The Impact of Valvuloarterial Impedance on Left Ventricular Geometrical Change after Transcatheter Aortic Valve Replacement: A Comparison between Valvuloarterial Impedance and Mean Pressure Gradient
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Echocardiography and Hemodynamic Parameters
2.3. Subgroup Analysis
2.4. Computed Tomography Acqusition Protocols, Reconstruction, and Analysis
2.5. Statistical Analysis
2.6. Statistical Software
3. Results
3.1. Baseline Characteristics
3.2. Zva and Hemodynamics
3.3. Echocardiographic Data
3.4. The Relationship between Zva or MPG and LV Geometry (LVMI and LVMI/LVEDVI) at Baseline
3.5. The Relationship between ΔZva or ΔMPG and the Change in LV Geometry (ΔLVMI and ΔLVMI/LVEDVI) after TAVR
3.6. Univariate and Multivariate Analysis for the Change in LV Geometries after TAVR (ΔLVMI and ΔLVMI/LVEDVI)
3.7. The Comparison of the Measurements between Transthoracic Echocardiography and Computed Tomography
4. Discussion
4.1. The Impact of Zva on LVMI/LVEDVI and LVMI after TAVR
4.2. Sex Difference in LVMI Change after TAVR
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rassi, A.N.; Pibarot, P.; Elmariah, S. Left ventricular remodelling in aortic stenosis. Can. J. Cardiol. 2014, 30, 1004–1011. [Google Scholar] [CrossRef]
- Hachicha, Z.; Dumesnil, J.G.; Bogaty, P.; Pibarot, P. Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation 2007, 115, 2856–2864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossman, W.; Paulus, W.J. Myocardial stress and hypertrophy: A complex interface between biophysics and cardiac remodeling. J. Clin. Investig. 2013, 123, 3701–3703. [Google Scholar] [CrossRef] [PubMed]
- Gjesdal, O.; Bluemke, D.A.; Lima, J.A. Cardiac remodeling at the population level--risk factors, screening, and outcomes. Nat. Rev. Cardiol. 2011, 8, 673–685. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Gona, P.N.; Salton, C.J.; Chuang, M.L.; Levy, D.; Manning, W.J.; O’Donnell, C.J. Left Ventricular Structure and Risk of Cardiovascular Events: A Framingham Heart Study Cardiac Magnetic Resonance Study. J. Am. Heart Assoc. 2015, 4, e002188. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Shigematsu, Y.; Hamada, M.; Hiwada, K. Relative wall thickness is an independent predictor of left ventricular systolic and diastolic dysfunctions in essential hypertension. Hypertens. Res. 2001, 24, 493–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briand, M.; Dumesnil, J.G.; Kadem, L.; Tongue, A.G.; Rieu, R.; Garcia, D.; Pibarot, P. Reduced systemic arterial compliance impacts significantly on left ventricular afterload and function in aortic stenosis: Implications for diagnosis and treatment. J. Am. Coll. Cardiol. 2005, 46, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Hachicha, Z.; Dumesnil, J.G.; Pibarot, P. Usefulness of the valvuloarterial impedance to predict adverse outcome in asymptomatic aortic stenosis. J. Am. Coll. Cardiol. 