | 0.220 | |
rs308395 G allele | 0.580 | ||||||||
rs3747676 T allele | 0.100 | ||||||||
FGFR1 | Jun & Kim (2012) [34] | South Korea | 157 OPLL | 222 | Age, sex | Radiological | rs13317 C allele | 2 | 0.02 |
FGFR2 | Jun & Kim (2012) [34] | South Korea | 157 OPLL | 222 | Age, sex | Radiological | rs755793 C allele | 0.110 | |
rs1047100 A allele | 0.580 | ||||||||
rs3135831 T allele | 0.590 | ||||||||
HIF1A | Wang et al. (2014) [35] | China | 230 CSM | 284 | Age, sex, BMI | Clinical | 1772C>T T allele | 0.760 | |
1790G>A A allele | 1.62 | <0.001 | |||||||
IL15RA | Kim et al. (2011) [36] | South Korea | 166 OPLL | 230 | Age, sex | Radiological | rs2296139 A allele | 1.00 | |
rs2228059 A allele | 1.52 | 0.009 | |||||||
Guo et al. (2014) [37] | China | 235 OPLL | 250 | Age | Clinical | rs2296139 G allele | 0.849 | ||
rs2228059 A allele | 1.63 | <0.001 | |||||||
IL18RAP | Diptiranhan et al. (2019) [17] | India | 100 CSM | 100 | Clinical | rs1420106 | >0.05 | ||
rs917997 | >0.05 | ||||||||
Leptin receptor | Tahara et al. (2005) [38] | Japan | 156 OPLL | 93 | Age | Radiological | A861G | 0.669 | |
NPPS | Nakamura et al. (1999) [39] | Japan | 323 OPLL | 332 | Age | Clinical | IVS20–11delT | 0.0029 | |
Koshizuka et al. (2002) [40] | Japan | 180 OPLL | 265 | Age, sex | Clinical | IVS15-14T>C | 3.01 | 0.022 | |
Tahara et al. (2005) [38] | Japan | 156 OPLL | 93 | Age | Radiological | IVS20–11delT | 0.512 | ||
Horikoshi et al. (2006) [33] | Japan | 711 OPLL | 896 | Age | Clinical | IVS15-14T>C | 0.320 | ||
He et al. (2013) [41] | China | 95 OPLL | 90 | Age, sex | Radiological | A533C | 0.430 | ||
C973T | <0.001 | ||||||||
IVS15-14T>C | 0.026 | ||||||||
IVS20–11delT | 0.093 | ||||||||
OPG | Yu et al. (2018) [42] | China | 494 CSM | 515 | Clinical | 950T>C C allele | <0.01 | ||
1181G>C C allele | >0.05 | ||||||||
163A>G G allele | >0.05 | ||||||||
OPN | Wu et al. (2014) [43] | China | 187 CSM | 233 | Age, sex, BMI | Clinical | −66T>G G allele | 1.55 | 0.002 |
−156G/GG GG genotype | 0.651 | ||||||||
−443C/T C allele | 0.580 | ||||||||
RUNX2 | Liu et al. (2010) [20] | China | 82 (48 OPLL, 12 OLF, 22 both) | 118 | Age, sex | Radiological | rs967588C>T T allele | 0.1939 | |
rs16873379 T>C C allele | 0.169 | ||||||||
rs1406846 T>A A allele | 0.6646 | ||||||||
rs3749863 A>C C allele | 0.8637 | ||||||||
rs6908650 G>A A allele | 0.6362 | ||||||||
rs1321075 C>A A allele | 0.5255 | ||||||||
rs2677108 T>C C allele | 0.6657 | ||||||||
rs16873437 G>T T allele | 0.6387 | ||||||||
rs7771889 C>G G allele | 0.7854 | ||||||||
rs12333172 C>T T allele | 0.8128 | ||||||||
rs9296459 A>G G allele | 0.2542 | ||||||||
Chang et al. (2017) [44] | China | 80 OPLL | 80 | Age, sex, BMI, smoking history, alcohol intake | Clinical | rs967588C>T T allele | 0.47 | 0.033 | |
rs16873379 T>C C allele | 0.48 | 0.033 | |||||||
rs1406846 T>A A allele | 5.67 | <0.001 | |||||||
rs3749863 A>C C allele | 0.171 | ||||||||
rs6908650 G>A A allele | 0.959 | ||||||||
rs1321075 C>A A allele | 0.050 | ||||||||
rs2677108 T>C C allele | 0.295 | ||||||||
TGFB1 | Kamiya et al. (2001) [45] | Japan | 46 OPLL | 273 | Age, BMI | Radiological | 869T>C CC genotype | 4.5 | 0.0004 |
Horikoshi et al. (2006) [33] | Japan | 711 OPLL | 896 | Age | Clinical | IVS2+114G>A A allele | 0.330 | ||
Han et al. (2013) [46] | South Korea | 98 OPLL | 200 | Age, sex | Radiological | 869T>C CC genotype | 0.656 | ||
