IgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Laboratory Analyses
2.3. Tissue-Conditioned Media
2.4. Measurement of IgG Antibodies against HDL
2.5. Statistical Analyses
3. Results
3.1. Plasma Levels of IgG Anti-HDL Antibodies Are Increased in AAA Patients
3.2. IgG Anti-HDL Antibodies Can Be Detected in AAA Tissue-Conditioned Media
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sakalihasan, N.; Limet, R.; Defawe, O.D. Abdominal aortic aneurysm. Lancet 2005, 365, 1577–1589. [Google Scholar] [CrossRef]
- Budd, J.S.; Finch, D.R.; Carter, P.G. A study of the mortality from ruptured abdominal aortic aneurysms in a district community. Eur. J. Vasc. Surg. 1989, 3, 351–354. [Google Scholar] [CrossRef]
- Weng, L.C.; Roetker, N.S.; Lutsey, P.L.; Alonso, A.; Guan, W.; Pankow, J.S.; Folsom, A.R.; Steffen, L.M.; Pankratz, N.; Tang, W. Evaluation of the relationship between plasma lipids and abdominal aortic aneurysm: A Mendelian randomization study. PLoS ONE 2018, 13, e0195719. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.C.; Holmes, M.V.; Burgess, S.; Asselbergs, F.W.; Jones, G.T.; Baas, A.F.; van’t Hof, F.N.; de Bakker, P.I.W.; Blankensteijn, J.D.; Powell, J.T.; et al. Genetic Association of Lipids and Lipid Drug Targets With Abdominal Aortic Aneurysm: A Meta-analysis. JAMA Cardiol. 2018, 3, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Klarin, D.; Damrauer, S.M.; Cho, K.; Sun, Y.V.; Teslovich, T.M.; Honerlaw, J.; Gagnon, D.R.; DuVall, S.L.; Li, J.; Peloso, G.M.; et al. Genetics of blood lipids among ~300,000 multi-ethnic participants of the Million Veteran Program. Nat. Genet. 2018, 50, 1514–1523. [Google Scholar] [CrossRef]
- Jones, G.T.; Tromp, G.; Kuivaniemi, H.; Gretarsdottir, S.; Baas, A.F.; Giusti, B.; Strauss, E.; van’t Hof, F.N.G.; Webb, T.R.; Erdman, R.; et al. Meta-Analysis of Genome-Wide Association Studies for Abdominal Aortic Aneurysm Identifies Four New Disease-Specific Risk Loci. Circ. Res. 2017, 120, 341–353. [Google Scholar] [CrossRef]
- Allara, E.; Morani, G.; Carter, P.; Gkatzionis, A.; Zuber, V.; Foley, C.N.; Rees, J.M.; Mason, A.M.; Bell, S.; Gill, D.; et al. Genetic Determinants of Lipids and Cardiovascular Disease Outcomes: A Wide-angled Mendelian Randomization Investigation. Circ. Genom. Precis. Med. 2019, 12, e002711. [Google Scholar] [CrossRef]
- Burillo, E.; Lindholt, J.S.; Molina-Sánchez, P.; Jorge, I.; Martinez-Pinna, R.; Blanco-Colio, L.M.; Tarin, C.; Torres-Fonseca, M.M.; Esteban, M.; Laustsen, J.; et al. ApoA-I/HDL-C levels are inversely associated with abdominal aortic aneurysm progression. Thromb. Haemost. 2015, 113, 1335–1346. [Google Scholar]
- Hellenthal, F.A.M.V.I.; Pulinx, B.; Welten, R.J.T.J.; Teijink, J.A.W.; van Dieijen-Visser, M.P.; Wodzig, W.K.W.H.; Schurink, G.W.H. Circulating biomarkers and abdominal aortic aneurysm size. J. Surg. Res. 2012, 176, 672–678. [Google Scholar] [CrossRef]
- Forsdahl, S.H.; Singh, K.; Solberg, S.; Jacobsen, B.K. Risk factors for abdominal aortic aneurysms: A 7-year prospective study: The Tromsø Study, 1994–2001. Circulation 2009, 119, 2202–2208. [Google Scholar] [CrossRef] [Green Version]
