Physical Activity in 6.5-Year-Old Children Born Extremely Preterm
Abstract
:1. Introduction
2. Participants and Methods
2.1. Ethics
2.2. Study Cohort
2.3. Measurement of Physical Activity
2.4. Descriptive Data for Birth, Perinatal Morbidities and Follow-Up
2.5. Statistics
3. Results
3.1. Study Cohort Characteristics
3.2. Comparison of PA Levels in Index and Control Children
3.3. Associations Between Perinatal Risk Factors and PA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Norman, M.; Hallberg, B.; Abrahamsson, T.; Bjorklund, L.J.; Domellof, M.; Farooqi, A.; Foyn Bruun, C.; Gadsboll, C.; Hellstrom-Westas, L.; Ingemansson, F.; et al. Association Between Year of Birth and 1-Year Survival Among Extremely Preterm Infants in Sweden During 2004–2007 and 2014–2016. JAMA 2019, 321, 1188–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilbride, H.W.; Gelatt, M.C.; Sabath, R.J. Pulmonary function and exercise capacity for ELBW survivors in preadolescence: Effect of neonatal chronic lung disease. J. Pediatr. 2003, 143, 488–493. [Google Scholar] [CrossRef]
- Welsh, L.; Kirkby, J.; Lum, S.; Odendaal, D.; Marlow, N.; Derrick, G.; Stocks, J.; Group, E.S. The EPICure study: Maximal exercise and physical activity in school children born extremely preterm. Thorax 2010, 65, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrijlandt, E.J.; Gerritsen, J.; Boezen, H.M.; Grevink, R.G.; Duiverman, E.J. Lung function and exercise capacity in young adults born prematurely. Am. J. Respir Crit. Care Med. 2006, 173, 890–896. [Google Scholar] [CrossRef]
- de Jong, F.; Monuteaux, M.C.; van Elburg, R.M.; Gillman, M.W.; Belfort, M.B. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension 2012, 59, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Johansson, S.; Iliadou, A.; Bergvall, N.; Tuvemo, T.; Norman, M.; Cnattingius, S. Risk of high blood pressure among young men increases with the degree of immaturity at birth. Circulation 2005, 112, 3430–3436. [Google Scholar] [CrossRef] [Green Version]
- Bonamy, A.K.; Bendito, A.; Martin, H.; Andolf, E.; Sedin, G.; Norman, M. Preterm birth contributes to increased vascular resistance and higher blood pressure in adolescent girls. Pediatr. Res. 2005, 58, 845–849. [Google Scholar] [CrossRef] [Green Version]
- Hofman, P.L.; Regan, F.; Jackson, W.E.; Jefferies, C.; Knight, D.B.; Robinson, E.M.; Cutfield, W.S. Premature birth and later insulin resistance. N Engl. J. Med. 2004, 351, 2179–2186. [Google Scholar] [CrossRef] [Green Version]
- Hovi, P.; Andersson, S.; Eriksson, J.G.; Järvenpää, A.L.; Strang-Karlsson, S.; Mäkitie, O.; Kajantie, E. Glucose regulation in young adults with very low birth weight. N Engl. J. Med. 2007, 356, 2053–2063. [Google Scholar] [CrossRef]
- Ekelund, U.; Luan, J.; Sherar, L.B.; Esliger, D.W.; Griew, P.; Cooper, A.; International Children's Accelerometry Database C. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA 2012, 307, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Riddoch, C.J.; Leary, S.D.; Ness, A.R.; Blair, S.N.; Deere, K.; Mattocks, C.; Griffiths, A.; Davey Smith, G.; Tilling, K. Prospective associations between objective measures of physical activity and fat mass in 12–14 year old children: The Avon Longitudinal Study of Parents and Children (ALSPAC). BMJ 2009, 339, b4544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haapanen-Niemi, N.; Miilunpalo, S.; Pasanen, M.; Vuori, I.; Oja, P.; Malmberg, J. Body mass index, physical inactivity and low level of physical fitness as determinants of all-cause and cardiovascular disease mortality--16 y follow-up of middle-aged and elderly men and women. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1465–1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, M.; Kampert, J.B.; Barlow, C.E.; Nichaman, M.Z.; Gibbons, L.W.; Paffenbarger, R.S.; Blair, S.N. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA 1999, 282, 1547–1553. [Google Scholar] [CrossRef]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Group, L.P.A.S.W. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Wocadlo, C.; Rieger, I. Motor impairment and low achievement in very preterm children at eight years of age. Early Hum. Dev. 2008, 84, 769–776. [Google Scholar]
- Joshi, S.; Powell, T.; Watkins, W.J.; Drayton, M.; Williams, E.M.; Kotecha, S. Exercise-induced bronchoconstriction in school-aged children who had chronic lung disease in infancy. J. Pediatr. 2013, 162, 813–818 e811. [Google Scholar] [CrossRef] [PubMed]
- Svien, L.R. Health-related fitness of seven- to 10-year-old children with histories of preterm birth. Pediatr. Phys. Ther. 2003, 15, 74–83. [Google Scholar] [CrossRef]
- Kriemler, S.; Keller, H.; Saigal, S.; Bar-Or, O. Aerobic and lung performance in premature children with and without chronic lung disease of prematurity. Clin. J. Sport Med. 2005, 15, 349–355. [Google Scholar] [CrossRef]
- Keller, H.; Bar-Or, O.; Kriemler, S.U.; Ayub, B.V.; Saigal, S.A. Anaerobic performance in 5- to 7-yr-old children of low birthweight. Med. Sci. Sports Exerc. 2000, 32, 278–283. [Google Scholar] [CrossRef]
- Lowe, J.; Watkins, W.J.; Kotecha, S.J.; Edwards, M.O.; Henderson, A.J.; Kotecha, S. Physical activity in school-age children born preterm. J. Pediatr. 2015, 166, 877–883. [Google Scholar] [CrossRef]
- Lowe, J.; Watkins, W.J.; Kotecha, S.J.; Kotecha, S. Physical Activity and Sedentary Behavior in Preterm-Born 7-Year Old Children. PLoS ONE 2016, 11, e0155229. [Google Scholar] [CrossRef] [PubMed]
- Strunk, T.; Inder, T.; Wang, X.; Burgner, D.; Mallard, C.; Levy, O. Infection-induced inflammation and cerebral injury in preterm infants. Lancet Infect. Dis. 2014, 14, 751–762. [Google Scholar] [CrossRef] [Green Version]
- Bratteby Tollerz, L.U.; Forslund, A.H.; Olsson, R.M.; Lidström, H.; Holmbäck, U. Children with cerebral palsy do not achieve healthy physical activity levels. Acta Paediatr. 2015, 104, 1125–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svedenkrans, J.; Henckel, E.; Kowalski, J.; Norman, M.; Bohlin, K. Long-term impact of preterm birth on exercise capacity in healthy young men: A national population-based cohort study. PLoS ONE 2013, 8, e80869. [Google Scholar] [CrossRef]
- Fellman, V.; Hellström-Westas, L.; Norman, M.; Westgren, M.; Källén, K.; Lagercrantz, H.; Marsál, K.; Serenius, F.; Wennergren, M.; Group, E. One-year survival of extremely preterm infants after active perinatal care in Sweden. JAMA 2009, 301, 2225–2233. [Google Scholar] [CrossRef]
- Serenius, F.; Källén, K.; Blennow, M.; Ewald, U.; Fellman, V.; Holmström, G.; Lindberg, E.; Lundqvist, P.; Maršál, K.; Norman, M.; et al. Neurodevelopmental outcome in extremely preterm infants at 2.5 years after active perinatal care in Sweden. JAMA 2013, 309, 1810–1820. [Google Scholar]
