New Approaches to the Treatment of Chronic Hepatitis B
Abstract
:1. Introduction
2. Methods
3. HBV Structure and Genomic Organization
4. The Life Cycle of the Virus
5. Direct Acting Antivirals
5.1. HBV Attachment/Entry Inhibitors
5.2. Gene Editing Strategies: cccDNA Formation Inhibitors
5.3. RNA Interference (RNAi)
5.4. Ribonuclease H (RNase H) Targeting
5.5. Nucleocapsid Assembly Inhibitors and Core Inhibitors
5.6. HBsAg Release Inhibitors
6. Immunotherapy
6.1. Interventions that Activate the Innate Immune Response
6.1.1. Toll-Like Receptor Agonists
6.1.2. Retinoic Acid-Inducible Gene-1 (RIG-I) Agonists
6.1.3. Stimulator of Interferon Genes (STING) Agonists
6.1.4. Checkpoint Inhibitors
6.2. Modulation of the Adaptive Immune System
6.2.1. Therapeutic Vaccination
6.2.2. More Recent Approaches
6.2.3. Vector-Based Vaccines
6.2.4. Adoptive Transfer of Genetically Engineered T Cells
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Association for the Study of the Liver. Electronic address: [email protected]; European Association for the Study of the Liver. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.M.; Banini, B.A. Updates on Chronic HBV: Current Challenges and Future Goals. Curr. Treat. Options Gastroenterol. 2019, 17, 271–291. [Google Scholar] [CrossRef] [PubMed]
- Durantel, D.; Zoulim, F. New antiviral targets for innovative treatment concepts for hepatitis B virus and hepatitis delta virus. J. Hepatol. 2016, 64 (Suppl. 1), S117–S131. [Google Scholar] [CrossRef] [PubMed]
- Buti, M.; Wong, D.K.; Gane, E.; Flisiak, R.; Manns, M.; Kaita, K.; A Janssen, H.L.; den Brouw, M.O.; Jump, B.; Kitrinos, K.; et al. Safety and efficacy of stopping tenofovir disoproxil fumarate in patients with chronic hepatitis B following at least 8 years of therapy: A prespecified follow-up analysis of two randomised trials. Lancet Gastroenterol. Hepatol. 2019, 4, 296–304. [Google Scholar] [CrossRef]
- Karayiannis, P. Hepatitis B virus: Virology, molecular biology, life cycle and intrahepatic spread. Hepatol. Int. 2017, 11, 500–508. [Google Scholar] [CrossRef]
- Dane, D.S.; Cameron, C.H.; Briggs, M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet 1970, 1, 695–698. [Google Scholar] [CrossRef]
- Ganem, D.; Prince, A.M. Hepatitis B virus infection–natural history and clinical consequences. N. Engl. J. Med. 2004, 350, 1118–1129. [Google Scholar] [CrossRef] [Green Version]
- Glebe, D. Recent advances in hepatitis B virus research: A German point of view. World J. Gastroenterol. 2007, 13, 8–13. [Google Scholar] [CrossRef]
- A Crowther, R.; A Kiselev, N.; Böttcher, B.; A Berriman, J.; Borisova, G.P.; Ose, V.; Pumpens, P. Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 1994, 77, 943–950. [Google Scholar] [CrossRef]
- Seeger, C.; Mason, W.S. Hepatitis B virus biology. Microbiol. Mol. Biol. Rev. 2000, 4, 51–68. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, M.; Sureau, C. Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues. J. Virol. 2007, 81, 5841–5849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kann, M.; Schmitz, A.; Rabe, B. Intracellular transport of hepatitis B virus. World J. Gastroenterol. 2007, 13, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Tuttleman, J.S.; Pourcel, C.; Summers, J. Formation of the pool of covalently closed circular viral DNA in hepadnavirus-infected cells. Cell 1986, 47, 451–460. [Google Scholar] [CrossRef]
- Bock, C.-T.; Schwinn, S.; Locarnini, S.; Fyfe, J.; Manns, M.P.; Trautwein, C.; Zentgraf, H. Structural organization of the hepatitis B virus minichromosome. J. Mol. Boil. 2001, 307, 183–196. [Google Scholar] [CrossRef]
- Belloni, L.; Allweiss, L.; Guerrieri, F.; Pediconi, N.; Volz, T.; Pollicino, T.; Petersen, J.; Raimondo, G.; Dandri, M.; Levrero, M. IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J. Clin. Investig. 2012, 122, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Levrero, M.; Pollicino, T.; Petersen, J.; Belloni, L.; Raimondo, G.; Dandri, M. Control of cccDNA function in hepatitis B virus infection. J. Hepatol. 2009, 51, 581–592. [Google Scholar] [CrossRef] [Green Version]
- Pollicino, T.; Belloni, L.; Raffa, G.; Pediconi, N.; Squadrito, G.; Raimondo, G.; Levrero, M. Hepatitis B Virus Replication Is Regulated by the Acetylation Status of Hepatitis B Virus cccDNA-Bound H3 and H4 Histones. Gastroenterol. 2006, 130, 823–837. [Google Scholar] [CrossRef]
- Eble, B.E.; MacRae, D.R.; Lingappa, V.R.; Ganem, D. Multiple topogenic sequences determine the transmembrane orientation of the hepatitis B surface antigen. Mol. Cell Biol. 1987, 7, 3591–35601. [Google Scholar] [CrossRef]
- Watanabe, T.; Sorensen, E.M.; Naito, A.; Schott, M.; Kim, S.; Ahlquist, P. Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proc. Natl. Acad. Sci. USA 2007, 104, 10205–10210. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.H.; Kim, W.; Jung, Y.K.; Yang, J.M.; Jang, J.Y.; Kweon, Y.O.; Cho, Y.K.; Kim, Y.J.; Hong, G.Y.; Kim, N.J.; et al. Efficacy and Safety of Besifovir Dipivoxil Maleate Compared With Tenofovir Disoproxil Fumarate in Treatment of Chronic Hepatitis B Virus Infection. Clin. Gastroenterol. Hepatol. 2019, 17, 1850–1859.e4. [Google Scholar] [CrossRef] [Green Version]
