Biopsy-Controlled Non-Invasive Quantification of Collagen Type VI in Kidney Transplant Recipients: A Post-Hoc Analysis of the MECANO Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Protocol Kidney Biopsies and Histological Analyses
2.3. PRO-C6 Detection
2.4. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. PRO-C6 and Biopsy-Proven Histological Changes over Follow-Up
3.3. Association between PRO-C6 and Biopsy Changes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Laupacis, A.; Keown, P.; Pus, N.; Krueger, H.; Ferguson, B.; Wong, C.; Muirhead, N. A study of the quality of life and cost-utility of renal transplantation. Kidney Int. 1996, 50, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfe, R.A.; Ashby, V.B.; Milford, E.L.; Ojo, A.O.; Ettenger, R.E.; Agodoa, L.Y.C.; Held, P.J.; Port, F.K. Comparison of Mortality in All Patients on Dialysis, Patients on Dialysis Awaiting Transplantation, and Recipients of a First Cadaveric Transplant. N. Engl. J. Med. 1999, 341, 1725–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Kriesche, H.-U.; Schold, J.D.; Srinivas, T.R.; Kaplan, B. Lack of Improvement in Renal Allograft Survival Despite a Marked Decrease in Acute Rejection Rates Over the Most Recent Era. Am. J. Transplant. 2004, 4, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Stribos, E.G.D.; Nielsen, S.H.; Brix, S.; Karsdal, M.A.; Seelen, M.A.; van Goor, H.; Bakker, S.J.L.; Olinga, P.; Mutsaers, H.A.M.; Genovese, F. Non-invasive quantification of collagen turnover in renal transplant recipients. PLoS ONE 2017, 12, e0175898. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.S.; Rasmussen, D.G.K.; Yazdani, S.; Navis, G.; van Goor, H.; Karsdal, M.A.; Genovese, F.; van den Born, J. Urinary collagen degradation products as early markers of progressive renal fibrosis. J. Transl. Med. 2017, 15, 63. [Google Scholar] [CrossRef] [Green Version]
- Farris, A.B.; Colvin, R.B. Renal interstitial fibrosis: Mechanisms and evaluation. Curr. Opin. Nephrol. Hypertens. 2012, 21, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Karsdal, M.A.; Nielsen, M.J.; Sand, J.M.; Henriksen, K.; Genovese, F.; Bay-Jensen, A.-C.; Smith, V.; Adamkewicz, J.I.; Christiansen, C.; Leeming, D.J. Extracellular matrix remodeling: The common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev. Technol. 2013, 11, 70–92. [Google Scholar] [CrossRef] [Green Version]
- Soylemezoglu, O.; Wild, G.; Dalley, A.J.; MacNeil, S.; Milford-Ward, A.; Brown, C.B.; el Nahas, A.M. Urinary and serum type III collagen: Markers of renal fibrosis. Nephrol. Dial. Transplant. 1997, 12, 1883–1889. [Google Scholar] [CrossRef]
- Rasmussen, D.G.K.; Fenton, A.; Jesky, M.; Ferro, C.; Boor, P.; Tepel, M.; Karsdal, M.A.; Genovese, F.; Cockwell, P. Urinary endotrophin predicts disease progression in patients with chronic kidney disease. Sci. Rep. 2017, 7, 17328. [Google Scholar] [CrossRef] [Green Version]
- Serón, D.; Moreso, F.; Ramón, J.M.; Hueso, M.; Condom, E.; Fulladosa, X.; Bover, J.; Gil-Vernet, S.; Castelao, A.M.; Alsina, J.; et al. Protocol renal allograft biopsies and the design of clinical trials aimed to prevent or treat chronic allograft nephropathy. Transplantation 2000, 69, 1849–1855. [Google Scholar] [CrossRef]