−509C>T TT genotype | 0.931 | ||||||||
TGFB3 | Horikoshi et al. (2006) [33] | Japan | 711 OPLL | 896 | Age | Clinical | IVS1-1284G>C CC genotype | 1.46 | 0.044 |
TGFBR2 | Jekarl et al. (2013) [47] | South Korea | 21 OPLL | 42 | None mentioned. | Radiological | 445T>A A allele | 2.81 | 0.007 |
571G>A A allele | 8.73 | 0.024 | |||||||
1167C>T T allele | 0.888 | ||||||||
TLR5 | Chung et al. (2011) [48] | South Korea | 166 OPLL | 231 | Age, sex | Radiological | rs2072493 G allele | 0.457 | |
rs57441714 C allele | 0.457 | ||||||||
rs5744168 T allele | 0.543 | ||||||||
VDBP | Song et al. (2018) [49] | China | 318 CSM | 282 | Age, sex, BMI, smoking | Clinical | Thr420Lys | 0.973 | 0.834 |
VDR | Kobashi et al. (2008) [50] | Japan | 63 OPLL | 126 | Age, sex | Radiological | FokI FF genotype | 2.33 | 0.0073 |
Wang et al. (2010) [51] | China | 154 CSM | 156 | Age, sex, BMI, desk work time, smoking | Clinical | FokI T allele | >0.05 | ||
BsmI A allele | >0.05 | ||||||||
ApaI A allele | 2.88 | <0.001 | |||||||
TaqI C allele | 4.67 | <0.001 | |||||||
Liu et al. (2010) [20] | China | 82 (48 OPLL, 12 OLF, 22 both) | 118 | Age, sex | Radiological | rs11168287 G allele | 0.5933 | ||
rs11574079 A allele | 2.68 | 0.0714 | |||||||
rs2189480 C allele | 0.4197 | ||||||||
rs3847987 C allele | 0.6687 | ||||||||
rs12721370 T allele | 0.4000 | ||||||||
Song et al. (2018) [49] | China | 318 CSM | 282 | Age, sex, BMI, smoking | Clinical | FokI FF genotype | 1.461 | 0.001 | |
VKORC1 | Chin et al. (2013) [52] | South Korea | 98 OPLL | 200 | Age, sex, hypertension, diabetes mellitus | Radiological | −1639G>A GA genotype | 5.22 (female patients only) | 0.004 (Non-significant in male/mixed) |
Candidate Gene | Papers Investigating | Study Population Location | No of Patients | Method of Severity Assessment | Proposed Mechanism | Outcome |
---|---|---|---|---|---|---|
BDNF | Abode-Iyamah et al. (2016) [53] | USA | 10 CSM | Short Form 36 Survey | Val66Met mutation | Met allele subjects had worse scores for physical functioning and social functioning (p < 0.05). Met allele subjects had worse ‘physical health summary’ scores (p = 0.02). |
BMP2 | Wang et al. (2008) [19] | China | 57 OPLL | Number of ossified vertebrae on lateral cervical radiograph (1–7) | Ser87Ser GG genotype | Patients with GG genotype had significantly greater number of ossified vertebrae (p < 0.001) |
Ser37Ala GG genotype | No significant difference in number of ossified vertebrae (p = 0.113) | |||||
BMP4 | Meng et al. (2010) [23] | China | 179 OPLL | Number of ossified vertebrae on lateral cervical radiograph/CT/MRI (1–7) | −5826G>A A allele | No significant difference in number of ossified vertebrae (p = 0.324) |
6007C>T T allele | Patients with T allele had significantly greater number of ossified vertebrae (p = 0.043) | |||||
Ren et al. (2012)a [24] | China | 450 OPLL | Number of ossified vertebrae on lateral cervical radiograph/CT (1–7) | Haplotype TGGGCTT | Patients with the TGGGCTT haplotype had significantly greater number of ossified vertebrae (p = 0.002) | |
BMP9 | Ren et al. (2012)b [26] | China | 450 OPLL | Number of ossified vertebrae on lateral cervical radiograph/CT (1–7) | Haplotype CTCA | Patients with the CTCA haplotype had significantly greater number of ossified vertebrae (p = 0.001) |