- Foster, R.; Conover, M.; Canizres, C.; Trepanier, D.; Ure, D.; Matkovits, T.; Mayo, P. Pharmacokinetic-pharmacodynamic modeling of Tenofovir Exalidex in HBV subjects. J. Hepatol. 2018, 68 (Suppl. 1), S522. [Google Scholar] [CrossRef]
- Xia, Y.; Liang, T.J. Development of Direct-acting Antiviral and Host-targeting Agents for Treatment of Hepatitis B Virus Infection. Gastroenterology 2019, 156, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Chen, Z.; Cheng, A.; Wang, M.; Fang, J.; Peng, X.; Tang, L. Reproductive toxicity study with a novel deoxyguanosine analogue (Metacavir) in pregnant SD rats. Front. Med. 2014, 9, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Lempp, F.A.; Mehrle, S.; Nkongolo, S.; Kaufman, C.; Fälth, M.; Stindt, J.; Königer, C.; Nassal, M.; Kubitz, R.; et al. Hepatitis B and D Viruses Exploit Sodium Taurocholate Co-transporting Polypeptide for Species-Specific Entry into Hepatocytes. Gastroenterol. 2014, 146, 1070–1083.e6. [Google Scholar] [CrossRef] [PubMed]
- Weldemeyer, H.; Shoneweis, K.; Bogomolov, P.; Voronka, N.; Stepanova, T.; Bremer, B.; Alweiss, L.; Dandri, M.; Burhenne, J.; Haefeli, W.E.; et al. Final results of a multicenter open lebel phase 2 clinical trial (MYR203) to assess safety and efficacy of Myrcludex B with Peg interferon a-2a in Patients with Chronic Hepatitis HBV/HDV Co-Infection. J Hepatol. 2019, 70 (Suppl. 1), e81. [Google Scholar]
- Ruiz de Galarreta, M.; Lujambio, A. Therapeutic editing of hepatocyte genome in vivo. J. Hepatol. 2017, 67, 818–828. [Google Scholar] [CrossRef] [Green Version]
- Moyo, B.; Bloom, K.; Scott, T.; Ely, A.; Arbuthnot, P. Advances with using CRISPR/Cas-mediated gene editing to treat infections with hepatitis B virus and hepatitis C virus. Virus Res. 2018, 244, 311–320. [Google Scholar] [CrossRef]
- Cradick, T.J.; Keck, K.; Bradshaw, S.; Jamieson, A.C.; McCaffrey, A.P. Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol. Ther. 2010, 18, 947–954. [Google Scholar] [CrossRef]
- Boch, J.; Scholze, H.; Schornack, S.; Landgraf, A.; Hahn, S.; Kay, S.; Lahaye, T.; Nickstadt, A.; Bonas, U. Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors. Sci. 2009, 326, 1509–1512. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.; Lin, J.; Wang, F.; Wu, M.; Chen, C.; Zheng, Y.; Peng, X.; Li, J.; Yuan, Z. An Efficient Antiviral Strategy for Targeting Hepatitis B Virus Genome Using Transcription Activator-Like Effector Nucleases. Mol. Ther. 2013, 22, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, E.M.; Bassit, L.C.; Mueller, H.; Kornepati, A.V.R.; Bogerd, H.P.; Nie, T.; Chatterjee, P.; Javanbakht, H.; Schinazi, R.F.; Cullen, B.R. Suppression of hepatitis B virus DNA accumulation in chronically infected cells using a bacterial CRISP/Cas RNA-guided DNA endonuclease. Virology 2015, 476, 196–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Hao, R.; Chen, S.; Guo, D.; Chen, Y. Inhibition of hepatitis B virus by the CRISPR/Cas9 system via targeting the conserved regions of the viral genome. J. Gen. Virol. 2015, 96, 2252–2261. [Google Scholar] [CrossRef] [PubMed]
- Bloom, K.; Maepa, M.B.; Ely, A.; Arbuthnot, P. Gene Therapy for Chronic HBV-Can We Eliminate cccDNA? Genes 2018, 9, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostyushev, D.S.; Kostyusheva, A.; Brezgin, S.; Zarifyan, D.; Utkina, A.; Goptar, I.; Chulanov, V. Suppressing the NHEJ pathway by DNA-PKcs inhibitor NU7026 prevents degradation of HBV cccDNA cleaved by CRISPR/Cas9. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Schiwon, M.; Ehrke-Schulz, E.; Oswald, A.; Bergmann, T.; Michler, T.; Protzer, U.; Ehrhardt, A. One-Vector System for Multiplexed CRISPR/Cas9 against Hepatitis B Virus cccDNA Utilizing High-Capacity Adenoviral Vectors. Mol. Ther. - Nucleic Acids 2018, 12, 242–253. [Google Scholar] [CrossRef] [Green Version]
- Hong, X.; Kim, E.S.; Guo, H. Epigenetic regulation of hepatitis B virus covalently closed circular DNA: Implications for epigenetic therapy against chronic hepatitis B. Hepatology 2017, 66, 2066–2077. [Google Scholar] [CrossRef]
- Belloni, L.; Pollicino, T.; De Nicola, F.; Guerrieri, F.; Raffa, G.; Fanciulli, M.; Raimondo, G.; Levrero, M. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc. Natl. Acad. Sci. 2009, 106, 19975–19979. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; Deng, L.; Chen, M.; Gan, X.; Shinozaki, K.; Shoji, I.; Hotta, H. Interaction of the hepatitis B virus X protein with the lysine methyltransferase SET and MYND domain-containing 3 induces activator protein 1 activation. Microbiol. Immunol. 2016, 60, 17–25. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, J.; Wu, M.; Zhang, X.; Zhang, M.; Yue, L.; Li, Y.; Liu, J.; Li, B.; Shen, F.; et al. PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation. Hepatol. 2017, 66, 398–415. [Google Scholar] [CrossRef]