2009, 54, 1003–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, K.; Saitoh, T.; Tanaka, J.; Shibayama, K.; Berdejo, J.; Shiota, T. Valvuloarterial impedance, but not aortic stenosis severity, predicts syncope in patients with aortic stenosis. Circ. Cardiovasc. Imaging 2013, 6, 1024–1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K.; Kumar, A.; Jones, B.M.; Mick, S.L.; Krishnaswamy, A.; Grimm, R.A.; Desai, M.Y.; Griffin, B.P.; Rodriguez, L.L.; Kapadia, S.R.; et al. Reversibility of cardiac function predicts outcome after transcatheter aortic valve replacement in patients with severe aortic stenosis. J. Am. Heart Assoc. 2017, 6, e005798. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.Y.; Seo, J.S.; Sun, B.J.; Kim, D.H.; Song, J.M.; Kang, D.H.; Song, J.K. Impact of valvuloarterial impedance on concentric remodeling in aortic stenosis and its regression after valve replacement. J. Cardiovasc. Ultrasound 2016, 24, 201–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magalhaes, M.A.; Koifman, E.; Torguson, R.; Minha, S.; Gai, J.; Kiramijyan, S.; Escarcega, R.O.; Baker, N.C.; Wang, Z.; Goldstein, S.; et al. Outcome of left-sided cardiac remodeling in severe aortic stenosis patients undergoing transcatheter aortic valve implantation. Am. J. Cardiol. 2015, 116, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Lindman, B.R.; Stewart, W.J.; Pibarot, P.; Hahn, R.T.; Otto, C.M.; Xu, K.; Devereux, R.B.; Weissman, N.J.; Enriquez-Sarano, M.; Szeto, W.Y.; et al. Early regression of severe left ventricular hypertrophy after transcatheter aortic valve replacement is associated with decreased hospitalizations. JACC Cardiovasc. Interv. 2014, 7, 662–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, T.; Toda, K.; Kuratani, T.; Miyagawa, S.; Yoshikawa, Y.; Fukushima, S.; Saito, S.; Yoshioka, D.; Kashiyama, N.; Daimon, T.; et al. Diabetes mellitus impairs left ventricular mass regression after surgical or transcatheter aortic valve replacement for severe aortic stenosis. Heart Lung Circ. 2016, 25, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Kappetein, A.P.; Head, S.J.; Genereux, P.; Piazza, N.; van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; van Es, G.A.; et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document. J. Am. Coll. Cardiol. 2012, 60, 1438–1454. [Google Scholar] [CrossRef] [Green Version]
- Gaasch, W.H.; Zile, M.R. Left ventricular structural remodeling in health and disease: With special emphasis on volume, mass, and geometry. J. Am. Coll. Cardiol. 2011, 58, 1733–1740. [Google Scholar] [CrossRef] [Green Version]
- Khouri, M.G.; Peshock, R.M.; Ayers, C.R.; de Lemos, J.A.; Drazner, M.H. A 4-tiered classification of left ventricular hypertrophy based on left ventricular geometry: The Dallas heart study. Circ. Cardiovasc. Imaging 2010, 3, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–271. [Google Scholar] [CrossRef] [PubMed]
- Hahn, R.T.; Pibarot, P. Accurate measurement of left ventricular outflow tract diameter: Comment on the updated recommendations for the echocardiographic assessment of aortic valve stenosis. J. Am. Soc. Echocardiogr. 2017, 30, 1038–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Edvardsen, T.; Goldstein, S.; Lancellotti, P.; LeFevre, M.; Miller, F., Jr.; Otto, C.M. Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: A Focused Update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2017, 30, 372–392. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoghbi, W.A.; Adams, D.; Bonow, R.O.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Hahn, R.T.; Han, Y.; Hung, J.; Lang, R.M.; et al. Recommendations for noninvasive evaluation of native valvular regurgitation: A report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2017, 30, 303–371. [Google Scholar] [CrossRef] [PubMed]
