Long Term Survival of Pathological Thoracolumbar Fractures Treated with Vertebroplasty: Analysis Using a Nationwide Insurance Claim Database
Abstract
:1. Introduction
2. Material and Methods
2.1. Patient Subjects
2.2. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rao, R.D.; Singrakhia, M.D. Painful osteoporotic vertebral fracture. Pathogenesis, evaluation, and roles of vertebroplasty and kyphoplasty in its management. J. Bone Jt. Surg. Am. 2003, 85, 2010–2022. [Google Scholar] [CrossRef]
- Mattie, R.; Laimi, K.; Yu, S.; Saltychev, M. Comparing percutaneous vertebroplasty and conservative therapy for treating osteoporotic compression fractures in the thoracic and lumbar spine: A systematic review and meta-analysis. J. Bone Jt. Surg. Am. 2016, 98, 1041–1051. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.T.; Cohen, D.B.; Skolasky, R.L. Impact of nonoperative treatment, vertebroplasty, and kyphoplasty on survival and morbidity after vertebral compression fracture in the medicare population. J. Bone Jt. Surg. Am. 2013, 95, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Kassamali, R.H.; Ganeshan, A.; Hoey, E.T.; Crowe, P.M.; Douis, H.; Henderson, J. Pain management in spinal metastases: The role of percutaneous vertebral augmentation. Ann. Oncol. 2011, 22, 782–786. [Google Scholar] [CrossRef]
- McDonald, R.J.; Trout, A.T.; Gray, L.A.; Dispenzieri, A.; Thielen, K.R.; Kallmes, D.F. Vertebroplasty in multiple myeloma: Outcomes in a large patient series. Am. J. Neuroradiol. 2008, 29, 642–648. [Google Scholar] [CrossRef] [Green Version]
- Fanous, A.A.; Fabiano, A.J. Surgical management of spinal metastatic disease. J. Neurosurg. Sci. 2017, 61, 316–324. [Google Scholar]
- Galgano, M.; Fridley, J.; Oyelese, A.; Telfian, A.; Kosztowski, T.; Choi, D.; Gokaslan, Z.L. Surgical management of spinal metastases. Expert Rev. Anticancer Ther. 2018, 18, 463–472. [Google Scholar] [CrossRef]
- Klimo, P., Jr.; Schmidt, M.H. Surgical management of spinal metastases. Oncologist 2004, 9, 188–196. [Google Scholar] [CrossRef]
- Yang, S.Z.; Tang, Y.; Zhang, Y.; Chen, W.G.; Sun, J.; Chu, T.W. Prognostic factors and comparison of conservative treatment, percutaneous vertebroplasty, and open surgery in the treatment of spinal metastases from lung cancer. World Neurosurg. 2017, 108, 163–175. [Google Scholar] [CrossRef]
- Tang, H.; Zhao, J.; Hao, C. Osteoporotic vertebral compression fractures: Surgery versus non-operative management. J. Int. Med. Res. 2011, 39, 1438–1447. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.M.; Lee, S.P.; Baek, J.W.; Kim, S.H. Appropriate cement volume in vertebroplasty: A multivariate analysis with short-term follow-up. Korean J. Neurotrauma 2016, 12, 128–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, L.; Zhao, Z.G.; Zhang, S.J.; Hu, Y.B. Percutaneous vertebroplasty versus conservative treatment for osteoporotic vertebral compression fractures: An updated meta-analysis of prospective randomized controlled trials. Int. J. Surg. 2017, 47, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Santiago, F.R.; Abela, A.P.; Alvarez, L.G.; Osuna, R.M.; Garcia Mdel, M. Pain and functional outcome after vertebroplasty and kyphoplasty. A comparative study. Eur. J. Radiol. 2010, 75, e108–e113. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.Y.; Yan, J.J.; Lin, R.M. Histopathologic findings of retrieved specimens of vertebroplasty with polymethylmethacrylate cement: Case control study. Spine 2005, 30, E585–E588. [Google Scholar] [CrossRef]