- Zhao, Z.; Shen, X.; Lao, Y.; Qiu, X.; Gong, P.; Zhou, M.; Hu, Y.; Zhang, L.; Cui, H.; Lu, S.; et al. HBx represses RIZ1 expression by DNA methyltransferase 1 involvement in decreased miR-152 in hepatocellular carcinoma. Oncol. Rep. 2017, 37, 2811–2818. [Google Scholar] [CrossRef]
- Decorsière, A.; Mueller, H.; van Breugel, P.C.; Abdul, F.; Gerossier, L.; Beran, R.K.; Livingston, C.M.; Niu, C.; Fletcher, S.P.; Hantz, O.; et al. Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 2016, 531, 386–389. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhu, Q.; Zeng, J.; Yan, Z.; Feng, A.; Young, J.; Gao, L. A first-in-class orally available HBV cccDNA destabilizer ccc_R08 achieved sustainable HBsAg and cccDNA reduction in the HBV circle mouse model through elimination of cccDNA-like molecules in the mouse liver. J. Hepatol. 2019, 70 (Suppl. 1), e48. [Google Scholar] [CrossRef]
- Flisiak, R.; Jaroszewicz, J.; Łucejko, M. siRNA drug development against hepatitis B virus infection. Expert Opin. Biol. Ther. 2018, 18, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Carthew, R.W.; Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell 2009, 136, 642–655. [Google Scholar] [CrossRef] [Green Version]
- Siomi, H.; Siomi, M.C. On the road to reading the RNA-interference code. Nature 2009, 457, 396–404. [Google Scholar] [CrossRef]
- Lee, A.C.H.; Heyes, J.; Ye, X.; Holland, R.; Thi, E.P.; Wood, M.; Judge, A.; Snead, N.M.; Martin, A.; Sofia, M.J. Durable inhibition of hepatitis B virus replication and antigenemia using subcutaneously administered siRNA agent AB-729 in preclinical models. J. Hepatol. 2018, 68 (Suppl. 1), s18. [Google Scholar]
- Streinu-Cercel, A.; Gane, E.; Cheng, W.; Sievert, W.; Roberts, S.; Ahn, S.; Kim, Y.; Agarwal, K.; Niforos, D.; Symonds, B.; et al. A phase 2a study evaluating the multi-dose activity of ARB-1467 in HBeAg positive and negative virally suppressed subjects with hepatitis B. J. Hepatol. 2017, 66, S688–S689. [Google Scholar] [CrossRef]
- Yuen, M.F.; Locarnini, S.; Lim, T.H.; Strasser, S.; Sievert, W.; Cheng, W.; Thompson, A.; Given, B.; Schluep, T.; Hamilton, J.; et al. Short term RNA interference (RNAi) therapy in chronic hepatitis B (CHB) using JNJ-3989 brings majority of patients to HBsAg <100 IU/mL (PS 080). J. Hepatol. 2019, 70 (Suppl. 1), e51–e52. [Google Scholar]
- Gane, E.; Locarnini, S.; Lim, T.H.; Strasser, S.; Sievert, W.; Cheng, W.; Thompson, A.; Given, B.; Schluep, T.; Hamilton, J.; et al. Short-term treatment with RNA interference therapy, JNJ-3989, results in sustained hepatitis B surface antigen supression in patients with chronic hepatitis B receiving nucleos(t)ide analogue treatment. J. Hepatol. 2020, 73, S20. [Google Scholar] [CrossRef]
- Billioud, G.; Kruse, R.L.; Carrillo, M.; Whitten-Bauer, C.; Gao, D.; Kim, A.; Chen, L.; McCaleb, M.L.; Crosby, J.R.; Hamatake, R.; et al. In vivo reduction of hepatitis B virus antigenemia and viremia by antisense oligonucleotides. J. Hepatol. 2016, 64, 781–789. [Google Scholar] [CrossRef]
- Yuen, M.F.; Heo, J.; Kumada, H.; Suzuki, F.; Suzuki, Y.; Xie, Q.; Jia, J.; Karino, Y.; Hou, J.; Chayama, K.; et al. Results after 12 weeks treatment of multiple doses of GSK3389404 in chronic hepatitis B subjects on stable nucleos(t)ide therapy in a phase 2a double-blind, placebo-controlled study. Hepatology 2019, 70, 433A. [Google Scholar]
- Cai, C.W.; Lomonosova, E.; Moran, E.A.; Cheng, X.; Patel, K.B.; Bailly, F.; Cotelle, P.; Meyers, M.J.; Tavis, J.E. Hepatitis B virus replication is blocked by a 2-hydroxyisoquinoline-1,3(2H,4H)-dione (HID) inhibitor of the viral ribonuclease H activity. Antivir. Res. 2014, 108, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, T.C.; Lomonosova, E.; Patel, J.A.; Li, Q.; Villa, J.A.; Gupta, A.K.; Morrison, L.A.; Bailly, F.; Cotelle, P.; Giannakopoulou, E.; et al. Inhibition of hepatitis B virus replication by N-hydroxyisoquinolinediones and related polyoxygenated heterocycles. Antivir. Res. 2017, 143, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Cole, A.G. Modulators of HBV capsid assembly as an approach to treating hepatitis B virus infection. Curr. Opin. Pharmacol. 2016, 30, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Fung, S.K.; Lok, A.S. Drug insight: Nucleoside and nucleotide analog inhibitors for hepatitis B. Nat. Clin. Pract. Gastroenterol. Hepatol. 2004, 1, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Deres, K.; Schröder, C.H.; Paessens, A.; Goldmann, S.; Hacker, H.J.; Weber, O.; Kramer, T.; Niewöhner, U.; Pleiss, U.; Stoltefuss, J.; et al. Inhibition of Hepatitis B Virus Replication by Drug-Induced Depletion of Nucleocapsids. Sci. 2003, 299, 893–896. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, J.; Tan, Y.; Xin, Y.; Gao, H.; Zheng, S.; Yi, Y.; Zhang, J.; Wu, C.; Zhao, Y.; et al. Efficay and safety of GLS4/ritonavir combined with entecavir in HBeAg-positive patients with chronic hepatitis B: Interim results from phase 2b, multi-center study. J. Hepatol. 2020, 73 (Suppl. 1), S878–S879. [Google Scholar] [CrossRef]