- Torsney, E.; Pirianov, G.; Charolidi, N.; Shoreim, A.; Gaze, D.; Petrova, S.; Laing, K.; Meisinger, T.; Xiong, W.; Baxter, B.T.; et al. Elevation of plasma high-density lipoproteins inhibits development of experimental abdominal aortic aneurysms. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2678–2686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishna, S.M.; Seto, S.W.; Moxon, J.V.; Rush, C.; Walker, P.J.; Norman, P.E.; Golledge, J. Fenofibrate increases high-density lipoprotein and sphingosine 1 phosphate concentrations limiting abdominal aortic aneurysm progression in a mouse model. Am. J. Pathol. 2012, 181, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Escolà-Gil, J.C.; Julve, J.; Griffin, B.A.; Freeman, D.; Blanco-Vaca, F. HDL and lifestyle interventions. Handb. Exp. Pharmacol. 2015, 224, 569–592. [Google Scholar] [PubMed] [Green Version]
- Khovidhunkit, W.; Kim, M.S.; Memon, R.A.; Shigenaga, J.K.; Moser, A.H.; Feingold, K.R.; Grunfeld, C. Effects of infection and inflammation on lipid and lipoprotein metabolism: Mechanisms and consequences to the host. J. Lipid Res. 2004, 45, 1169–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ettinger, W.H.; Varma, V.K.; Sorci-Thomas, M.; Parks, J.S.; Sigmon, R.C.; Smith, T.K.; Verdery, R.B. Cytokines decrease apolipoprotein accumulation in medium from Hep G2 cells. Arterioscler. Thromb. J. Vasc. Biol. 1994, 14, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiDonato, J.A.; Huang, Y.; Aulak, K.S.; Even-Or, O.; Gerstenecker, G.; Gogonea, V.; Wu, Y.; Fox, P.L.; Tang, W.H.W.; Plow, E.F.; et al. Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma. Circulation 2013, 128, 1644–1655. [Google Scholar] [CrossRef] [Green Version]
- Moestrup, S.K.; Kozyraki, R. Cubilin, a high-density lipoprotein receptor. Curr. Opin. Lipidol. 2000, 11, 133–140. [Google Scholar] [CrossRef]
- Michel, J.B.; Martin-Ventura, J.L.; Egido, J.; Sakalihasan, N.; Treska, V.; Lindholt, J.; Allaire, E.; Thorsteinsdottir, U.; Cockerill, G.; Swedenborg, J.; et al. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc. Res. 2011, 90, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Torres-Fonseca, M.; Galan, M.; Martinez-Lopez, D.; Cañes, L.; Roldan-Montero, R.; Alonso, J.; Reyero-Postigo, T.; Orriols, M.; Mendez-Barbero, N.; Sirvent, M.; et al. Pathophisiology of abdominal aortic aneurysm: Biomarkers and novel therapeutic targets. Clin. Investig. Arterioscler. 2019, 31, 166–177. [Google Scholar]
- Tilson, M.D. Decline of the atherogenic theory of the etiology of the abdominal aortic aneurysm and rise of the autoimmune hypothesis. J. Vasc. Surg. 2016, 64, 1523–1525. [Google Scholar] [CrossRef] [Green Version]
- Piacentini, L.; Werba, J.P.; Bono, E.; Saccu, C.; Tremoli, E.; Spirito, R.; Colombo, G.I. Genome-Wide Expression Profiling Unveils Autoimmune Response Signatures in the Perivascular Adipose Tissue of Abdominal Aortic Aneurysm. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carrio, J.; López-Mejías, R.; Alperi-López, M.; López, P.; Ballina-García, F.J.; González-Gay, M.Á.; Suárez, A. PON activity is modulated by rs662 polymorphism and IgG anti-HDL antibodies in Rheumatoid Arthritis patients: Potential implications for CV disease. Arthritis Rheumatol. 2016, 68, 1367–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Carrio, J.; Alperi-López, M.; López, P.; Ballina-García, F.J.; Abal, F.; Suárez, A. Antibodies to high-density lipoproteins are associated with inflammation and cardiovascular disease in rheumatoid arthritis patients. Transl. Res. 2015, 166, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Delgado Alves, J.; Ames, P.R.J.; Donohue, S.; Stanyer, L.; Nourooz-Zadeh, J.; Ravirajan, C.; Isenberg, D.A. Antibodies to high-density lipoprotein and beta2-glycoprotein I are inversely correlated with paraoxonase activity in systemic lupus erythematosus and primary antiphospholipid syndrome. Arthritis Rheum. 2002, 46, 2686–2694. [Google Scholar] [CrossRef] [PubMed]