- Clavel, M.A.; Dumesnil, J.G.; Capoulade, R.; Mathieu, P.; Senechal, M.; Pibarot, P. Outcome of patients with aortic stenosis, small valve area, and low-flow, low-gradient despite preserved left ventricular ejection fraction. J. Am. Coll. Cardiol. 2012, 60, 1259–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diedenhofen, B.; Musch, J. cocor: A comprehensive solution for the statistical comparison of correlations. PLoS ONE 2015, 10, e0121945. [Google Scholar] [CrossRef] [Green Version]
- Tasca, G.; Brunelli, F.; Cirillo, M.; DallaTomba, M.; Mhagna, Z.; Troise, G.; Quaini, E. Impact of valve prosthesis-patient mismatch on left ventricular mass regression following aortic valve replacement. Ann. Thorac. Surg. 2005, 79, 505–510. [Google Scholar] [CrossRef]
- Fagard, R.H.; Celis, H.; Thijs, L.; Wouters, S. Regression of left ventricular mass by antihypertensive treatment: A meta-analysis of randomized comparative studies. Hypertension 2009, 54, 1084–1091. [Google Scholar] [CrossRef] [Green Version]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S.; Abe, M.; Arasaki, O.; Shimabukuro, M.; Ueda, S. The prognostic impact of a concentric left ventricular structure evaluated by transthoracic echocardiography in patients with acute decompensated heart failure: A retrospective study. Int. J. Cardiol. 2019, 287, 73–80. [Google Scholar] [CrossRef]
- Helder, M.R.; Ugur, M.; Bavaria, J.E.; Kshettry, V.R.; Groh, M.A.; Petracek, M.R.; Jones, K.W.; Suri, R.M.; Schaff, H.V. The effect of postoperative medical treatment on left ventricular mass regression after aortic valve replacement. J. Thorac. Cardiovasc. Surg. 2015, 149, 781–786. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.C.; Leu, H.B.; Chang, H.H.; Chen, I.M.; Chen, P.L.; Lin, S.M.; Chen, Y.H. Women had favourable reverse left ventricle remodelling after TAVR. Eur. J. Clin. Investig. 2020, 50, e13183. [Google Scholar] [CrossRef]
- Dobson, L.E.; Fairbairn, T.A.; Musa, T.A.; Uddin, A.; Mundie, C.A.; Swoboda, P.P.; Ripley, D.P.; McDiarmid, A.K.; Erhayiem, B.; Garg, P.; et al. Sex-related differences in left ventricular remodeling in severe aortic stenosis and reverse remodeling after aortic valve replacement: A cardiovascular magnetic resonance study. Am. Heart J. 2016, 175, 101–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrov, G.; Regitz-Zagrosek, V.; Lehmkuhl, E.; Krabatsch, T.; Dunkel, A.; Dandel, M.; Dworatzek, E.; Mahmoodzadeh, S.; Schubert, C.; Becher, E.; et al. Regression of myocardial hypertrophy after aortic valve replacement: Faster in women? Circulation 2010, 122 (Suppl. 11), S23–S28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vollema, E.M.; Singh, G.K.; Prihadi, E.A.; Regeer, M.V.; Ewe, S.H.; Ng, A.C.T.; Mertens, B.J.A.; Klautz, R.J.M.; Ajmone Marsan, N.; Bax, J.J.; et al. Time course of left ventricular remodelling and mechanics after aortic valve surgery: Aortic stenosis vs. aortic regurgitation. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Katsanos, S.; Yiu, K.H.; Clavel, M.A.; Rodes-Cabau, J.; Leong, D.; van der Kley, F.; Ajmone Marsan, N.; Bax, J.J.; Pibarot, P.; Delgado, V. Impact of valvuloarterial impedance on 2-year outcome of patients undergoing transcatheter aortic valve implantation. J. Am. Soc. Echocardiogr. 2013, 26, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Une, D.; Mesana, L.; Chan, V.; Maklin, M.; Chan, R.; Masters, R.G.; Mesana, T.G.; Ruel, M. Clinical impact of changes in left ventricular function after aortic valve replacement: Analysis rrom 3112 patients. Circulation 2015, 132, 741–747. [Google Scholar] [CrossRef] [Green Version]
Characteristics | All Patients (n = 301) | LFLG-AS (n = 22) |
---|---|---|
Demographic data | ||
Age, y | 82 ± 8 | 81 ± 8 |
Male, n (%) | 174/301 (58) | 10/22 (46) |
Body mass index, kg/m2 | 26.9 (23.3, 31.0) | 28.9 (25.9, 33.9) |
NYHA class ≥ III, n (%) | 265/301 (88) | 19/22 (86) |
STS-PROM | 4.5 (3.0, 6.1) | 4.8 (4.0, 8.8) |
Past medical history, n (%) | ||
Diabetes mellitus | 109/301 (36) | 11/22 (50) |
Dyslipidemia | 191/301 (64) | 11/22 (50) |
Hypertension | 227/301 (75) | 15/22 (68) |
Peripheral vascular disease | 32/301 (11) | 3/22 (14) |
Coronary artery disease | 118/301 (39) | 12/22 (55) |
Atrial fibrillation | 84/301 (28) | 11/22 (50) |
Hemodialysis | 7/301 (2.3) | 22/22 (100) |
Obesity (BMI ≥ 30 kg/m2) | 91/301 (30) | 10/22 (46) |
Chronic obstructive pulmonary disease | 84/301 (28) | 8/22 (36) |
Pacemaker | 34/301 (11) | 3/22 (14) |
Medication, n (%) | ||
ACE-I/ARB | 112/301 (37) | 5/22 (23) |
Beta-blocker | 111/301 (37) | 7/22 (32) |
Laboratory | ||
Creatinine, mg/dL | 1.1 (0.9, 1.3) | 1.4 (0.8, 1.6) |
Brain natriuretic peptide, pg/mL | 143 (71, 266) | 370 (147, 736) |
Procedure | ||
Transaortic approach *, n (%) | 10/301 (3.3) | 1/22 (4.5) |
Stent-valve size ≥ 27 mm, n (%) | 32/301 (11) | 2/22 (9.1) |
Pacemaker implantation as a complication, n (%) | 32/301 (11) | 4/22 (18) |
Overall | LFLG-AS | |||||
---|---|---|---|---|---|---|
n = 301 | n = 22 | |||||
Baseline | Follow-Up | p Value | Baseline | Follow-Up | p Value | |
Zva, mmHg/mL/m2 | 4.91 ± 1.11 | 3.87 ± 0.81 | <0.001 | 5.61 ± 0.86 | 4.14 ± 0.98 | <0.001 |
SBP, mmHg | 135 ± 22 | 137 ± 20 | 0.14 | 131 ± 20 | 124 ± 20 | 0.19 |
DBP, mmHg | 67 ± 13 | 63 ± 13 | <0.001 | 68 ± 12 | 62 ±17 | 0.33 |
Heart rate, bpm | 72 ± 14 | 71 ± 14 | 0.29 | 78 ± 13 | 75 ± 13 | 0.5 |
LVEDVI, mL/m2 | 64 (57, 74) | 67 (59, 76) | 0.021 | 62 (52, 70) | 67 (53, 75) | 0.43 |
LVESVI, mL/m2 | 26 (19, 34) | 27 (21, 35) | 0.38 | 34 (22, 47) | 31 (23, 38) | 0.28 |
LV mass index, g/m2 | 99 (83, 118) | 86 (69, 103) | <0.001 | 101 (85, 135) | 84 (53, 75) | <0.001 |
LVMI/LVEDVI, g/Ml | 1.51 (1.28, 1.78) | 1.27 (1.05, 1.51) | <0.001 | 1.50 (1.31, 2.12) | 1.44 (1.01, 1.52) | <0.001 |
LV ejection fraction, % | 60 (52, 67) | 60 (51, 67) | 0.52 | 52 (35, 62) | 58 (44, 63) | 0.14 |
Stroke volume index, mL/m2 | 38.2 ± 7.5 | 39.4 ±7.5 | 0.011 | 28.7 ± 4.4 | 33.5 ± 7.4 | 0.011 |
EOAI, cm2/m2 | 0.39 ± 0.09 | 0.88 ± 0.24 | <0.001 | 0.40 ± 0.08 | 0.83 ± 0.19 | <0.001 |