- Iv, W.E.D.; Edwards, R.; Colledge, D.; Shaw, T.; Furman, P.; Painter, G.; Locarnini, S.; Delaney, W.E. Phenylpropenamide Derivatives AT-61 and AT-130 Inhibit Replication of Wild-Type and Lamivudine-Resistant Strains of Hepatitis B Virus In Vitro. Antimicrob. Agents Chemother. 2002, 46, 3057–3060. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Liu, B.; Zhang, Y.; Li, J.; Arzumanyan, A.; Clayton, M.M.; Schinazi, R.F.; Wang, Z.; Goldmann, S.; Ren, Q.; et al. Preclinical Characterization of GLS4, an Inhibitor of Hepatitis B Virus Core Particle Assembly. Antimicrob. Agents Chemother. 2013, 57, 5344–5354. [Google Scholar] [CrossRef] [Green Version]
- Gane, E.; Yuen, M.-F.; Bo, Q.; Schwabe, C.; Tanwandee, T.; Das, S.; Jin, Y.; Gao, L.; Zhou, X.; Wang, Y.; et al. FRI-219-RO7049389, a core protein allosteric modulator, demonstrates robust decline in HBV DNA and HBV RNA in chronic HBV infected patients. J. Hepatol. 2019, 70, e491. [Google Scholar] [CrossRef]
- Yan, Z.; Wu, D.; Hu, H.; Zeng, J.; Yu, X.; Xu, Z.; Zhou, Z.; Zhou, X.; Yang, G.; Young, J.A.; et al. Direct Inhibition of Hepatitis B e Antigen by Core Protein Allosteric Modulator. Hepatol. 2019, 70, 11–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaine, M.; Dellisola, V.; Clugston, S.; Cao, H.; Gao, X.; Kass, J.; Li, W.; Peng, X.; Qiu, Y.-L.; Jiang, L.; et al. FRI-191-EDP-514, a novel HBV core inhibitor with potent antiviral activity both in vitro and in vivo. J. Hepatol. 2019, 70, e474–e475. [Google Scholar] [CrossRef]
- Yuen, M.-F.; Agarwal, K.; Gane, E.J.; Schwabe, C.; Ahn, S.H.; Kim, D.J.; Lim, Y.-S.; Cheng, W.; Sievert, W.; Visvanathan, K.; et al. Safety, pharmacokinetics, and antiviral effects of ABI-H0731, a hepatitis B virus core inhibitor: A randomised, placebo-controlled phase 1 trial. Lancet Gastroenterol. Hepatol. 2020, 5, 152–166. [Google Scholar] [CrossRef]
- Yuen, M.F.; Locarnini, S.; Given, B.; Schlue, T.; Hamilton, J.; Biermer, M. First clinical experience with rna interference [RNAi]-based triple combination therapy in chronic hepatitis B (CHB): JNJ-73763989 (JNJ-3989), JNJ-56136379 (JNJ-6379) and a nucleos(t)ide analogue (NA). Hepatology 2019, 70, 1489A. [Google Scholar]
- Schöneweis, K.; Motter, N.; Roppert, P.L.; Lu, M.; Wang, B.; Roehl, I.; Glebe, D.; Yang, D.; Morrey, J.D.; Roggendorf, M.; et al. Activity of nucleic acid polymers in rodent models of HBV infection. Antivir. Res. 2018, 149, 26–33. [Google Scholar] [CrossRef]
- Roehl, I.; Seiffert, S.; Brikh, C.; Quinet, J.; Jamard, C.; Dorfler, N.; Lockridge, J.A.; Cova, L.; Vaillant, A. Nucleic Acid Polymers with Accelerated Plasma and Tissue Clearance for Chronic Hepatitis B Therapy. Mol. Ther. - Nucleic Acids 2017, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Guillot, C.; Martel, N.; Berby, F.; Bordes, I.; Hantz, O.; Blanchet, M.; Sureau, C.; Vaillant, A.; Chemin, I. Inhibition of hepatitis B viral entry by nucleic acid polymers in HepaRG cells and primary human hepatocytes. PLoS ONE 2017, 12, e0179697. [Google Scholar] [CrossRef]
- Real, C.I.; Werner, M.; Paul, A.; Gerken, G.; Schlaak, J.F.; Vaillant, A.; Broering, R. Nucleic acid-based polymers effective against hepatitis B Virus infection in patients don’t harbor immunostimulatory properties in primary isolated liver cells. Sci. Rep. 2017, 7, 43838. [Google Scholar] [CrossRef]
- Vaillant, A. REP 2139: Antiviral Mechanisms and Applications in Achieving Functional Control of HBV and HDV Infection. ACS Infect. Dis. 2019, 5, 675–687. [Google Scholar] [CrossRef]
- Vaillant, A. Nucleic acid polymers: Broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection. Antivir. Res. 2016, 133, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Noordeen, F.; Scougall, C.A.; Grosse, A.; Qiao, Q.; Ajilian, B.B.; Reaiche-Miller, G.; Finnie, J.; Werner, M.; Broering, R.; Schlaak, J.F.; et al. Therapeutic Antiviral Effect of the Nucleic Acid Polymer REP 2055 against Persistent Duck Hepatitis B Virus Infection. PLoS ONE 2015, 10, e0140909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazinet, M.; Pântea, V.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Albrecht, J.; Schmid, P.; Le Gal, F.; Gordien, E.; Krawczyk, A.; et al. Safety and efficacy of REP 2139 and pegylated interferon alfa-2a for treatment-naive patients with chronic hepatitis B virus and hepatitis D virus co-infection (REP 301 and REP 301-LTF): A non-randomised, open-label, phase 2 trial. Lancet Gastroenterol. Hepatol. 2017, 2, 877–889. [Google Scholar] [CrossRef]