- López, P.; Rodríguez-Carrio, J.; Martínez-Zapico, A.; Pérez-Álvarez, Á.I.; López-Mejías, R.; Benavente, L.; Mozo, L.; Caminal-Montero, L.; González-Gay, M.A.; Suárez, A. Serum Levels of Anti-PON1 and Anti-HDL Antibodies as Potential Biomarkers of Premature Atherosclerosis in Systemic Lupus Erythematosus. Thromb. Haemost. 2017, 117, 2194–2206. [Google Scholar] [CrossRef]
- Batuca, J.R.; Amaral, M.C.; Favas, C.; Justino, G.C.; Papoila, A.L.; Ames, P.R.J.; Alves, J.D. Antibodies against HDL Components in Ischaemic Stroke and Coronary Artery Disease. Thromb. Haemost. 2018, 118, 1088–1100. [Google Scholar] [CrossRef]
- Carbone, F.; Nencioni, A.; Mach, F.; Vuilleumier, N.; Montecucco, F. Evidence on the pathogenic role of auto-antibodies in acute cardiovascular diseases. Thromb. Haemost. 2013, 109, 854–868. [Google Scholar] [CrossRef]
- Lindholt, J.S.; Søgaard, R. Population screening and intervention for vascular disease in Danish men (VIVA): A randomised controlled trial. Lancet 2017, 390, 2256–2265. [Google Scholar] [CrossRef]
- Grøndal, N.; Søgaard, R.; Henneberg, E.W.; Lindholt, J.S. The Viborg Vascular (VIVA) screening trial of 65-74 year old men in the central region of Denmark: Study protocol. Trials 2010, 11, 67. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, V.; Touat, Z.; Mtairag, E.M.; Vranckx, R.; Louedec, L.; Houard, X.; Andreassian, B.; Sebbag, U.; Palombi, T.; Jacob, M.P.; et al. Role of leukocyte elastase in preventing cellular re-colonization of the mural thrombus. Am. J. Pathol. 2004, 164, 2077–2087. [Google Scholar] [CrossRef] [Green Version]
- Martin-Ventura, J.L.; Duran, M.C.; Blanco-Colio, L.M.; Meilhac, O.; Leclercq, A.; Michel, J.-B.; Jensen, O.N.; Hernandez-Merida, S.; Tuñón, J.; Vivanco, F.; et al. Identification by a differential proteomic approach of heat shock protein 27 as a potential marker of atherosclerosis. Circulation 2004, 110, 2216–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindholt, J.S.; Kristensen, K.L.; Burillo, E.; Martinez-Lopez, D.; Calvo, C.; Ros, E.; Martín-Ventura, J.L.; Sala-Vila, A. Arachidonic Acid, but Not Omega-3 Index, Relates to the Prevalence and Progression of Abdominal Aortic Aneurysm in a Population-Based Study of Danish Men. J. Am. Heart Assoc. 2018, 7, e007790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindholt, J.S.; Madsen, M.; Kirketerp-Møller, K.L.; Schlosser, A.; Kristensen, K.L.; Andersen, C.B.; Sorensen, G.L. High plasma microfibrillar-associated protein 4 is associated with reduced surgical repair in abdominal aortic aneurysms. J. Vasc. Surg. 2019, in press. [Google Scholar] [CrossRef]
- Takagi, H.; Manabe, H.; Kawai, N.; Goto, S.N.; Umemoto, T. Serum high-density and low-density lipoprotein cholesterol is associated with abdominal aortic aneurysm presence: A systematic review and meta-analysis. Int. Angiol. 2010, 29, 371–375. [Google Scholar] [PubMed]
- Kuivaniemi, H.; Platsoucas, C.D.; Tilson, M.D. Aortic aneurysms: An immune disease with a strong genetic component. Circulation 2008, 117, 242–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindholt, J.S.; Shi, G.P. Chronic inflammation, immune response, and infection in abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 2006, 31, 453–463. [Google Scholar] [CrossRef] [Green Version]