- Magro, G.; Grasso, S.; Colombatti, A.; Lopes, M. Immunohistochemical distribution of type VI collagen in developing human kidney. Histochem. J. 1996, 28, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Groma, V. Demonstration of collagen type VI and alpha-smooth muscle actin in renal fibrotic injury in man. Nephrol. Dial. Transplant. 1998, 13, 305–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lennon, R.; Byron, A.; Humphries, J.D.; Randles, M.J.; Carisey, A.; Murphy, S.; Knight, D.; Brenchley, P.E.; Zent, R.; Humphries, M.J. Global analysis reveals the complexity of the human glomerular extracellular matrix. J. Am. Soc. Nephrol. 2014, 25, 939–951. [Google Scholar] [CrossRef] [Green Version]
- Cescon, M.; Gattazzo, F.; Chen, P.; Bonaldo, P. Collagen VI at a glance. J. Cell Sci. 2015, 128, 3525–3531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aigner, T.; Hambach, L.; Söder, S.; Schlötzer-Schrehardt, U.; Pöschl, E. The C5 domain of Col6A3 is cleaved off from the Col6 fibrils immediately after secretion. Biochem. Biophys. Res. Commun. 2002, 290, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Fenton, A.; Jesky, M.D.; Ferro, C.J.; Sørensen, J.; Karsdal, M.A.; Cockwell, P.; Genovese, F. Serum endotrophin, a type VI collagen cleavage product, is associated with increased mortality in chronic kidney disease. PLoS ONE 2017, 12, e0175200. [Google Scholar] [CrossRef]
- Sun, K.; Park, J.; Gupta, O.T.; Holland, W.L.; Auerbach, P.; Zhang, N.; Goncalves Marangoni, R.; Nicoloro, S.M.; Czech, M.P.; Varga, J.; et al. Endotrophin triggers adipose tissue fibrosis and metabolic dysfunction. Nat. Commun. 2014, 5, 3485. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, D.G.K.; Hansen, T.W.; von Scholten, B.J.; Nielsen, S.H.; Reinhard, H.; Parving, H.-H.; Tepel, M.; Karsdal, M.A.; Jacobsen, P.K.; Genovese, F.; et al. Higher Collagen VI Formation Is Associated with All-Cause Mortality in Patients with Type 2 Diabetes and Microalbuminuria. Diabetes Care 2018, 41, 1493–1500. [Google Scholar] [CrossRef] [Green Version]
- Pilemann-Lyberg, S.; Rasmussen, D.G.K.; Hansen, T.W.; Tofte, N.; Winther, S.A.; Holm Nielsen, S.; Theilade, S.; Karsdal, M.A.; Genovese, F.; Rossing, P. Markers of Collagen Formation and Degradation Reflect Renal Function and Predict Adverse Outcomes in Patients with Type 1 Diabetes. Diabetes Care 2019, 42, 1760–1768. [Google Scholar] [CrossRef]
- Gooch, J.L.; King, C.; Francis, C.E.; Garcia, P.S.; Bai, Y. Cyclosporine A alters expression of renal microRNAs: New insights into calcineurin inhibitor nephrotoxicity. PLoS ONE 2017, 12, e0175242. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Pozos, K.; Lee-Montiel, F.; Perez-Villalva, R.; Uribe, N.; Gamba, G.; Bazan-Perkins, B.; Bobadilla, N.A. Polymerized type I collagen reduces chronic cyclosporine nephrotoxicity. Nephrol. Dial. Transplant. 2010, 25, 2150–2158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slattery, C.; Campbell, E.; McMorrow, T.; Ryan, M.P. Cyclosporine A-Induced Renal Fibrosis. Am. J. Pathol. 2005, 167, 395–407. [Google Scholar] [CrossRef]
- Bemelman, F.J.; de Fijter, J.W.; Kers, J.; Meyer, C.; Peters-Sengers, H.; de Maar, E.F.; van der Pant, K.A.M.I.; de Vries, A.P.J.; Sanders, J.-S.; Zwinderman, A.; et al. Early Conversion to Prednisolone/Everolimus as an Alternative Weaning Regimen Associates With Beneficial Renal Transplant Histology and Function: The Randomized-Controlled MECANO Trial. Am. J. Transplant. 2017, 17, 1020–1030. [Google Scholar] [CrossRef] [Green Version]