- Usman, Z.; Mijočević, H.; Karimzadeh, H.; Däumer, M.; Al-Mathab, M.; Bazinet, M.; Frishman, D.; Vaillant, A.; Roggendorf, M.; Mamun, A. Kinetics of hepatitis B surface antigen quasispecies during REP 2139-Ca therapy in HBeAg-positive chronic HBV infection. J. Viral Hepat. 2019, 26, 1454–1464. [Google Scholar] [CrossRef] [PubMed]
- Bazinet, M.; Pantea, V.; Placinta, G.; Moscalu, I.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Iarovoi, L.; Smesnoi, V.; Musteata, T.; et al. FRI-210-Establishment of high rates of functional cure of HBeAg negative chronic HBV infection with REP 2139-Mg based combination therapy: Ongoing follow-up results from the REP 401 study. J. Hepatol. 2019, 70, e486. [Google Scholar] [CrossRef]
- Bazinet, M.; Pantea, V.; Placinta, G.; Moscalu, I.; Cebotarescu, V.; Cojuhari, L.; Jimbei, P.; Iarovoi, L.; Smesnoi, V.; Musteata, T.; et al. Update on safety and efficacy in the REP 401 protocol: REP 2139-Mg or REP 2165-Mg used in combination with tenofovir disoproxil fumarate and pegylated Interferon alpha-2a in treatment naïve caucasian patients with chronic HBeAg negative HBV infection. J. Hepatol. 2017, 66, S256–S257. [Google Scholar] [CrossRef]
- Maini, M.K.; Gehring, A.J. The role of innate immunity in the immunopathology and treatment of HBV infection. J. Hepatol. 2016, 64 (Suppl. 1), S60–S70. [Google Scholar] [CrossRef] [Green Version]
- Bertoletti, A.; Ferrari, C. Adaptive immunity in HBV infection. J. Hepatol. 2016, 64 (Suppl. 1), S71–S83. [Google Scholar] [CrossRef]
- Perrillo, R.P.; Gish, R.; Falck-Ytter, Y.T. American Gastroenterological Association Institute technical review on prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. Gastroenterology 2015, 148, 221–244.e3. [Google Scholar] [CrossRef]
- Bengsch, B.; Thimme, R. For whom the interferons toll—TLR7 mediated boosting of innate and adaptive immunity against chronic HBV infection. J. Hepatol. 2018, 68, 883–886. [Google Scholar] [CrossRef]
- Menne, S.; Tumas, D.B.; Liu, K.H.; Thampi, L.; Aldeghaither, D.; Baldwin, B.H.; Bellezza, C.A.; Cote, P.J.; Zheng, J.; Halcomb, R.; et al. Sustained efficacy and seroconversion with the Toll-like receptor 7 agonist GS-9620 in the Woodchuck model of chronic hepatitis B. J. Hepatol. 2015, 62, 1237–1245. [Google Scholar] [CrossRef] [Green Version]
- Lanford, R.E.; Guerra, B.; Chavez, D.; Giavedoni, L.; Hodara, V.L.; Brasky, K.M.; Fosdick, A.; Frey, C.R.; Zheng, J.; Wolfgang, G.; et al. GS-9620, an Oral Agonist of Toll-Like Receptor-7, Induces Prolonged Suppression of Hepatitis B Virus in Chronically Infected Chimpanzees. Gastroenterol. 2013, 144, 1508–1517.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boni, C.; Vecchi, A.; Rossi, M.; Laccabue, D.; Giuberti, T.; Alfieri, A.; Lampertico, P.; Grossi, G.; Facchetti, F.; Brunetto, M.R.; et al. TLR7 Agonist Increases Responses of Hepatitis B Virus–Specific T Cells and Natural Killer Cells in Patients With Chronic Hepatitis B Treated With Nucleos(T)Ide Analogues. Gastroenterol. 2018, 154, 1764–1777.e7. [Google Scholar] [CrossRef] [PubMed]
- Janssen, H.L.A.; Brunetto, M.R.; Kim, Y.J.; Ferrarj, C.; Massetto, B.; Nguyen, A.H.; Joshi, A.; Woo, J.; Lao, A.H.; Gaggar, A.; et al. Safety, efficacy and pharmaco- dynamics of vesatolimod (GS-9620) in virally suppressed patients with chronic hepatitis B. J. Hepatol. 2018, 68, 431–440. [Google Scholar] [CrossRef]
- Gao, L.; Dai, L.; Yu, Y.; Gu, L.; Zhao, J.; Ji, Y.; Yun, H.; Zhu, W.; Young, J.A.T. Combination treatment of a TLR7 agonist RO7020531 and a capsid assembly modulator RO7049389 achieved sustainable viral load suppression and HBsAg loss in an AAV-HBV mouse mode. J. Hepatol. 2018, 68 (Suppl. 1), S17–S18. [Google Scholar]
- Luk, A.; Jiang, Q.; Glavini, K.; Triyatni, M.; Zhao, N.; Racek, T.; Zhu, Y.; Grippo, J.F. A Single and Multiple Ascending Dose Study of Toll-Like Receptor 7 Agonist (RO7020531) in Chinese Healthy Volunteers. Clin. Transl. Sci. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S.; Li, K.; Kameyama, T.; Hayashi, T.; Ishida, Y.; Murakami, S.; Watanabe, T.; Iijima, S.; Sakurai, Y.; Watashi, K.; et al. The RNA Sensor RIG-I Dually Functions as an Innate Sensor and Direct Antiviral Factor for Hepatitis B Virus. Immun. 2015, 42, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Yuen, M.-F.; Chen, C.-Y.; Liu, C.-J.; Jeng, R.-J.; Elkhashab, M.; Coffin, C.; Kim, W.; Greenbloom, S.; Ramji, A.; Lim, Y.-S.; et al. GS-12-Ascending dose cohort study of inarigivir - A novel RIG I agonist in chronic HBV patients: Final results of the ACHIEVE trial. J. Hepatol. 2019, 70, e47–e48. [Google Scholar] [CrossRef]
- Guo, F.; Han, Y.; Zhao, X.; Wang, J.; Liu, F.; Xu, C.; Wei, L.; Jiang, J.-D.; Block, T.M.; Guo, J.-T.; et al. STING Agonists Induce an Innate Antiviral Immune Response against Hepatitis B Virus. Antimicrob. Agents Chemother. 2014, 59, 1273–1281. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Hao, R.; Liu, D.; Liu, X.; Wu, S.; Guo, S.; Wang, Y.; Tien, P.; Guo, D.-Y. Inhibition of hepatitis B virus replication by activation of the cGAS-STING pathway. J. Gen. Virol. 2016, 97, 3368–3378. [Google Scholar] [CrossRef]