- Kallmes, D.F.; Comstock, B.A.; Heagerty, P.J.; Turner, J.A.; Wilson, D.J.; Diamond, T.H.; Edwards, R.; Gray, L.A.; Stout, L.; Owen, S.; et al. A randomized trial of vertebroplasty for osteoporotic spinal fractures. N. Engl. J. Med. 2009, 361, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Clark, W.; Bird, P.; Gonski, P.; Diamond, T.H.; Smerdely, P.; McNeil, H.P.; Schlaphoff, G.; Bryant, C.; Barnes, E.; Gebski, V. Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2016, 388, 1408–1416. [Google Scholar] [CrossRef]
- Buchbinder, R.; Osborne, R.H.; Ebeling, P.R.; Wark, J.D.; Mitchell, P.; Wriedt, C.; Graves, S.; Staples, M.P.; Murphy, B. A randomized trial of vertebroplasty for painful osteoporotic vertebral fractures. N. Engl. J. Med. 2009, 361, 557–568. [Google Scholar] [CrossRef] [Green Version]
- Buchbinder, R.; Golmohammadi, K.; Johnston, R.V.; Owen, R.J.; Homik, J.; Jones, A.; Dhillon, S.S.; Kallmes, D.F.; Lambert, R.G. Percutaneous vertebroplasty for osteoporotic vertebral compression fracture. Cochrane Database Syst. Rev. 2015, 4, CD006349. [Google Scholar] [CrossRef]
- Robinson, Y.; Olerud, C. Vertebroplasty and kyphoplasty—A systematic review of cement augmentation techniques for osteoporotic vertebral compression fractures compared to standard medical therapy. Maturitas 2012, 72, 42–49. [Google Scholar] [CrossRef]
- Chen, L.H.; Lai, P.L.; Chen, W.J. Current status of vertebroplasty for osteoporotic compression fracture. Chang Gung Med. J. 2011, 34, 352–359. [Google Scholar]
- Edidin, A.A.; Ong, K.L.; Lau, E.; Kurtz, S.M. Mortality risk for operated and nonoperated vertebral fracture patients in the medicare population. J. Bone Miner. Res. 2011, 26, 1617–1626. [Google Scholar] [CrossRef] [PubMed]
- Edidin, A.A.; Ong, K.L.; Lau, E.; Kurtz, S.M. Life expectancy following diagnosis of a vertebral compression fracture. Osteoporos. Int. 2013, 24, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Lange, A.; Kasperk, C.; Alvares, L.; Sauermann, S.; Braun, S. Survival and cost comparison of kyphoplasty and percutaneous vertebroplasty using German claims data. Spine 2014, 39, 318–326. [Google Scholar] [CrossRef] [PubMed]
- McCullough, B.J.; Comstock, B.A.; Deyo, R.A.; Kreuter, W.; Jarvik, J.G. Major medical outcomes with spinal augmentation vs conservative therapy. JAMA Int. Med. 2013, 173, 1514–1521. [Google Scholar] [CrossRef] [Green Version]
- Ong, K.L.; Beall, D.P.; Frohbergh, M.; Lau, E.; Hirsch, J.A. Were VCF patients at higher risk of mortality following the 2009 publication of the vertebroplasty “sham” trials? Osteoporos. Int. 2018, 29, 375–383. [Google Scholar] [CrossRef]
- Krueger, A.; Bliemel, C.; Zettl, R.; Ruchholtz, S. Management of pulmonary cement embolism after percutaneous vertebroplasty and kyphoplasty: A systematic review of the literature. Eur. Spine J. 2009, 18, 1257–1265. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, R.; Cakir, B.; Mattes, T.; Wegener, M.; Puhl, W.; Richter, M. Cement leakage during vertebroplasty: An underestimated problem? Eur. Spine J. 2005, 14, 466–473. [Google Scholar] [CrossRef]
- Aebli, N.; Krebs, J.; Davis, G.; Walton, M.; Williams, M.J.; Theis, J.C. Fat embolism and acute hypotension during vertebroplasty: An experimental study in sheep. Spine 2002, 27, 460–466. [Google Scholar] [CrossRef] [Green Version]