- EXPRESS Study Group. Incidence of and risk factors for neonatal morbidity after active perinatal care: Extremely preterm infants study in Sweden (EXPRESS). Acta Paediatr 2010, 99, 978–992. [Google Scholar] [CrossRef]
- Serenius, F.; Ewald, U.; Farooqi, A.; Fellman, V.; Hafstrom, M.; Hellgren, K.; Marsal, K.; Ohlin, A.; Olhager, E.; Stjernqvist, K.; et al. Neurodevelopmental Outcomes Among Extremely Preterm Infants 6.5 Years After Active Perinatal Care in Sweden. JAMA Pediatr. 2016, 170, 954–963. [Google Scholar] [CrossRef] [Green Version]
- Mohlkert, L.A.; Hallberg, J.; Broberg, O.; Hellstrom, M.; Pegelow Halvorsen, C.; Sjoberg, G.; Edstedt Bonamy, A.K.; Liuba, P.; Fellman, V.; Domellof, M.; et al. Preterm Arteries in Childhood: Dimensions, Intima-Media Thickness and Elasticity of the Aorta, Coronaries and Carotids in 6-year-old Children Born Extremely Preterm. Pediatr. Res. 2016, 81, 299–306. [Google Scholar] [CrossRef]
- Edstedt Bonamy, A.K.; Mohlkert, L.A.; Hallberg, J.; Liuba, P.; Fellman, V.; Domellof, M.; Norman, M. Blood Pressure in 6-Year-Old Children Born Extremely Preterm. J. Am. Heart Assoc. 2017, 6, e005858. [Google Scholar] [CrossRef]
- Mohlkert, L.A.; Hallberg, J.; Broberg, O.; Rydberg, A.; Halvorsen, C.P.; Liuba, P.; Fellman, V.; Domellof, M.; Sjoberg, G.; Norman, M. The Preterm Heart in Childhood: Left Ventricular Structure, Geometry, and Function Assessed by Echocardiography in 6-Year-Old Survivors of Periviable Births. J. Am. Heart Assoc. 2018, 7, e007742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thunqvist, P.; Tufvesson, E.; Bjermer, L.; Winberg, A.; Fellman, V.; Domellof, M.; Melen, E.; Norman, M.; Hallberg, J. Lung function after extremely preterm birth—A population-based cohort study (EXPRESS). Pediatr. Pulmonol. 2018, 53, 64–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekblom, O.; Nyberg, G.; Bak, E.E.; Ekelund, U.; Marcus, C. Validity and comparability of a wrist-worn accelerometer in children. J. Phys. Act. Health 2012, 9, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.J.; Noonan, R.; Rowlands, A.V.; Van Hees, V.; Knowles, Z.; Boddy, L.M. Wear Compliance and Activity in Children Wearing Wrist- and Hip-Mounted Accelerometers. Med. Sci. Sports Exerc. 2016, 48, 245–253. [Google Scholar] [CrossRef]
- Chandler, J.L.; Brazendale, K.; Beets, M.W.; Mealing, B.A. Classification of physical activity intensities using a wrist-worn accelerometer in 8–12-year-old children. Pediatr. Obes. 2016, 11, 120–127. [Google Scholar] [CrossRef]
- Riso, E.M.; Toplaan, L.; Viira, P.; Vaiksaar, S.; Jurimae, J. Physical fitness and physical activity of 6–7-year-old children according to weight status and sports participation. PLoS ONE 2019, 14, e0218901. [Google Scholar] [CrossRef]
- Markopoulou, P.; Papanikolaou, E.; Analytis, A.; Zoumakis, E.; Siahanidou, T. Preterm Birth as a Risk Factor for Metabolic Syndrome and Cardiovascular Disease in Adult Life: A Systematic Review and Meta-Analysis. J. Pediatr. 2019, 210, 69–80 e65. [Google Scholar] [CrossRef]
- Wen, C.P.; Wai, J.P.; Tsai, M.K.; Yang, Y.C.; Cheng, T.Y.; Lee, M.C.; Chan, H.T.; Tsao, C.K.; Tsai, S.P.; Wu, X. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet 2011, 378, 1244–1253. [Google Scholar] [CrossRef]
- Luu, T.M.; Rehman Mian, M.O.; Nuyt, A.M. Long-Term Impact of Preterm Birth: Neurodevelopmental and Physical Health Outcomes. Clin. Perinatol. 2017, 44, 305–314. [Google Scholar] [CrossRef]