BMPR1A | Wang et al. (2018) [27] | China | 356 OPLL | Number of ossified vertebrae on lateral cervical radiograph (1–7) | 4A>C C allele | Patients with C allele had significantly greater number of ossified vertebrae (p < 0.001) |
HIF1A | Wang et al. (2014) [35] | China | 230 CSM | mJOA score | 1772C>T T allele | No significant difference in mJOA score (p > 0.05) |
1790G>A A allele | Patients with A allele had significantly worse mJOA scores (p < 0.001) | |||||
NPPS | He et al. (2013) [41] | China | 95 OPLL | Number of ossified vertebrae on lateral cervical radiograph (1–7) | A533C | No significant difference in number of ossified vertebrae (p = 0.363) |
C973T | No significant difference in number of ossified vertebrae (p = 0.248) | |||||
IVS15-14T>C | Patients with T allele had significantly greater number of ossified vertebrae (p < 0.001) | |||||
IVS20–11delT | Patients homozygous for the T deletion had significantly fewer ossified vertebrae (p < 0.001) | |||||
Ossified thickness of cervical vertebrae on lateral radiograph | A533C | No significant difference in ossified thickness of cervical vertebrae (p = 0.947) | ||||
C973T | Patients with T allele had significantly thicker ossification of cervical vertebrae (p = 0.007) | |||||
IVS15-14T>C | Patients with T alelle had significantly thicker ossification of cervical vertebrae (p = 0.017) | |||||
IVS20–11delT | Patients homozygous for the T deletion had significantly less thick ossification of cervical vertebrae (p < 0.001) | |||||
OPG | Yu et al. (2018) [42] | China | 494 CSM | mJOA score and number of ossified vertebrae | 950T>C | TT genotype associated with higher mJOA scores and fewer ossified cervical vertebrae (p < 0.05). |
OPN | Wu et al. (2014) [43] | China | 187 CSM | mJOA score | −66T>G G allele | No significant difference in mJOA score (p > 0.05) |
−156G/GG GG genotype | No significant difference in mJOA score (p > 0.05) | |||||
−443C/T C allele | No significant difference in mJOA score (p > 0.05) | |||||
RUNX2 | Chang et al. (2017) [44] | China | 80 OPLL | Number of ossified vertebrae on CT/MRI (1–7) | rs967588C>T T allele | No significant difference in number of ossified vertebrae (p = 0.784) |
rs16873379 T>C C allele | Patients with C allele had significantly greater number of ossified vertebrae (p = 0.001) | |||||
rs3749863 A>C C allele | No significant difference in number of ossified vertebrae (p = 0.129) | |||||
rs6908650 G>A A allele | No significant difference in number of ossified vertebrae (p = 0.813) | |||||
rs1321075 C>A A allele | No significant difference in number of ossified vertebrae (p = 0.610) | |||||
rs1406846 T>A A allele | Patients with A allele had significantly greater number of ossified vertebrae (p = 0.020) | |||||
rs2677108 T>C C allele | Patients with C allele had significantly greater number of ossified vertebrae (p = 0.044) | |||||
VDBP | Song et al. (2018) [49] | China | 318 CSM | mJOA score | Thr420Lys | No significant difference in mJOA score (p = 0.546) |
Number of ossified vertebrae | Thr420Lys | No significant difference in number of ossified vertebrae (p = 0.117) | ||||
VDR | Wang et al. (2010) [51] | China | 154 CSM | Number of segmental lesions on MRI | FokI T allele | No significant difference in mean number of segmental lesions (p > 0.05) |
BsmI A allele | No significant difference in mean number of segmental lesions (p > 0.05) | |||||