- Peng, G.; Li, S.; Wu, W.; Tan, X.; Chen, Y.; Chen, Z. PD-1 upregulation is associated with HBV-specific T cell dysfunction in chronic hepatitis B patients. Mol. Immunol. 2008, 45, 963–970. [Google Scholar] [CrossRef]
- Fisicaro, P.; Valdatta, C.; Massari, M.; Loggi, E.; Biasini, E.; Sacchelli, L.; Cavallo, M.C.; Silini, E.M.; Andreone, P.; Missale, G.; et al. Antiviral Intrahepatic T-Cell Responses Can Be Restored by Blocking Programmed Death-1 Pathway in Chronic Hepatitis B. Gastroenterol. 2010, 138, 682–693.e4. [Google Scholar] [CrossRef] [PubMed]
- Gane, E.; Verdon, D.J.; Brooks, A.E.S.; Gaggar, A.; Nguyen, A.H.; Subramanian, G.M.; Schwabe, C.; Dunbar, P.R. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: A pilot study. J. Hepatol. 2019, 71, 900–907. [Google Scholar] [CrossRef] [PubMed]
- Raziorrouh, B.; Schraut, W.; Gerlach, T.; Nowack, D.; Grüner, N.H.; Ulsenheimer, A.; Zachoval, R.; Wächtler, M.; Spannagl, M.; Haas, J.; et al. The immunoregulatory role of CD244 in chronic hepatitis B infection and its inhibitory potential on virus-specific CD8+ T-cell function. Hepatol. 2010, 52, 1934–1947. [Google Scholar] [CrossRef]
- Schurich, A.; Khanna, P.; Lopes, A.R.; Han, K.J.; Peppa, D.; Micco, L.; Nebbia, G.; Kennedy, P.T.; Geretti, A.-M.; Dusheiko, G.; et al. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis-Prone CD8 T cells in persistent hepatitis B virus infection. Hepatol. 2011, 53, 1494–1503. [Google Scholar] [CrossRef] [PubMed]
- Ravi, S.; Spencer, K.; Ruisi, M.; Ibrahim, N.; Luke, J.J.; Thompson, J.A.; Shirai, K.; Lawson, D.H.; Bartell, H.; Kudchadkar, R.; et al. Ipilimumab administration for advanced melanoma in patients with pre-existing Hepatitis B or C infection: A multicenter, retrospective case series. J. Immunother. Cancer 2014, 2, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Dong, Q.; Li, Q.; Li, Y.; Zhao, D.; Sun, J.; Fu, J.; Meng, F.; Lin, H.; Luan, J.; et al. Dysregulated Response of Follicular Helper T Cells to Hepatitis B Surface Antigen Promotes HBV Persistence in Mice and Associates With Outcomes of Patients. Gastroenterol. 2018, 154, 2222–2236. [Google Scholar] [CrossRef]
- Vandepapelière, P.; Lau, G.K.; Leroux-Roels, G.; Horsmans, Y.; Gane, E.; Tawandee, T.; Bin Merican, M.I.; Win, K.M.; Trepo, C.; Cooksley, G.; et al. Therapeutic vaccination of chronic hepatitis B patients with virus suppression by antiviral therapy: A randomized, controlled study of co-administration of HBsAg/AS02 candidate vaccine and lamivudine. Vaccine 2007, 25, 8585–8597. [Google Scholar] [CrossRef]
- Pol, S.; Nalpas, B.; Driss, F.; Michel, M.-L.; Tiollais, P.; Denis, J.; Bréchot, C. Efficacy and limitations of a specific immunotherapy in chronic hepatitis B. J. Hepatol. 2001, 34, 917–921. [Google Scholar] [CrossRef]
- Xu, D.; Wang, X.-Y.; Shen, X.-L.; Gong, G.-Z.; Ren, H.; Guo, L.-M.; Sun, A.-M.; Xu, M.; Li, L.; Guo, X.-H.; et al. Results of a phase III clinical trial with an HBsAg-HBIG immunogenic complex therapeutic vaccine for chronic hepatitis B patients: Experiences and findings. J. Hepatol. 2013, 59, 450–456. [Google Scholar] [CrossRef]
- Godon, O.; Fontaine, H.; Kahi, S.; Meritet, J.; Scott-Algara, D.; Pol, S.; Michel, M.; Bourgine, M. Immunological and Antiviral Responses After Therapeutic DNA Immunization in Chronic Hepatitis B Patients Efficiently Treated by Analogues. Mol. Ther. 2014, 22, 675–684. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, H.; Kahi, S.; Chazallon, C.; Bourjine, M.; Varaut, A.; Buffet, C.; Gordon, O.; Meritet, J.F.; Saidi, Y.; Michel, M.L.; et al. Anti-HBV DNA vaccination does not prevent relapse after discontinuation of analogues in the treatment of chronic hepatitis B: A randomised trial--ANRS HB02 VAC-ADN. Gut 2015, 64, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Pancholi, P.; Lee, D.-H.; Liu, Q.; Tackney, C.; Taylor, P.; Perkus, M.; Andrus, L.; Brotman, B.; Prince, A.M. DNA prime/canarypox boost—based immunotherapy of chronic hepatitis B virus infection in a chimpanzee. Hepatol. 2001, 33, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Cavenaugh, J.S.; Awi, D.; Mendy, M.; Hill, A.V.; Whittle, H.; McConkey, S.J. Partially randomized, non-blinded trial of DNA and MVA therapeutic vaccines based on hepatitis B virus surface protein for chronic HBV infection. PLoS ONE 2011, 6, e14626. [Google Scholar] [CrossRef]
- Al Mahtab, M.; Akbar, S.M.F.; Aguilar, J.C.; Guillen, G.; Penton, E.; Tuero, A.; Yoshida, O.; Hiasa, Y.; Onji, M. Treatment of chronic hepatitis B naïve patients with a therapeutic vaccine containing HBs and HBc antigens (a randomized, open and treatment controlled phase III clinical trial). PLoS ONE 2018, 13, e0201236. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, J.C.; Leon, Y.; Lobaina, Y.; Freyre, F.; Fernández, G.; Sanchez, A.L.; Jerez, E.; E Anillo, L.; A Aguiar, J.; Cinza, Z.; et al. Five-year Follow-up of Chronic Hepatitis B Patients Immunized by Nasal Route with the Therapeutic Vaccine HeberNasvac. Euroasian J. Hepato-Gastroenterology 2018, 8, 133–139. [Google Scholar] [CrossRef]