- Johansson, E.; Larisch, L.M.; Marcus, C.; Hagstromer, M. Calibration and Validation of a Wrist- and Hip-Worn Actigraph Accelerometer in 4-Year-Old Children. PLoS ONE 2016, 11, e0162436. [Google Scholar] [CrossRef]
- Puhl, J.; Greaves, K.; Hoyt, M.; Baranowski, T. Children’s Activity Rating Scale (CARS): Description and calibration. Res. Q Exerc. Sport 1990, 61, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Levene, M.; Dowling, S.; Graham, M.; Fogelman, K.; Galton, M.; Phillips, M. Impaired motor function (clumsiness) in 5 year old children: Correlation with neonatal ultrasound scans. Arch. Dis. Child. 1992, 67, 687–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marlow, N.; Roberts, B.L.; Cooke, R.W. Motor skills in extremely low birthweight children at the age of 6 years. Arch. Dis. Child. 1989, 64, 839–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, F.; Gallo, C.; Pugliese, M.; Guidotti, I.; Gavioli, S.; Coccolini, E.; Zagni, P.; Della Casa, E.; Rossi, C.; Lugli, L.; et al. Preterm birth and developmental problems in the preschool age. Part I: Minor motor problems. J. Matern Fetal. Neonatal. Med. 2012, 25, 2154–2159. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.B.; Beaver, K.M. Sibling differences in low birth weight, dopaminergic polymorphisms, and ADHD symptomatology: Evidence of GxE. Psychiatry Res. 2015, 226, 467–473. [Google Scholar] [CrossRef]
- Sucksdorff, M.; Lehtonen, L.; Chudal, R.; Suominen, A.; Joelsson, P.; Gissler, M.; Sourander, A. Preterm Birth and Poor Fetal Growth as Risk Factors of Attention-Deficit/ Hyperactivity Disorder. Pediatrics 2015, 136, e599–e608. [Google Scholar] [CrossRef] [Green Version]
- Kavas, N.; Arisoy, A.E.; Bayhan, A.; Kara, B.; Gunlemez, A.; Turker, G.; Oruc, M.; Gokalp, A.S. Is there a relationship between neonatal sepsis and simple minor neurological dysfunction? Pediatr. Int. 2016. [Google Scholar]
- Svedenkrans, J.; Stoecklin, B.; Jones, J.G.; Doherty, D.A.; Pillow, J.J. Physiology and Predictors of Impaired Gas Exchange in Infants with Bronchopulmonary Dysplasia. Am. J. Respir. Crit. Care Med. 2019, 200, 471–480. [Google Scholar] [CrossRef]
- Thunqvist, P.; Gustafsson, P.; Norman, M.; Wickman, M.; Hallberg, J. Lung function at 6 and 18 months after preterm birth in relation to severity of bronchopulmonary dysplasia. Pediatr. Pulmonol. 2015, 50, 978–986. [Google Scholar] [CrossRef]
- Mansson, J.; Fellman, V.; Stjernqvist, K.; Group, E.S. Extremely preterm birth affects boys more and socio-economic and neonatal variables pose sex-specific risks. Acta Paediatr. 2015, 104, 514–521. [Google Scholar] [CrossRef]
- Green, D.; Lingam, R.; Mattocks, C.; Riddoch, C.; Ness, A.; Emond, A. The risk of reduced physical activity in children with probable Developmental Coordination Disorder: A prospective longitudinal study. Res. Dev. Disabil. 2011, 32, 1332–1342. [Google Scholar] [CrossRef] [PubMed]
Birth Characteristics | Index (n = 71) | Control (n = 87) | p |
---|---|---|---|
Male sex (n, %) | 39 (54.9) | 53 (60.9) | 0.448 |
Gestational Age, weeks (mean, SD) | 25.4 (1.0) | 39.8 (1.2) | n/a |
Birth Weight, g (mean, SD) | 788 (160) | 3625 (463) | n/a |
Birth Weight Standard Deviation Score (mean, SD) | −0.77 (1.16) | 0.18 (0.99) | n/a |
Perinatal Morbidities | |||
ROP ≥ grade 3 (n, %) | 18 (25.4%) | n/a | n/a |
IVH grade ≥ 3 and/or PVL (n, %) | 9 (12.7%) | n/a | n/a |