- Dale, M.A.; Ruhlman, M.K.; Baxter, B.T. Inflammatory cell phenotypes in AAAs: Their role and potential as targets for therapy. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1746–1755. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Mitchell, R.N.; Libby, P. Inflammation and Cellular Immune Responses in Abdominal Aortic Aneurysms. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 987–994. [Google Scholar] [CrossRef]
- Platsoucas, C.D.; Lu, S.; Nwaneshiudu, I.; Solomides, C.; Agelan, A.; Ntaoula, N.; Purev, E.; Li, L.P.; Kratsios, P.; Mylonas, E.; et al. Abdominal aortic aneurysm is a specific antigen-driven T cell disease. Ann. N. Y. Acad. Sci. 2006, 1085, 224–235. [Google Scholar] [CrossRef]
- Schönbeck, U.; Sukhova, G.K.; Gerdes, N.; Libby, P. TH2 Predominant Immune Responses Prevail in Human Abdominal Aortic Aneurysm. Am. J. Pathol. 2002, 161, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Galle, C.; Schandené, L.; Stordeur, P.; Peignois, Y.; Ferreira, J.; Wautrecht, J.C.; Dereume, J.P.; Goldman, M. Predominance of type 1 CD4+ T cells in human abdominal aortic aneurysm. Clin. Exp. Immunol. 2005, 142, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Meier, L.A.; Binstadt, B.A. The Contribution of Autoantibodies to Inflammatory Cardiovascular Pathology. Front. Immunol. 2018, 9, 911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagatomo, Y.; Tang, W.H.W. Autoantibodies and cardiovascular dysfunction: Cause or consequence? Curr. Heart Fail. Rep. 2014, 11, 500–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duftner, C.; Seiler, R.; Dejaco, C.; Chemelli-Steingruber, I.; Schennach, H.; Klotz, W.; Rieger, M.; Herold, M.; Falkensammer, J.; Fraedrich, G.; et al. Antiphospholipid antibodies predict progression of abdominal aortic aneurysms. PLoS ONE 2014, 9, e99302. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Carrio, J.; Alperi-López, M.; López-Mejías, R.; López, P.; Ballina-García, F.J.; Abal, F.; González-Gay, M.Á.; Suárez, A. Antibodies to paraoxonase 1 are associated with oxidant status and endothelial activation in rheumatoid arthritis. Clin. Sci. (Lond. Engl.) 2016, 130, 1889–1899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burillo, E.; Tarin, C.; Torres-Fonseca, M.M.; Fernandez-García, C.E.; Martinez-Pinna, R.; Martinez-Lopez, D.; Llamas-Granda, P.; Camafeita, E.; Lopez, J.A.; Vega de Ceniga, M.; et al. Paraoxonase-1 overexpression prevents experimental abdominal aortic aneurysm progression. Clin. Sci. (Lond. Engl.) 2016, 130, 1027–1038. [Google Scholar] [CrossRef]
- Burillo, E.; Jorge, I.; Martínez-López, D.; Camafeita, E.; Blanco-Colio, L.M.; Trevisan-Herraz, M.; Ezkurdia, I.; Egido, J.; Michel, J.B.; Meilhac, O.; et al. Quantitative HDL Proteomics Identifies Peroxiredoxin-6 as a Biomarker of Human Abdominal Aortic Aneurysm. Sci. Rep. 2016, 6, 38477. [Google Scholar] [CrossRef] [Green Version]
- Rohrer, L.; Hersberger, M.; von Eckardstein, A. High density lipoproteins in the intersection of diabetes mellitus, inflammation and cardiovascular disease. Curr. Opin. Lipidol. 2004, 15, 269–278. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Orekhov, A.N.; Bobryshev, Y. V ApoA1 and ApoA1-specific self-antibodies in cardiovascular disease. Lab. Investig. 2016, 96, 708–718. [Google Scholar] [CrossRef]