- Obeng-Adjei, N.; A Hutnick, N.; Yan, J.; Chu, J.S.; Myles, D.J.F.; Morrow, M.P.; Sardesai, N.Y.; Weiner, D.B. DNA vaccine cocktail expressing genotype A and C HBV surface and consensus core antigens generates robust cytotoxic and antibody responses in mice and Rhesus macaques. Cancer Gene Ther. 2013, 20, 652–662. [Google Scholar] [CrossRef]
- Yoon, S.K.; Seo, Y.B.; Im, S.J.; Bae, S.H.; Song, M.J.; You, C.R.; Jang, J.W.; Yang, S.H.; Suh, Y.S.; Song, J.S.; et al. Safety and immunogenicity of therapeutic DNA vaccine with antiviral drug in chronic HBV patients and its immunogenicity in mice. Liver Int. 2014, 35, 805–815. [Google Scholar] [CrossRef]
- Lok, A.S.; Pan, C.Q.; Han, S.-H.; Trinh, H.; Fessel, W.J.; Rodell, T.; Massetto, B.; Lin, L.; Gaggar, A.; Subramanian, G.M.; et al. Randomized phase II study of GS-4774 as a therapeutic vaccine in virally suppressed patients with chronic hepatitis B. J. Hepatol. 2016, 65, 509–516. [Google Scholar] [CrossRef]
- Boni, C.; Janssen, H.L.; Rossi, M.; Yoon, S.K.; Vecchi, A.; Barili, V.; Yoshida, E.M.; Trinh, H.; Rodell, T.C.; Laccabue, D.; et al. Combined GS-4774 and Tenofovir Therapy Can Improve HBV-Specific T-Cell Responses in Patients With Chronic Hepatitis. Gastroenterol. 2019, 157, 227–241.e7. [Google Scholar] [CrossRef] [Green Version]
- Zoulim, F.; Fournier, C.; Habersetzer, F.; Sprinzl, M.; Pol, S.; Coffin, C.S.; Leroy, V.; Ma, M.; Wedemeyer, H.; Lohse, A.W.; et al. Safety and immunogenicity of the therapeutic vaccine TG1050 in chronic hepatitis B patients: A phase 1b placebo-controlled trial. Hum. Vaccines Immunother. 2019, 16, 388–399. [Google Scholar] [CrossRef] [Green Version]
- Lau, G.K.; Lok, A.S.; Liang, R.H.; Lai, C.-L.; Chiu, E.K.; Lau, Y.L.; Lam, S.K. Clearance of hepatitis B surface antigen after bone marrow transplantation: Role of adoptive immunity transfer. Hepatol. 1997, 25, 1497–1501. [Google Scholar] [CrossRef] [PubMed]
- Loggi, E.; Bihl, F.; Chisholm, J.V.; Biselli, M.; Bontadini, A.; Vitale, G.; Ercolani, G.; Grazi, G.L.; Pinna, A.D.; Bernardi, M.; et al. Anti-HBs re-seroconversion after liver transplantation in a patient with past HBV infection receiving a HBsAg positive graft. J. Hepatol. 2009, 50, 625–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qasim, W.; Brunetto, M.R.; Gehring, A.J.; Xue, S.-A.; Schurich, A.; Khakpoor, A.; Zhan, H.; Ciccorossi, P.; Gilmour, K.; Cavallone, D.; et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. J. Hepatol. 2015, 62, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Krebs, K.; Böttinger, N.; Huang, L.; Chmielewski, M.; Arzberger, S.; Gasteiger, G.; Jäger, C.; Schmitt, E.; Bohne, F.; Aichler, M.; et al. T Cells Expressing a Chimeric Antigen Receptor That Binds Hepatitis B Virus Envelope Proteins Control Virus Replication in Mice. Gastroenterol. 2013, 145, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Kah, J.; Koh, S.; Volz, T.; Ceccarello, E.; Allweiss, L.; Luetgehetmann, M.; Bertoletti, A.; Dandri, M. Lymphocytes transiently expressing virus-specific T cell receptors reduce hepatitis B virus infection. J. Clin. Investig. 2017, 127, 3177–3188. [Google Scholar] [CrossRef]
- Koh, S.; Kah, J.; Tham, C.Y.; Yang, N.; Ceccarello, E.; Chia, A.; Chen, M.S.; Khakpoor, A.; Pavesi, A.; Tan, A.T.; et al. Nonlytic Lymphocytes Engineered to Express Virus-Specific T-Cell Receptors Limit HBV Infection by Activating APOBEC3. Gastroenterol. 2018, 155, 180–193.e6. [Google Scholar] [CrossRef] [Green Version]
- Bohne, F.; Chmielewski, M.; Ebert, G.; Wiegmann, K.; Kürschner, T.; Schulze, A.; Urban, S.; Krönke, M.; Abken, H.; Protzer, U. T Cells Redirected Against Hepatitis B Virus Surface Proteins Eliminate Infected Hepatocytes. Gastroenterol. 2008, 134, 239–247. [Google Scholar] [CrossRef]
- Kruse, R.L.; Shum, T.; Tashiro, H.; Barzi, M.; Yi, Z.; Whitten-Bauer, C.; Legras, X.; Bissig-Choisat, B.; Garaigorta, U.; Gottschalk, S.; et al. HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice. Cytotherapy 2018, 20, 697–705. [Google Scholar] [CrossRef]
Drug Family | Drug Name | Trial N | Phase | Status | Sponsor |
---|---|---|---|---|---|
Entry inhibitor | Bulevirtide (Myrcludex B) | NCT02881008 | 2 | Completed | Hepatera Ltd. |
NCT02637999 | 2 | Completed | Hepatera Ltd. | ||
NCT04166266 | 2 | Not yet recruiting | Inserm-ANRS | ||
NCT03546621 | 2 | Completed | Hepatera Ltd. | ||
NCT02888106 | 2 | Recruiting | Hepatera Ltd. | ||
NCT03852719 | 3 | Recruiting | MYR GmbH | ||
NCT03852433 | 2 | Recruiting | MYR GmbH | ||
Small interfering RNA molecules (siRNAs) | VIR-2218 | NCT03672188 | 2 | Recruiting | Vir Biotechnology, Inc. |
DCR-HBVS | NCT03772249 | 1 | Recruiting | Dicerna Pharmaceuticals | |
JNJ-3989 (formely ARO-HBV) | NCT03365947 | 1 | Recruiting | Arrowhead Pharmaceuticals | |