- Childers, J.C., Jr. Cardiovascular collapse and death during vertebroplasty. Radiology 2003, 228, 902–903. [Google Scholar] [CrossRef]
- Mummaneni, P.V.; Walker, D.H.; Mizuno, J.; Rodts, G.E. Infected vertebroplasty requiring 360 degrees spinal reconstruction: Long-term follow-up review. Report of two cases. J. Neurosurg. Spine 2006, 5, 86–89. [Google Scholar]
- Abdelrahman, H.; Siam, A.E.; Shawky, A.; Ezzati, A.; Boehm, H. Infection after vertebroplasty or kyphoplasty. A series of nine cases and review of literature. Spine J. 2013, 13, 1809–1817. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.W.; Kim, C.; Chang, H. The relationship between the spinopelvic balance and the incidence of adjacent vertebral fractures following percutaneous vertebroplasty. Osteoporos. Int. 2015, 26, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Nakamae, T.; Yamada, K.; Tsuchida, Y.; Osti, O.L.; Adachi, N.; Fujimoto, Y. Risk factors for cement loosening after vertebroplasty for osteoporotic vertebral fracture with intravertebral cleft: A retrospective analysis. Asian Spine J. 2018, 12, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Schummer, W.; Schlonski, O.; Breuer, M. Bone cement embolism attached to central venous catheter. Br. J. Anaesth. 2014, 112, 672–674. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.C.; Lee, J.C.; Wang, J.D. Estimation of life-year loss and lifetime costs for different stages of colon adenocarcinoma in taiwan. PLoS ONE 2015, 10, e0133755. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.Y.; Chung, C.H.; Lin, C.N.; Hwang, J.S.; Wang, J.D. Lifetime risks, loss of life expectancy, and health care expenditures for 19 types of cancer in Taiwan. Clin. Epidemiol. 2018, 10, 581–591. [Google Scholar] [CrossRef] [Green Version]
- Gal-Moscovici, A.; Sprague, S.M. Osteoporosis and chronic kidney disease. Semin. Dial. 2007, 20, 423–430. [Google Scholar] [CrossRef]
- Lehouck, A.; Boonen, S.; Decramer, M.; Janssens, W. COPD, bone metabolism, and osteoporosis. Chest 2011, 139, 648–657. [Google Scholar] [CrossRef]
- Hadjipavlou, A.G.; Tzermiadianos, M.N.; Katonis, P.G.; Szpalski, M. Percutaneous vertebroplasty and balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures and osteolytic tumours. J. Bone Jt. Surg. Br. 2005, 87, 1595–1604. [Google Scholar] [CrossRef]
- Lavelle, W.F.; Khaleel, M.A.; Cheney, R.; Demers, E.; Carl, A.L. Effect of kyphoplasty on survival after vertebral compression fractures. Spine J. 2008, 8, 763–769. [Google Scholar] [CrossRef]
- Bae, J.W.; Gwak, H.S.; Kim, S.; Joo, J.; Shin, S.H.; Yoo, H.; Lee, S.H. Percutaneous vertebroplasty for patients with metastatic compression fractures of the thoracolumbar spine: Clinical and radiological factors affecting functional outcomes. Spine J. 2016, 16, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, J.; Feng, X.; Tao, Y.; Yang, J.; Wang, Y.; Zhang, S.; Cai, J.; Huang, J. A comparison of high viscosity bone cement and low viscosity bone cement vertebroplasty for severe osteoporotic vertebral compression fractures. Clin. Neurol. Neurosurg. 2015, 129, 10–16. [Google Scholar] [CrossRef] [PubMed]
Treatment | Conservative Treatment (n = 6017) | Vertebroplasty (n = 1389) | Conventional Open Surgery (n = 1219) |
---|---|---|---|
Gender ** (%Males) | 44.8 | 25.1 | 43.4 |
Age ** < 59 (%) | 40.1 | 16.8 | 45.1 |