- McCormick, M.L.; Gavrila, D.; Weintraub, N.L. Role of Oxidative Stress in the Pathogenesis of Abdominal Aortic Aneurysms. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Dullaart, R.P.F.; Pagano, S.; Perton, F.G.; Vuilleumier, N. Antibodies Against the C-Terminus of ApoA-1 Are Inversely Associated with Cholesterol Efflux Capacity and HDL Metabolism in Subjects with and without Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2019, 20, 732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuilleumier, N.; Pagano, S.; Montecucco, F.; Quercioli, A.; Schindler, T.H.; Mach, F.; Cipollari, E.; Ronda, N.; Favari, E. Relationship between HDL Cholesterol Efflux Capacity, Calcium Coronary Artery Content, and Antibodies against ApolipoproteinA-1 in Obese and Healthy Subjects. J. Clin. Med. 2019, 8, 1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antiochos, P.; Marques-Vidal, P.; Virzi, J.; Pagano, S.; Satta, N.; Hartley, O.; Montecucco, F.; Mach, F.; Kutalik, Z.; Waeber, G.; et al. Anti-Apolipoprotein A-1 IgG Predict All-Cause Mortality and Are Associated with Fc Receptor-Like 3 Polymorphisms. Front. Immunol. 2017, 8, 437. [Google Scholar] [CrossRef] [Green Version]
- Antiochos, P.; Marques-Vidal, P.; Virzi, J.; Pagano, S.; Satta, N.; Hartley, O.; Montecucco, F.; Mach, F.; Kutalik, Z.; Waeber, G.; et al. Impact of CD14 Polymorphisms on Anti-Apolipoprotein A-1 IgG-Related Coronary Artery Disease Prediction in the General Population. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 2342–2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanhainen, A.; Mani, K.; Golledge, J. Surrogate Markers of Abdominal Aortic Aneurysm Progression. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Chaikof, E.L.; Dalman, R.L.; Eskandari, M.K.; Jackson, B.M.; Lee, W.A.; Mansour, M.A.; Mastracci, T.M.; Mell, M.; Murad, M.H.; Nguyen, L.L.; et al. The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J. Vasc. Surg. 2018, 67, 2–77.e.2. [Google Scholar] [CrossRef] [Green Version]
- Keller, P.F.; Pagano, S.; Roux-Lombard, P.; Sigaud, P.; Rutschmann, O.T.; Mach, F.; Hochstrasser, D.; Vuilleumier, N. Autoantibodies against apolipoprotein A-1 and phosphorylcholine for diagnosis of non-ST-segment elevation myocardial infarction. J. Intern. Med. 2012, 271, 451–462. [Google Scholar] [CrossRef]
- Vuilleumier, N.; Montecucco, F.; Spinella, G.; Pagano, S.; Bertolotto, M.; Pane, B.; Pende, A.; Galan, K.; Roux-Lombard, P.; Combescure, C.; et al. Serum levels of anti-apolipoprotein A-1 auto-antibodies and myeloperoxidase as predictors of major adverse cardiovascular events after carotid endarterectomy. Thromb. Haemost. 2013, 109, 706–715. [Google Scholar] [PubMed] [Green Version]
AAA (n = 488) | Controls (n = 184) | p-Value | |
---|---|---|---|
Age | 70.0 ± 2.8 | 69.6 ± 2.9 | 0.411 |
Sex, n (%) male | 488 (100) | 184 (100) | - |
BMI, kg/cm2 | 27.4 ± 3.6 | 26.3 ± 3.3 | 0.021 |
ABI | 0.9 ± 0.2 | 1.1 ± 0.1 | 0.004 |
Aortic size, mm | 40.9 ± 11.8 | 18.2 ± 2.8 | <0.001 |
PAD, n (%) | 122 (25.2) | 5 (2.7%) | <0.001 |
hsCRP, mg/L ‡ | 3.00 (1.60–6.30) | 1.60 (0.90–3.75) | <0.001 |
Lipid profiles, mmol/L | |||
Total-cholesterol | 4.88 ± 0.91 | 4.84 ± 1.14 | 0.592 |
HDL-cholesterol | 1.17 ± 0.41 | 1.33 ± 0.45 | <0.001 |
ApoAI | 1.58 ± 0.29 | 1.72 ± 0.32 | <0.001 |
CV risk factors | |||
Current smoking, n (%) | 207 (42.4) | 34 (18.5) | <0.001 |