Severe BPD (n/N *, %) | 14/63 (22.2%) | n/a | n/a |
Surgical NEC (n, %) | 2 (2.8%) | n/a | n/a |
Blood culture verified sepsis (n, %) | 39 (54.9%) | n/a | n/a |
Characteristics at Follow-up | |||
Height at test, cm (mean, SD) | 118.7 (5.3) | 124.1 (5.1) | <0.001 |
Weight at test, kg (mean, SD) | 21.1 (3.8) | 24.7 (4.2) | <0.001 |
Sick days during activity measurement (median, range) | 0 (0−3) | 0 (0−3) | 0.395 |
mild CP (n/N *,%) | 3/69 (4.3) | n/a | n/a |
Average Time in MVPA Per Day (min) | Index | Control | Difference | p |
---|---|---|---|---|
Mean (95% CI) | Mean (95% CI) | Mean (95% CI) | ||
All | 90.5 (82.6, 98.4) | 100.8 (93.7, 107.8) | 10.2 (−1.0, 21.4) | 0.073 |
Males | 83.8 (72.2, 95.4) | 108.8 (99.1, 118.5) | 24.9 (8.7, 41.1) | 0.003 |
Females | 98.0 (88.2, 107.9) | 90.3 (80.8, 99.8) | −7.8 (−22.0, 6.5) | 0.287 |
Percentage of Time in MVPA | ||||
All | 12.0 (11.0, 13.1) | 13.4 (12.5, 14.3) | 1.3 (−0.1, 2.8) | 0.07 |
Males | 11.2 (9.7, 12.7) | 14.4 (13.1, 15.7) | 3.2 (1.1, 5.3) | 0.003 |
Females | 13.0 (11.8, 14.2) | 12.0 (10.8, 13.3) | −1.0 (−2.8, 0.9) | 0.303 |
Percentage of Time in SED | ||||
All | 53.1 (51.2, 54.9) | 51.4 (49.8, 53.0) | −1.6 (−4.2, 0.9) | 0.211 |
Males | 55.3 (52.6, 58.0) | 50.8 (48.6, 53.0) | −4.5 (−8.2, −0.9) | 0.018 |
Females | 50.7 (48.5, 53.0) | 52.5 (50.3, 54.6) | 1.7 (−1.6, 5.0) | 0.304 |
Average Time in MVPA Per Day (min) | Mean (95% CI) | p | |
---|---|---|---|
Yes | No | ||
Corrected ANOVA Model, R2 = 0.269 | <0.001 | ||
male sex | 80.2 (68.9, 91.5) | 52.1 (23.0, 81.3) | 0.078 |
Major brain injury | 37.9 (7.7, 68.2) | 94.4 (87.2, 101.7) | <0.001 |
Verified sepsis | 76.3 (60.0, 92.7) | 56.1 (38.3, 73.8) | 0.005 |
interactive effect, sex and major brain injury | 0.032 | ||
Percentage of time in MVPA | |||
Corrected ANOVA Model, R2 = 0.252 | <0.001 | ||
male sex | 10.7 (9.2, 12.2) | 7.1 (3.3, 11.0) | 0.087 |
Major brain injury | 5.3 (1.3, 9.4) | 12.5 (11.6, 13.5) | <0.001 |
Verified sepsis | 10.2 (8.1, 12.4) | 7.7 (5.3, 10.0) | 0.007 |
interactive effect, sex and major brain injury | 0.036 | ||
Percentage of time in SED | |||
Corrected ANOVA Model, R2= 0.176 | 0.011 | ||
male sex | 55.8 (52.6, 58.9) | 59.8 (51.7, 67.8) | 0.361 |
Major brain injury | 63.0 (54.6, 71.3) | 52.5 (50.5, 54.5) | 0.017 |
Verified sepsis | 55.9 (51.3, 60.4) | 59.7 (54.8, 64.6) | 0.050 |
interactive effect, sex and major brain injury | 0.092 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Svedenkrans, J.; Ekblom, Ö.; Domellöf, M.; Fellman, V.; Norman, M.; Bohlin, K. Physical Activity in 6.5-Year-Old Children Born Extremely Preterm. J. Clin. Med. 2020, 9, 3206. https://doi.org/10.3390/jcm9103206
Svedenkrans J, Ekblom Ö, Domellöf M, Fellman V, Norman M, Bohlin K. Physical Activity in 6.5-Year-Old Children Born Extremely Preterm. Journal of Clinical Medicine. 2020; 9(10):3206. https://doi.org/10.3390/jcm9103206
Chicago/Turabian StyleSvedenkrans, Jenny, Örjan Ekblom, Magnus Domellöf, Vineta Fellman, Mikael Norman, and Kajsa Bohlin. 2020. "Physical Activity in 6.5-Year-Old Children Born Extremely Preterm" Journal of Clinical Medicine 9, no. 10: 3206. https://doi.org/10.3390/jcm9103206
APA StyleSvedenkrans, J., Ekblom, Ö., Domellöf, M., Fellman, V., Norman, M., & Bohlin, K. (2020). Physical Activity in 6.5-Year-Old Children Born Extremely Preterm. Journal of Clinical Medicine, 9(10), 3206. https://doi.org/10.3390/jcm9103206