60–64 (%) | 7.0 | 7.5 | 7.5 |
65–69 (%) | 8.6 | 10.4 | 10.2 |
70–74 (%) | 12.1 | 15.9 | 12.6 |
75–79 (%) | 12.8 | 20.9 | 12.4 |
>79 (%) | 19.4 | 28.4 | 12.3 |
No. of deceased ** (%) | 26.2 | 19.2 | 17.4 |
Comorbidity: | |||
All cancer (%) | 2.6 | 2.5 | 1.6 |
Lung cancer (%) | 0.5 | 0.5 | 0.5 |
Liver cancer (%) | 0.4 | 0.5 | 0.5 |
Colon cancer (%) | 0.3 | 0.4 | 0.4 |
Kidney failure (%) | 1.7 | 1.7 | 1.2 |
Stroke * (%) | 4.6 | 3.5 | 2.9 |
Diabetes mellitus (%) | 4.0 | 3.3 | 5.0 |
Autoimmunity disease (%) | 0.5 | 0.8 | 0.5 |
COPD ** (%) | 2.8 | 0.9 | 1.8 |
Hip fracture (%) | 2.5 | 2.0 | 1.6 |
Complication | |||
Pulmonary embolism (%) | 0.7 | 0.4 | ≦0.3 |
Vertebral osteomyelitis or infections (%) | 0.9 | 1.0 | 1.0 |
Adjacent fracture, refracture or other vertebral fracture (%) | <0.05 | <0.25 | <0.25 |
Follow-up time ** (years) | 4.8 ± 3.2 | 3.2 ± 2.5 | 4.7 ± 3.1 |
Variables | Simple Cox Model | Multiple Cox Model | ||
---|---|---|---|---|
HR | 95% CI | aHR | 95% CI | |
Gender (M/F) | 1.02 | (0.93–1.11) | 1.45 | (1.32–1.58) |
Age < 59 | 1 | 1 | ||
60–64 | 2.11 | (1.63–2.74) | 2.23 | (1.71–2.89) |
65–69 | 3.02 | (2.44–3.73) | 3.24 | (2.61–4.02) |
70–74 | 4.81 | (4.04–5.73) | 5.06 | (4.23–6.06) |
75–79 | 7.57 | (6.44–8.90) | 8.10 | (6.85–9.58) |
>79 | 13.71 | (11.80–15.94) | 13.87 | (11.86–16.21) |
Conservative treatment | 1 | 1 | ||
Vertebroplasty | 1.07 | (0.94–1.22) | 0.87 | (0.77–0.99) |
Conventional open surgery | 0.68 | (0.59–0.79) | 0.80 | (0.70–0.93) |
Comorbidity | ||||
All cancer | 4.43 | (3.73–5.27) | 2.20 | (1.72–2.82) |
Lung cancer | 8.40 | (6.09–11.59) | 2.80 | (1.88–4.16) |
Liver cancer | 7.33 | (5.11–10.52) | 2.70 | (1.77–4.11) |
Colon cancer | 2.63 | (1.58–4.37) | 0.55 | (0.31–0.95) |
Kidney failure | 3.50 | (2.79–4.40) | 1.96 | (1.55–2.46) |
Stroke | 2.16 | (1.84–2.53) | 1.17 | (1.00–1.38) |
Diabetes mellitus | 1.55 | (1.30–1.85) | 1.11 | (0.93–1.33) |
Autoimmunity disease | 0.91 | (0.52–1.61) | 0.73 | (0.41–1.29) |
COPD | 3.85 | (3.25–4.57) | 1.61 | (1.35–1.92) |
Hip fracture | 2.59 | (2.13–3.15) | 1.43 | (1.17–1.75) |
Complication | ||||
Pulmonary embolism | 3.44 | (2.37–4.99) | 1.81 | (1.24–2.63) |
Vertebral osteomyelitis or infections | 1.98 | (1.41–2.78) | 1.73 | (1.23–2.44) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.-Y.; Lee, S.-C.; Liu, W.-L.; Wang, J.-D. Long Term Survival of Pathological Thoracolumbar Fractures Treated with Vertebroplasty: Analysis Using a Nationwide Insurance Claim Database. J. Clin. Med. 2020, 9, 78. https://doi.org/10.3390/jcm9010078
Huang K-Y, Lee S-C, Liu W-L, Wang J-D. Long Term Survival of Pathological Thoracolumbar Fractures Treated with Vertebroplasty: Analysis Using a Nationwide Insurance Claim Database. Journal of Clinical Medicine. 2020; 9(1):78. https://doi.org/10.3390/jcm9010078
Chicago/Turabian StyleHuang, Kuo-Yuan, Shang-Chi Lee, Wen-Lung Liu, and Jung-Der Wang. 2020. "Long Term Survival of Pathological Thoracolumbar Fractures Treated with Vertebroplasty: Analysis Using a Nationwide Insurance Claim Database" Journal of Clinical Medicine 9, no. 1: 78. https://doi.org/10.3390/jcm9010078
APA StyleHuang, K. -Y., Lee, S. -C., Liu, W. -L., & Wang, J. -D. (2020). Long Term Survival of Pathological Thoracolumbar Fractures Treated with Vertebroplasty: Analysis Using a Nationwide Insurance Claim Database. Journal of Clinical Medicine, 9(1), 78. https://doi.org/10.3390/jcm9010078