NCT04208386 | 1 | Recruiting | Janssen Sciences | ||
ARB-1467 | NCT02631096 | 2 | Completed | Arbutus Biopharma Co | |
Antisense oligonucleotides | GSK3389404 | NCT03020745 | 2 | Completed | GlaxoSmithKline |
RO7062931 (also known as RG6004) | NCT03038113 | 2 | Completed | Hoffmann-La Roche | |
GSK 3,228,836 (IONIS-HBVRx) | NCT02981602 | 2 | Completed | GlaxoSmithKline | |
Capsid inhibitors | GLS4 (Morphothiadin mesilate/ritonavir) | NCT03638076 | 2 | Recruiting | Sunshine Lake Pharma |
JNJ 56136379 | NCT03361956 | 2 | Active, not recruiting | Janssen Sciences | |
JNJ 56,136,379 + JNJ 73763989 | NCT04129554 | 2 | Recruiting | Janssen Sciences | |
JNJ 56,136,379 + JNJ 73763989 | NCT03982186 | 2 | Recruiting | Janssen Sciences | |
ABI-H0731 | NCT03577171 | 2 | Completed | Assembly Biosciences | |
NCT03576066 | 2 | Completed | Assembly Biosciences | ||
NCT03780543 | 2 | Active, not recruiting | Assembly Biosciences | ||
ABI-H2158 | NCT03714152 | 1 | Recruiting | Assembly Biosciences | |
NCT04083716 | 1 | Completed | Assembly Biosciences | ||
QL-007 | NCT04157699 | 2 | Recruiting | Qilu Pharmaceutical | |
NCT04157257 | 2 | Recruiting | Qilu Pharmaceutical | ||
RO7049389 (also known as RG7907) | NCT02952924 | 1 | Recruiting | Hoffmann-La Roche | |
EDP-514 | NCT04008004 | 1 | Recruiting | Enanta Pharmaceuticals | |
Capsid inhibitor + TLR7 | RO7049389 + RO7020531 (also known as RG7854) | NCT04225715 | 2 | Not yet recruiting | Hoffmann-La Roche |
HBsAg release inhibitors | REP 2139 | NCT02876419 | 2 | Active, not recruiting | Replicor Inc. |
REP 2139-Mg + REP 2165-Mg | NCT02565719 | 2 | Completed | Replicor Inc. | |
REP 2139-Ca | NCT02726789 | 2 | Completed | Replicor Inc. | |
REP 2139-Ca | NCT02233075 | 2 | Completed | Replicor Inc. |
Drug Family | Drug Name | Trial Number | Phase | Status | Sponsor |
---|---|---|---|---|---|
Therapeutic vaccines | JNJ-64300535 | NCT03463369 | 1 | Recruiting | Janssen Sciences |
FP-02.2 | NCT02496897 | 1 | Completed | Altimmune, Inc. | |
DV-601 | NCT01023230 | 1 | Completed | Dynavax Technologies Co | |
INO-1800 with orwWithout INO-9112 | NCT02431312 | 1 | Completed | Inovio Pharmaceuticals | |
Multiple molecules | NCT03866187 | 1 | Recruiting | GlaxoSmithKline | |
HBV0003 | NCT03038802 | 1 | Not yet recruiting | Vaxine Pty Ltd. | |
TG1050 | NCT04168333 | 1 | Completed | Tasly Tianjin Biopharmaceutical | |
NCT02428400 | 1 | Completed | Transgene | ||
GS4774 | NCT01943799 | 2 | Completed | Gilead Sciences | |
NCT02174276 | 2 | Completed | Gilead Sciences | ||
T101 (therapeutic HB Adenovirus) | NCT04168333 | 1 | Completed | Tasly Tianjin Biopharmaceutical | |
ABX203 | NCT02249988 | 3 | Completed | Abivax S.A. | |
Toll-like receptors agonists | GS9688 (Selgantolimod) | NCT03491553 | 2 | Active | Gilead Sciences |
NCT03615066 | 2 | Active | Gilead Sciences | ||
GS-9620 (Vesatolimod) | NCT02579382 | 2 | Completed | Gilead Sciences | |
NCT02166047 | 2 | Completed | Gilead Sciences | ||
RO7020531 (also nknown as RG7854) | NCT02956850 | 1 | Recruiting | Hoffmann-La Roche | |
TQ-A3334 | NCT04180150 | 2 | Recruiting | Chia Tai Tianqing | |
RO6864018 (also known as RG7795) | NCT02391805 | 2 | Completed | Hoffmann-La Roche | |
Apoptosis inducer | APG-1387 | NCT03585322 | 1 | Active, not recruiting | Ascentage Pharma |
RIG-I agonists | Inarigivir Soproxil (GS-9992) | NCT03434353 | 2 | Active, not recruiting | Gilead Sciences |
NCT04059198 | 2 | Active, not recruiting | Gilead Sciences | ||
SB-9200 | NCT02751996 | 2 | Completed | Spring Bank Pharmaceuticals | |
Ciclophilin inhibitor | CRV-31 | NCT03596697 | 1 | Active, not recruiting | ContraVir Pharmaceuticals |
Monoclonal anti-HBsAg antibody | GC1102 | NCT03801798 | 2 | Active, not recruiting | Green Cross Corporation |
Unknown mechanism of action | RO7239958 (also known as RG6217) | NCT03762681 | 1 | Recruiting | Hoffmann-La Roche |
Anti-programmed cell death-1 (PD-1) humanized monoclonal antibody | HLX10 | NCT04133259 | 2 | Not yet recruiting | Henlix, Inc. |
Cemiplimab | NCT04046107 | 2 | Recruiting | National Institute of Allergy Inf Dis |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexopoulou, A.; Vasilieva, L.; Karayiannis, P. New Approaches to the Treatment of Chronic Hepatitis B. J. Clin. Med. 2020, 9, 3187. https://doi.org/10.3390/jcm9103187
Alexopoulou A, Vasilieva L, Karayiannis P. New Approaches to the Treatment of Chronic Hepatitis B. Journal of Clinical Medicine. 2020; 9(10):3187. https://doi.org/10.3390/jcm9103187
Chicago/Turabian StyleAlexopoulou, Alexandra, Larisa Vasilieva, and Peter Karayiannis. 2020. "New Approaches to the Treatment of Chronic Hepatitis B" Journal of Clinical Medicine 9, no. 10: 3187. https://doi.org/10.3390/jcm9103187
APA StyleAlexopoulou, A., Vasilieva, L., & Karayiannis, P. (2020). New Approaches to the Treatment of Chronic Hepatitis B. Journal of Clinical Medicine, 9(10), 3187. https://doi.org/10.3390/jcm9103187