Hypertension, n (%) | 265 (54.4) | 82 (45.3) | 0.036 |
Systolic blood pressure, mm Hg | 155.4 ± 21.5 | 147.4 ± 19.2 | 0.021 |
Diabetes, n (%) | 57 (11.7) | 28 (15.3) | 0.209 |
Treatments, n(%) | |||
Use of statins | 250 (51.9) | 67 (36.4) | <0.001 |
Use of low-dose aspirin | 228 (47.2) | 46 (25.0) | <0.001 |
Use of b-blockers | 139 (29.1) | 40 (21.6) | 0.051 |
B | 95% CI | p-Value | |
---|---|---|---|
IgG anti-HDL/IgG | −0.054 | −0.094–−0.013 | 0.009 |
Current smoking, yes | −0.099 | −0.170–−0.027 | 0.007 |
Hypertension, yes | 0.029 | −0.040–0.099 | 0.665 |
Systolic BP, per unit | 0.001 | −0.002–0.004 | 0.629 |
BMI, per unit | −0.026 | −0.035–−0.016 | <0.001 |
PAD, yes | −0.052 | −0.139–0.035 | 0.244 |
Use of statins, yes | 0.081 | 0.002–0.160 | 0.243 |
Use of low-dose aspirin, yes | −0.039 | −0.117–0.039 | 0.326 |
B | S.E. | OR | 95% CI | p-Value | |
---|---|---|---|---|---|
Anti-HDL/IgG, yes | 0.915 | 0.215 | 2.496 | 1.637–3.807 | <0.001 |
Current smoking, yes | 1.479 | 0.522 | 4.387 | 2.661–7.234 | <0.001 |
Hypertension, yes | 0.187 | 0.259 | 1.206 | 0.726–2.003 | 0.469 |
Systolic BP, per unit | 0.068 | 0.011 | 1.070 | 1.048–1.093 | <0.001 |
BMI, per 1 kg/m2 | 0.097 | 0.033 | 1.102 | 1.032–1.176 | 0.004 |
ABI, per unit | −7.401 | 1.374 | 0.001 | 0.001–0.009 | <0.001 |
PAD, yes | 2.568 | 0.255 | 13.044 | 4.530–37.562 | <0.001 |
Use of statins, yes | 0.265 | 0.252 | 1.303 | 0.796–2.135 | 0.292 |
Use of low-dose aspirin, yes | 0.977 | 0.267 | 2.656 | 1.575–4.481 | <0.001 |
Use of b-blockers, yes | 0.002 | 0.268 | 1.002 | 0.592–1.695 | 0.994 |
B | 95% CI | p-Value | |
---|---|---|---|
Anti-HDL/IgG | 1.480 | 0.233–2.727 | 0.020 |
Current smoking, yes | 3.699 | 1.504–5.894 | <0.001 |
Hypertension, yes | 1.962 | −0.467–4.390 | 0.113 |
Systolic BP, per unit | 0.293 | 0.203–0.381 | <0.001 |
BMI, per 1 kg/m2 | 0.455 | 0.161–0.749 | 0.002 |
PAD, yes | 2.338 | −0.366–5.042 | 0.090 |
Use of statins, yes | 1.934 | −0.520–4.387 | 0.122 |
Use of low-dose aspirin, yes | 4.451 | 1.959–6.944 | <0.001 |
Use of b-blockers, yes | 0.443 | −2.060–2.947 | 0.728 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Carrio, J.; Lindholt, J.S.; Canyelles, M.; Martínez-López, D.; Tondo, M.; Blanco-Colio, L.M.; Michel, J.-B.; Escolà-Gil, J.C.; Suárez, A.; Martín-Ventura, J.L. IgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features. J. Clin. Med. 2020, 9, 67. https://doi.org/10.3390/jcm9010067
Rodríguez-Carrio J, Lindholt JS, Canyelles M, Martínez-López D, Tondo M, Blanco-Colio LM, Michel J-B, Escolà-Gil JC, Suárez A, Martín-Ventura JL. IgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features. Journal of Clinical Medicine. 2020; 9(1):67. https://doi.org/10.3390/jcm9010067
Chicago/Turabian StyleRodríguez-Carrio, Javier, Jes S. Lindholt, Marina Canyelles, Diego Martínez-López, Mireia Tondo, Luis M. Blanco-Colio, Jean-Baptiste Michel, Joan Carles Escolà-Gil, Ana Suárez, and José Luis Martín-Ventura. 2020. "IgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features" Journal of Clinical Medicine 9, no. 1: 67. https://doi.org/10.3390/jcm9010067
APA StyleRodríguez-Carrio, J., Lindholt, J. S., Canyelles, M., Martínez-López, D., Tondo, M., Blanco-Colio, L. M., Michel, J. -B., Escolà-Gil, J. C., Suárez, A., & Martín-Ventura, J. L. (2020). IgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features. Journal of Clinical Medicine, 9(1), 67. https://doi.org/10.3390/jcm9010067