Intraocular Lens Power, Myopia, and the Risk of Nd:YAG Capsulotomy after 15,375 Cataract Surgeries
Abstract
:1. Introduction
2. Patients and Methods
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Apple, D.J.; Peng, Q.; Visessook, N.; Werner, L.; Pandey, S.; Escobar-Gomez, M.; Ram, J.; Auffarth, G.U. Eradication of posterior capsule opacification: Documentation of a marked decrease in Nd:YAG laser posterior capsulotomy rates noted in an analysis of 5416 pseudophakic human eyes obtained postmortem. Ophthalmology 2001, 108, 505–518. [Google Scholar] [CrossRef]
- Lindholm, J.-M.; Laine, I.; Tuuminen, R. Five-year cumulative incidence and risk factors of Nd:YAG capsulotomy in 10044 hydrophobic acrylic 1-piece and 3-piece IOLs. Am. J. Ophthalmol. 2019, 200, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Nishi, O.; Nishi, K. Preventing posterior capsule opacification by creating a discontinuous sharp bend in the capsule. J. Cataract. Refract. Surg. 1999, 25, 521–526. [Google Scholar] [CrossRef]
- Hayashi, K.; Hayashi, H. Posterior capsule opacification in the presence of an intraocular lens with a sharp versus rounded optic edge. Ophthalmology 2005, 112, 1550–1556. [Google Scholar] [CrossRef]
- Buehl, W.; Findl, O.; Menapace, R.; Rainer, G.; Sacu, S.; Kiss, B.; Petternel, V.; Georgopoulos, M. Effect of an acrylic intraocular lens with a sharp posterior optic edge on posterior capsule opacification. J. Cataract. Refract. Surg. 2002, 28, 1105–1111. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, J.; Lu, W.; Chang, P.; Lu, P.; Yu, F.; Xing, X.; Ding, X.; Lu, F.; Zhao, Y. Capsular adhesion to intraocular lens in highly myopic eyes evaluated in vivo using ultralong-scan-depth optical coherence tomography. Am. J. Ophthalmol. 2013, 155, 484–491.e1. [Google Scholar] [CrossRef]
- Sanders, D.R.; Retzlaff, J.; Kraff, M.C. Comparison of the SRK II™ formula and other second generation formulas. J. Cataract. Refract. Surg. 1988, 14, 136–141. [Google Scholar] [CrossRef]
- Kubo, E.; Kumamoto, Y.; Tsuzuki, S.; Akagi, Y. Axial length, myopia, and the severity of lens opacity at the time of cataract surgery. Arch. Ophthalmol. 2006, 124, 1586–1590. [Google Scholar] [CrossRef] [Green Version]
- Tuft, S.J.; Bunce, C. Axial length and age at cataract surgery. J. Cataract. Refract. Surg. 2004, 30, 1045–1048. [Google Scholar] [CrossRef]
- Güell, J.L.; Rodriguez-Arenas, A.F.; Gris, O.; Malecaze, F.; Velasco, F. Phacoemulsification of the crystalline lens and implantation of an intraocular lens for the correction of moderate and high myopia: Four-year follow-up. J. Cataract. Refract. Surg. 2003, 29, 34–38. [Google Scholar] [CrossRef]
- Lyle, W.A.; Jin, G.J. Phacoemulsification with intraocular lens implantation in high myopia. J. Cataract. Refract. Surg. 1996, 22, 238–242. [Google Scholar] [CrossRef]