- Bemelman, F.J.; de Maar, E.F.; Press, R.R.; van Kan, H.J.; ten Berge, I.J.; Homan van der Heide, J.J.; de Fijter, H.W. Minimization of Maintenance Immunosuppression Early After Renal Transplantation: An Interim Analysis. Transplantation 2009, 88, 421–428. [Google Scholar] [CrossRef]
- Loupy, A.; Haas, M.; Solez, K.; Racusen, L.; Glotz, D.; Seron, D.; Nankivell, B.J.; Colvin, R.B.; Afrouzian, M.; Akalin, E.; et al. The Banff 2015 Kidney Meeting Report: Current Challenges in Rejection Classification and Prospects for Adopting Molecular Pathology. Am. J. Transplant. 2017, 17, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Mengel, M.; Reeve, J.; Bunnag, S.; Einecke, G.; Jhangri, G.S.; Sis, B.; Famulski, K.; Guembes-Hidalgo, L.; Halloran, P.F. Scoring Total Inflammation Is Superior to the Current Banff Inflammation Score in Predicting Outcome and the Degree of Molecular Disturbance in Renal Allografts. Am. J. Transplant. 2009, 9, 1859–1867. [Google Scholar] [CrossRef]
- Sun, S.; Henriksen, K.; Karsdal, M.A.; Byrjalsen, I.; Rittweger, J.; Armbrecht, G.; Belavy, D.L.; Felsenberg, D.; Nedergaard, A.F. Collagen Type III and VI Turnover in Response to Long-Term Immobilization. PLoS ONE 2015, 10, e0144525. [Google Scholar] [CrossRef] [Green Version]
- Bülow, R.D.; Boor, P. Extracellular Matrix in Kidney Fibrosis: More Than Just a Scaffold. J. Histochem. Cytochem. 2019, 67, 643–661. [Google Scholar] [CrossRef] [Green Version]
- Nerlich, A.G.; Schleicher, E.D.; Wiest, I.; Specks, U.; Timpl, R. Immunohistochemical localization of collagen VI in diabetic glomeruli. Kidney Int. 1994, 45, 1648–1656. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Jinde, K.; Nishina, M.; Tanabe, R.; Endoh, M.; Okada, Y.; Sakai, H.; Kurokawa, K. Analysis of prognostic predictors in idiopathic membranous nephropathy. Am. J. Kidney Dis. 2001, 37, 380–387. [Google Scholar] [CrossRef]
- Knupp, C.; Pinali, C.; Munro, P.M.; Gruber, H.E.; Sherratt, M.J.; Baldock, C.; Squire, J.M. Structural correlation between collagen VI microfibrils and collagen VI banded aggregates. J. Struct. Biol. 2006, 154, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Boor, P.; Floege, J. Renal allograft fibrosis: Biology and therapeutic targets. Am. J. Transplant. 2015, 15, 863–886. [Google Scholar] [CrossRef] [PubMed]
- Scian, M.J.; Maluf, D.G.; Archer, K.J.; Suh, J.L.; Massey, D.; Fassnacht, R.C.; Whitehill, B.; Sharma, A.; King, A.; Gehr, T.; et al. Gene expression changes are associated with loss of kidney graft function and interstitial fibrosis and tubular atrophy: Diagnosis versus prediction. Transplantation 2011, 91, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Busauschina, A.; Schnuelle, P.; van der Woude, F. Cyclosporine nephrotoxicity. Transplant. Proc. 2004, 36, S229–S233. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J.; Holden, P.; Hansen, U. The expanded collagen VI family: New chains and new questions. Connect. Tissue Res. 2013, 54, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics at Enrollment | Overall | Randomized Group | p Value | |
---|---|---|---|---|
CsA | EVL | |||
Number of patients, n | 94 | 51 | 43 | |