Patient–prothesis mismatch, n (%) | ||||||
Insignificant | 155/301 (52) | 10/22 (46) | ||||
Moderate | 98/301 (33) | 6/22 (27) | ||||
Severe | 48/301 (16) | 6/22 (27) | ||||
Peak pressure gradient, mmHg | 72 (64, 86) | 19 (14, 26) | <0.001 | 48 (43, 54) | 13 (11, 23) | <0.001 |
Mean pressure gradient, mmHg | 44 (40, 52) | 10 (8, 14) | <0.001 | 27 (24, 33) | 7 (5, 12) | <0.001 |
Mild aortic regurgitation, n (%) | 229 (76) | 17/22 (77) | ||||
Mild paravalvular leakage, n (%) | 178/301 (59) | 13/22 (59) | ||||
E wave, cm/sec | 88 (71, 110) | 96 (76, 122) | <0.001 | 104 (86, 127) | 107 (92, 133) | <0.014 |
A wave, cm/sec | 106 (86, 125) | 114 (95, 133) | <0.001 | 105 (85, 126) | 123 (82, 148) | 0.68 |
E/A | 0.78 (0.65, 1.06) | 0.78 (0.66, 0.97) | 0.86 | 0.78 (0.62, 1.15) | 0.86 (0.7, 1.19) | 0.24 |
E’, cm/sec | 7.2 (5.7, 8.9) | 6.8 (5.4, 8.8) | 0.16 | 7.6 (6.4, 8.8) | 7.5 (5.9, 9.9) | 0.64 |
Overall (n = 301) | Baseline LV geometry (LVMI and LVMI/LVEDVI) vs. MPG or Zva | |||||
Baseline MPG | Baseline Zva | p for comparison | ||||
ρ | p | ρ | p | |||
Baseline LVMI | 0.06 | 0.28 | 0.006 | 0.92 | 0.49 | |
Baseline LVMI/LVEDVI | 0.05 | 0.41 | 0.29 | <0.001 | 0.001 | |
Change in LV geometry (LVMI and LVMI/LVEDVI) vs. ΔMPG or ΔZva | ||||||
ΔMPG | ΔZva | p for comparison | ||||
ρ | p | ρ | p | |||
ΔLVMI | 0.15 | 0.009 | 0.47 | <0.001 | <0.001 | |
ΔLVMI/LVEDVI | 0.06 | 0.26 | 0.54 | <0.001 | <0.001 | |
LFLG-AS (n = 22) | Baseline LV geometry (LVMI and LVMI/LVEDVI) vs. MPG or Zva | |||||
Baseline MPG | Baseline Zva | p for comparison | ||||
ρ | p | ρ | p | |||
Baseline LVMI | 0.02 | 0.92 | 0.11 | 0.63 | 0.8 | |
Baseline LVMI/LVEDVI | 0.04 | 0.85 | 0.18 | 0.42 | 0.68 | |
Change in LV geometry (LVMI and LVMI/LVEDVI) vs. ΔMPG or ΔZva | ||||||
ΔMPG | ΔZva | p for comparison | ||||
ρ | p | ρ | p | |||
ΔLVMI | −0.30 | 0.17 | 0.38 | 0.083 | 0.034 | |
ΔLVMI/LVEDVI | −0.15 | 0.51 | 0.51 | 0.015 | 0.034 |
Univariate | Multivariate | |||||||
---|---|---|---|---|---|---|---|---|
Factor | Β | 95% CI | p Value | β | 95% CI | p Value | ||
ΔZva, mmHg/mL/m2 | 9.29 | 7.11 | 11.47 | <0.001 | 8.71 | 5.27 | 12.15 | <0.001 |
ΔMPG, mmHg | 0.26 | 0.05 | 0.46 | 0.016 | 0.03 | −0.16 | 0.22 | 0.73 |
ΔSVI mL/m2 | −1.1 | −1.44 | −0.75 | <0.001 | 0.02 | −0.48 | 0.52 | 0.94 |
Age, y | −0.29 | −0.65 | 0.07 | 0.12 | −0.24 | −0.54 | 0.06 | 0.11 |
Male | 2.93 | −2.81 | 8.68 | 0.32 | 7.7 | 2.95 | 12.44 | 0.002 |
Body mass index, kg/m2 | −0.1 | −0.55 | 0.35 | 0.67 | −0.08 | −0.46 | 0.31 | 0.7 |
Diabetes mellitus | 1.93 | −3.98 | 7.84 | 0.52 | 0.84 | −4.07 | 5.75 | 0.74 |
Hypertension | 2.26 | −4.33 | 8.86 | 0.5 | −1.71 | −7.01 | 3.58 | 0.53 |
ACE-I/ARB | 4.75 | −1.11 | 10.6 | 0.11 | 2.09 | −2.71 | 6.89 | 0.39 |
Beta-blocker | 2.86 | −3.02 | 8.74 | 0.34 | 1.82 | −2.87 | 6.52 | 0.45 |
Paravalvular leakage | 1.39 | −4.39 | 7.17 | 0.64 | 1.03 | −3.67 | 5.74 | 0.67 |
Baseline LVMI, g/m2 | −0.37 | −0.45 | −0.29 | <0.001 | −0.38 | −0.45 | −0.31 | <0.001 |
Prosthesis–patient mismatch | 9.04 | 1.86 | 16.22 | 0.014 | 5.33 | −0.88 | 11.53 | 0.094 |
Systolic blood pressure, mmHg | 0.12 | −0.03 | 0.26 | 0.12 | −0.02 | −0.16 | 0.12 | 0.77 |