ApaI A allele | No significant difference in mean number of segmental lesions (p > 0.05) | |||||
TaqI C allele | No significant difference in mean number of segmental lesions (p > 0.05) | |||||
mJOA score | FokI T allele | No significant difference in mJOA score (p > 0.05) | ||||
BsmI A allele | No significant difference in mJOA score (p > 0.05) | |||||
ApaI A allele | No significant difference in mJOA score (p > 0.05) | |||||
TaqI C allele | No significant difference in mJOA score (p > 0.05) | |||||
Song et al. (2018) [49] | China | 318 CSM | mJOA score | FokI ff genotype | No significant difference in mJOA score (p = 0.358) | |
Number of ossified vertebrae | FokI ff genotype | No significant difference in number of ossified vertebrae (p = 0.575) |
Candidate Gene | Papers Investigating | Study Population Location | Number of Patients | Surgery Type | Mean Follow-Up | Method of Assessment of Response to Surgery | Improvement Defined As | Proposed Mechanism | Odds Ratio of No Improvement | Odds Ratio of Improvement | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
APOE | Setzer et al. (2009) [54] | Germany | 60 CSM | ACDF | 18.8 months | mJOA score | mJOA score +1 | ε4 allele | 3.3 (8.6 in multivariate model) | - | 0.002 (0.004 multivariate model) |
BMP4 | Wang et al. (2013) [25] | China | 499 CSM | Anterior cervical corpectomy and fusion | 12 months | mJOA score | >50% improvement in mJOA score | −5826G>A A allele | - | - | 0.053 |
6007C>T T allele | - | 1.53 | 0.002 | ||||||||
HIF1A | Wang et al. (2014) [35] | China | 230 CSM | Anterior cervical corpectomy and fusion | 24 months | mJOA score | >50% improvement in mJOA score | 1790G>A A allele | - | 1.55 | 0.024 |
NPPS | He et al. (2013) [41] | China | 95 OPLL | 3.1 years | Progression of OPLL ossification on lateral radiograph | <2 mm increase in ossified mass of PLL | A533C AA genotype | - | 3.11 | 0.029 | |
C973T | - | - | 0.935 | ||||||||
IVS15-14T>C | - | - | 0.836 | ||||||||
IVS20–11delT homozygous T deletion | - | 3.35 | 0.007 | ||||||||
OPN | Wu et al. (2014) [43] | China | 187 CSM | Anterior cervical corpectomy and fusion | 24 months | mJOA score | >50% improvement in mJOA score | −66T>G GG genotype | 3.62 | - | 0.007 |
RUNX2 | Chang et al. (2017) [44] | China | 80 OPLL | Laminoplasty | 12 months | mJOA score | % improvement in mJOA score | rs967588C>T T allele | - | - | >0.05 |
rs16873379 T>C C allele | - | - | <0.05 | ||||||||
rs3749863 A>C C allele | - | - | >0.05 | ||||||||
rs6908650 G>A A allele | - | - | <0.05 | ||||||||
rs1321075 C>A A allele | - | - | >0.05 | ||||||||
rs1406846 T>A A allele | - | - | <0.05 | ||||||||
rs2677108 T>C C allele | - | - | <0.05 |
Candidate Gene | Papers Investigating | Susceptibility to Myelopathy | Severity of Myelopathy | Post-Operative Response | GRADE Rating |
---|---|---|---|---|---|
APOE | Setzer et al. (2008) [16] Setzer et al. (2009) [54] | ε4 allele: OR 3.50, p = 0.008 | ε4 allele: OR of no improvement 3.3 (8.6 in multivariate model), p = 0.002 (p = 0.004) | Low (small sample size, inconsistency across ethnicities) | |
Diptiranhan et al. (2019) | ε2 allele: OR 6.69, p = 0.009 | ||||
BDNF | Abode-Iyamah et al. (2016) [53] | Val66Met: Met allele subjects had worse scores for physical functioning (p < 0.05), social functioning (p < 0.05 and ‘physical health summary’ (p = 0.02) on SF-36 survey. | Low (single study, very small sample size) | ||