- Vasavada, A.R.; Shah, A.; Raj, S.M.; Praveen, M.R.; Shah, G.D. Prospective evaluation of posterior capsule opacification in myopic eyes 4 years after implantation of a single-piece acrylic IOL. J. Cataract. Refract. Surg. 2009, 35, 1532–1539. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Shirayama, M.; Ma, X.J.; Kohnen, T.; Koch, D.D. Optimizing intraocular lens power calculations in eyes with axial lengths above 25.0 mm. J. Cataract. Refract. Surg. 2011, 37, 2018–2027. [Google Scholar] [CrossRef] [PubMed]
- Ravalico, G.; Michieli, C.; Vattovani, O.; Tognetto, D. Retinal detachment after cataract extraction and refractive lens exchange in highly myopic patients. J. Cataract. Refract. Surg. 2003, 29, 39–44. [Google Scholar] [CrossRef]
- Nagamoto, T.; Fujiwara, T. Inhibition of lens epithelial cell migration at the intraocular lens optic edge: Role of capsule bending and contact pressure. J. Cataract. Refract. Surg. 2003, 29, 1605–1612. [Google Scholar] [CrossRef]
- Sacu, S.; Menapace, R.; Buehl, W.; Rainer, G.; Findl, O. Effect of intraocular lens optic edge design and material on fibrotic capsule opacification and capsulorhexis contraction. J. Cataract. Refract. Surg. 2004, 30, 1875–1882. [Google Scholar] [CrossRef]
- Vass, C.; Menapace, R.; Schmetterer, K.; Findl, O.; Rainer, G.; Steineck, I. Prediction of pseudophakic capsular bag diameter based on biometric variables. J. Cataract. Refract. Surg. 1999, 25, 1376–1381. [Google Scholar] [CrossRef]
- Ursell, P.G.; Dhariwal, M.; Majirska, K.; Ender, F.; Kalson-Ray, S.; Venerus, A. Three-year incidence of Nd:YAG capsulotomy and posterior capsule opacification and its relationship to monofocal acrylic IOL biomaterial: A UK Real World Evidence study. Eye 2018, 32, 1579–1589. [Google Scholar] [CrossRef] [Green Version]
- Ando, H.; Ando, N.; Oshika, T. Cumulative probability of neodymium:YAG laser posterior capsulotomy after phacoemulsification. J. Cataract. Refract. Surg. 2003, 29, 2148–2154. [Google Scholar] [CrossRef]
- Elgohary, M.A.; Dowler, J.G. Incidence and risk factors of Nd:YAG capsulotomy after phacoemulsification in non-diabetic and diabetic patients. Clin. Exp. Ophthalmol. 2006, 34, 526–534. [Google Scholar] [CrossRef]
- Baratz, K.H.; Cook, B.E.; Hodge, D.O. Probability of Nd:YAG laser capsulotomy after cataract surgery in Olmsted County, Minnesota. Am. J. Ophthalmol. 2001, 131, 161–166. [Google Scholar] [CrossRef]
- Wesolosky, J.D.; Tennant, M.; Rudnisky, C.J. Rate of retinal tear and detachment after neodymium:YAG capsulotomy. J. Cataract. Refract. Surg. 2017, 43, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Billotte, C.; Berdeaux, G. Adverse clinical consequences of neodymium:YAG laser treatment of posterior capsule opacification. J. Cataract. Refract. Surg. 2004, 30, 2064–2071. [Google Scholar] [CrossRef] [PubMed]
- Aaronson, A.; Grzybowski, A.; Tuuminen, R. The health economic impact of posterior capsule opacification in Finland comparing the two single-piece intraocular lenses: A cost-consequence analysis. Acta Ophthalmol. 2019, 97, e1152–e1153. [Google Scholar] [CrossRef] [PubMed]