Diastolic blood pressure, mmHg | 0.1 | −0.12 | 0.32 | 0.36 | −0.01 | −0.2 | 0.18 | 0.9 |
N = 301 | ||||||||
Adjusted R2 = 0.39 | ||||||||
p < 0.001 |
Univariate | Multivariate | |||||||
---|---|---|---|---|---|---|---|---|
Factor | Β | 95% CI | p Value | β | 95% CI | p Value | ||
ΔZva, mmHg/mL/m2 | 0.19 | 0.15 | 0.23 | <0.001 | 0.1 | 0.04 | 0.15 | <0.001 |
ΔMPG, mmHg | 0 | 0 | 0.01 | 0.15 | 0 | 0 | 0 | 0.86 |
ΔSVI mL/m2 | −0.03 | −0.03 | −0.02 | <0.001 | −0.01 | −0.02 | 0 | 0.049 |
Age, y | −0.01 | −0.01 | 0 | 0.035 | 0 | −0.01 | 0 | 0.86 |
Male | −0.01 | −0.12 | 0.09 | 0.82 | 0.04 | −0.04 | 0.11 | 0.35 |
Body mass index, kg/m2 | 0 | −0.01 | 0.01 | 0.78 | 0 | 0 | 0.01 | 0.18 |
Diabetes mellitus | 0.04 | −0.07 | 0.15 | 0.47 | 0.03 | −0.05 | 0.1 | 0.53 |
Hypertension | 0.07 | −0.05 | 0.19 | 0.27 | −0.01 | −0.09 | 0.08 | 0.87 |
ACE-I/ARB | 0.08 | −0.03 | 0.19 | 0.14 | 0.03 | −0.05 | 0.1 | 0.5 |
Beta-blocker | 0.07 | −0.04 | 0.18 | 0.19 | 0.03 | −0.05 | 0.1 | 0.46 |
Paravalvular leakage | −0.02 | −0.12 | 0.09 | 0.75 | −0.02 | −0.1 | 0.05 | 0.51 |
Baseline LVMI/LVEDVI, g/m2 | −0.67 | −0.76 | −0.58 | <0.001 | −0.61 | −0.69 | −0.53 | <0.001 |
Prosthesis–patient mismatch | 0.19 | 0.05 | 0.32 | 0.006 | 0.1 | 0.01 | 0.2 | 0.038 |
Systolic blood pressure, mmHg | 0 | 0 | 0 | 0.41 | 0 | 0 | 0 | 0.11 |
Diastolic blood pressure, mmHg | 0 | 0 | 0.01 | 0.43 | 0 | 0 | 0 | 0.25 |
N = 301 | ||||||||
Adj. R2 = 0.56 | ||||||||
p < 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, S.; Otaki, Y.; Tamarappoo, B.K.; Ohira, T.; Ikenaga, H.; Yoshida, J.; Chakravarty, T.; Friedman, J.; Berman, D.; Rader, F.; et al. The Impact of Valvuloarterial Impedance on Left Ventricular Geometrical Change after Transcatheter Aortic Valve Replacement: A Comparison between Valvuloarterial Impedance and Mean Pressure Gradient. J. Clin. Med. 2020, 9, 3143. https://doi.org/10.3390/jcm9103143
Yamaguchi S, Otaki Y, Tamarappoo BK, Ohira T, Ikenaga H, Yoshida J, Chakravarty T, Friedman J, Berman D, Rader F, et al. The Impact of Valvuloarterial Impedance on Left Ventricular Geometrical Change after Transcatheter Aortic Valve Replacement: A Comparison between Valvuloarterial Impedance and Mean Pressure Gradient. Journal of Clinical Medicine. 2020; 9(10):3143. https://doi.org/10.3390/jcm9103143
Chicago/Turabian StyleYamaguchi, Satoshi, Yuka Otaki, Balaji K. Tamarappoo, Tetsuya Ohira, Hiroki Ikenaga, Jun Yoshida, Tarun Chakravarty, John Friedman, Daniel Berman, Florian Rader, and et al. 2020. "The Impact of Valvuloarterial Impedance on Left Ventricular Geometrical Change after Transcatheter Aortic Valve Replacement: A Comparison between Valvuloarterial Impedance and Mean Pressure Gradient" Journal of Clinical Medicine 9, no. 10: 3143. https://doi.org/10.3390/jcm9103143
APA StyleYamaguchi, S., Otaki, Y., Tamarappoo, B. K., Ohira, T., Ikenaga, H., Yoshida, J., Chakravarty, T., Friedman, J., Berman, D., Rader, F., Siegel, R. J., Makkar, R., & Shiota, T. (2020). The Impact of Valvuloarterial Impedance on Left Ventricular Geometrical Change after Transcatheter Aortic Valve Replacement: A Comparison between Valvuloarterial Impedance and Mean Pressure Gradient. Journal of Clinical Medicine, 9(10), 3143. https://doi.org/10.3390/jcm9103143