BMP4 | Wang et al. (2013) [25] | 6007C>T T allele: OR 0.51, p < 0.001 | 6007C>T T allele: OR of improvement 1.53, p = 0.002 | Low (inconsistency across studies, inconsistency between CSM and OPLL studies) | |
COL9A2 | Wang et al. (2012) [30] | Trp2+ allele: OR 1.78, p = 0.048 | Low (single study, small sample size) | ||
COL11A2 | Koga et al. (1998) [31] | Promoter (−182) C allele (p = 0.0240); Intron 6 (−4) T allele (p = 0.0004); Exon 43 (+24) G allele (p = 0.0210); Exon 46 (+18) T allele (p = 0.0333) | Low | ||
HIF1A | Wang et al. (2014) [35] | 1790G>A A allele: OR 1.62, p < 0.001 | 1790G>A A allele associated with worse mJOA scores (p < 0.001) | 1790G>A A allele: OR of improvement 1.55, p = 0.024 | Low (single study) |
IL15RA | Guo et al. (2014) [37] | rs2228059 A allele: OR 1.63, p < 0.001 | Low | ||
NPPS | Nakamura et al. (1999) [39] | IVS20-11delT: p = 0.0029 | Low (inconsistency across studies) | ||
Koshizuka et al. (2002) [40] | IVS15-14T>C: OR 3.01, p = 0.022 NB. Horikoshi et al. (2006) find p = 0.320. | ||||
OPG | Yu et al. (2018) [42] | 950T>C C allele: p < 0.01 | 950T>C TT genotype associated with higher mJOA scores and fewer ossified vertebrae (p < 0.05) | Low (single study) | |
OPN | Wu et al. (2014) [43] | −66T>G G allele: OR 1.55, p = 0.002 | No significant difference in mJOA score (p > 0.05). | -66T>G GG genotype: OR of no improvement 3.62, p = 0.007 | Low (single study) |
RUNX2 | Chang et al. (2017) [44] | rs967588C>T T allele: OR 0.47, p = 0.033; rs16873379T>C C allele: OR 0.48, p = 0.033; rs1406846T>A A allele: OR 5.67, p < 0.001 | rs16873379T>C C allele: p < 0.05; rs6908650G>A A allele: p < 0.05; rs1406846T>A A allele: p < 0.05; rs2677108T>C C allele: p < 0.05 | Low | |
TGFB3 | Horikoshi et al. (2006) [33] | IVS1-1284G>C CC genotype: OR 1.46, p = 0.044 | Low (single study) | ||
VDR | Wang et al. (2010) [51] | ApaI A allele: OR 2.88, p < 0.001; TaqI C allele: OR 4.67, p < 0.001 | No significant difference in mJOA score (p > 0.05). | Low (inconsistency across studies) | |
Song et al. (2018) [49] | FokI ff genotype: OR 1.985, p = 0.003 | No significant difference in mJOA score or number of ossified vertebrae (p > 0.05) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pope, D.H.; Davies, B.M.; Mowforth, O.D.; Bowden, A.R.; Kotter, M.R.N. Genetics of Degenerative Cervical Myelopathy: A Systematic Review and Meta-Analysis of Candidate Gene Studies. J. Clin. Med. 2020, 9, 282. https://doi.org/10.3390/jcm9010282
Pope DH, Davies BM, Mowforth OD, Bowden AR, Kotter MRN. Genetics of Degenerative Cervical Myelopathy: A Systematic Review and Meta-Analysis of Candidate Gene Studies. Journal of Clinical Medicine. 2020; 9(1):282. https://doi.org/10.3390/jcm9010282
Chicago/Turabian StylePope, Daniel H., Benjamin M. Davies, Oliver D. Mowforth, A. Ramsay Bowden, and Mark R. N. Kotter. 2020. "Genetics of Degenerative Cervical Myelopathy: A Systematic Review and Meta-Analysis of Candidate Gene Studies" Journal of Clinical Medicine 9, no. 1: 282. https://doi.org/10.3390/jcm9010282
APA StylePope, D. H., Davies, B. M., Mowforth, O. D., Bowden, A. R., & Kotter, M. R. N. (2020). Genetics of Degenerative Cervical Myelopathy: A Systematic Review and Meta-Analysis of Candidate Gene Studies. Journal of Clinical Medicine, 9(1), 282. https://doi.org/10.3390/jcm9010282