- Postorino, M.; Meduri, A.; Inferrera, L.; Tumminello, G.; Rechichi, M.; Caparello, O.; Aragona, P. Scleral pockets for an innovative technique of intrascleral fixation of intraocular lens. Eur. J. Ophthalmol. 2019, 29, 1120672119866018, (Online ahead of print). [Google Scholar] [CrossRef] [PubMed]
Variables | All Eyes | 5–16.5 D | 17–24.5 D | 25–30 D | p Value |
---|---|---|---|---|---|
n = 15,375 | n = 644 | n = 12,313 | n = 2418 | ||
Age (years) | 75.2 ± 9.0 | 69.2 ± 9.5 a | 75.4 ± 8.9 b | 75.8 ± 8.8 b | <0.001 |
≥60 years, n (%) | 14,399 (93.7) | 533 (82.8) * | 11,584 (94.1) * | 2282 (94.4) | <0.001 |
Gender | <0.001 | ||||
Female | 9792 (63.7) | 411 (63.8) | 7521 (61.1) * | 1860 (76.9) * | |
Male | 5583 (36.3) | 233 (36.2) | 4792 (38.9) * | 558 (23.1) * | |
IOL model | <0.001 | ||||
ZCB00/PCB00 | 6579 (42.8) | 340 (52.8) * | 5158 (41.9) * | 1081 (44.7) | |
SN60WF/AU00T0 | 7098 (46.2) | 244 (37.9) | 5748 (46.7) | 1106 (45.7) | |
ZA9003 | 1698 (11.0) | 60 (9.3) | 1407 (11.4) * | 231 (9.6) | |
Surgeon seniority | n = 15,280 | n = 636 | n = 12,245 | n = 2399 | 0.045 |
Specialist | 14,170 (92.7) | 604 (95.0) | 11,329 (92.5) | 2235 (93.2) | |
Resident | 1112 (7.3) | 32 (5.0) | 916 (7.5) | 164 (6.8) |
Risk Factor | Crude HR (95% CI) | p Value | Adjusted * HR (95% CI) | p Value |
---|---|---|---|---|
Age (years) | ||||
<60 | 1.55 (1.27–1.89) | <0.001 | 1.41 (1.14–1.73) | 0.001 |
≥60 | 1.00 | 1.00 | ||
Sex | ||||
Female | 1.12 (0.99–1.28) | 0.077 | 1.21 (1.06–1.38) | 0.006 |
Male | 1.00 | 1.00 | ||
IOL model | ||||
SN60WF + AU00T0 | 0.63 (0.55–0.72) | <0.001 | 0.63 (0.56–0.72) | <0.001 |
ZA9003 | 0.53 (0.44–0.65) | <0.001 | 0.53 (0.44–0.65) | <0.001 |
ZCB00 + PCB00 | 1.00 | 1.00 | ||
IOL power (diopters) | ||||
5–16.5 | 1.92 (1.52–2.44) | <0.001 | 1.76 (1.38–2.25) | <0.001 |
17–24.5 | 1.00 | 1.00 | ||
25–30 | 0.89 (0.75–1.06) | 0.192 | 0.85 (0.71–1.01) | 0.062 |
Surgeon | ||||
Specialist | 1.22 (0.90–1.66) | 0.193 | ||
Resident | 1.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindholm, J.-M.; Laine, I.; Tuuminen, R. Intraocular Lens Power, Myopia, and the Risk of Nd:YAG Capsulotomy after 15,375 Cataract Surgeries. J. Clin. Med. 2020, 9, 3071. https://doi.org/10.3390/jcm9103071
Lindholm J-M, Laine I, Tuuminen R. Intraocular Lens Power, Myopia, and the Risk of Nd:YAG Capsulotomy after 15,375 Cataract Surgeries. Journal of Clinical Medicine. 2020; 9(10):3071. https://doi.org/10.3390/jcm9103071
Chicago/Turabian StyleLindholm, Juha-Matti, Ilkka Laine, and Raimo Tuuminen. 2020. "Intraocular Lens Power, Myopia, and the Risk of Nd:YAG Capsulotomy after 15,375 Cataract Surgeries" Journal of Clinical Medicine 9, no. 10: 3071. https://doi.org/10.3390/jcm9103071
APA StyleLindholm, J. -M., Laine, I., & Tuuminen, R. (2020). Intraocular Lens Power, Myopia, and the Risk of Nd:YAG Capsulotomy after 15,375 Cataract Surgeries. Journal of Clinical Medicine, 9(10), 3071. https://doi.org/10.3390/jcm9103071