Age, years (SD) | 52 (13) | 51 (13) | 54 (12) | 0.30 |
Sex (male), n (%) | 64 (68) | 33 (65) | 31 (72) | 0.44 |
Race (Caucasian), n (%) | 83 (88) | 47 (92) | 36 (84) | 0.21 |
Primary kidney disease, n (%) | 0.81 | |||
Polycystic kidney disease | 24 (26) | 13 (26) | 11 (26) | |
Glomerulonephritis | 16 (17) | 9 (18) | 7 (16) | |
Hypertension | 15 (16) | 7 (14) | 8 (19) | |
Urologic | 8 (9) | 3 (6) | 5 (12) | |
Vascular | 5 (5) | 2 (4) | 3 (7) | |
Focal segmental glomerulosclerosis | 3 (3) | 1 (2) | 2 (5) | |
Diabetes mellitus | 3 (3) | 2 (4) | 1 (2) | |
Unknown cause | 16 (17) | 11 (22) | 5 (12) | |
Donor type, n (%) | 0.81 | |||
Living unrelated | 29 (31) | 15 (29) | 14 (33) | |
Deceased after brain death | 28 (30) | 15 (29) | 13 (30) | |
Living related | 22 (23) | 14 (28) | 8 (19) | |
Deceased after cardiac death | 14 (15) | 7 (14) | 7 (16) | |
Donor age, years (SD) a | 50 (13) | 51 (13) | 49 (12) | 0.55 |
Antigen mismatch, n (IQR) | 3 (2–4) | 3 (2–3) | 3 (2–4) | 0.52 |
TTKRT, months (IQR) | 24 (5–46) | 18 (6–46) | 24 (5–48) | 0.53 |
Characteristics at Randomization | Overall | Randomized Group | p value | |
---|---|---|---|---|
CsA | EVL | |||
eGFR, mL/min/1.73 m2 | 49 (42–62) | 49 (43–57) | 49 (40–67) | 0.89 |
Weight, kg (SD) a | 79 (14) | 81 (15) | 78 (13) | 0.24 |
BMI, kg/m2 (SD) a | 26.7 (3.5) | 26.0 (3.9) | 25.4 (3.1) | 0.44 |
SBP, mmHg (SD) b | 144 (20) | 144 (20) | 145 (21) | 0.82 |
DBP, mmHg (SD) b | 84 (12) | 84 (11) | 83 (12) | 0.68 |
LDL, mmol/L (SD) b | 3.19 (2.39–3.75) | 3.19 (2.37–3.95) | 3.15 (2.40–3.70) | 0.84 |
HDL, mmol/L (SD) b | 1.39 (1.20–1.73) | 1.30 (1.17–1.71) | 1.49 (1.20–1.76) | 0.49 |
Cholesterol, mmol/L (SD) b | 5.13 (4.34–6.10) | 5.16 (4.26–6.23) | 5.08 (4.40–6.07) | 0.92 |
Statins use, n (%) | 55 (59) | 32 (63) | 23 (54) | 0.36 |
Glucose, mmol/L c | 5.10 (4.50–5.80) | 5.10 (4.70–5.80) | 4.90 (4.50–5.90) | 0.35 |
HbA1c, % (SD) c | 6.08 (1.10) | 6.14 (1.25) | 6.01 (0.88) | 0.60 |
Diabetes mellitus, n (%) | 2 (2) | 0 (0) | 2 (5) | 0.12 |
Smoking current, n (%) | 15 (16) | 10 (20) | 5 (12) | 0.29 |
Biomarkers and Histological Characteristics | Overall | Randomized Group | p | |
---|---|---|---|---|
CsA | EVL | |||
Biomarkers | ||||
6 Months | ||||
Plasma | ||||
PRO-C6 (ng/mL) a | 9.5 (3.4) | 9.5 (3.1) | 9.4 (3.9) | 0.93 |
Creatinine, µmol/L (SD) | 130 (33) | 130 (31) | 130 (35) | 0.96 |
Urine | ||||
PRO-C6 (ng/mg creat) b | 6.7 (4.8–12.4) | 6.6 (4.9–12.9) | 6.8 (3.8–12.8) | 0.70 |
24 Months | ||||
Plasma | ||||
PRO-C6 (ng/mL) c | 9.4 (4.3) | 9.6 (4.5) | 9.1(4.3) | 0.72 |
Creatinine, µmol/L (SD) | 143 (49) | 149 (46) | 136 (53) | 0.22 |
Urine | ||||
PRO-C6 (ng/mg creat) b | 5.9 (3.4–21.5) | 4.5 (3.2–10.2) | 7.5 (4.6–40.7) | 0.02 |
Delta24-6 | ||||
Plasma | ||||
PRO-C6 (ng/mL) c | 0.3 (3.9) | 0.6 (3.1) | 0.01 (4.6) | 0.67 |
Urine | ||||
PRO-C6 (ng/mg creat) b | −0.5 (−2.6–4.8) | −1.4 (−3.6–0.27) | 0.9 (−2.2–23.9) | 0.01 |
Histological analyses | ||||
6 Months | ||||
IF/TA-score | 1 (0–1) | 1 (0–1) | 1 (1–2) | 0.56 |
PSR, % | 13.3 (6.0) | 13.0 (6.1) | 13.6 (6.0) | 0.65 |
ti-score, % | 10.0 (5.0–15.8) | 10.0 (5.0–10.0) | 10.0 (5.0–20.0) | 0.38 |
24 Months | ||||
IF/TA-score | 1 (1–2) | 1 (0–1) | 1 (1–2) | 0.36 |
PSR, % | 17.3 (10.6) | 19.7 (11.7) | 14.5 (8.5) | 0.02 |
ti-score, % | 20.0 (10.0–41.3) | 20.0 (10.0–50.0) | 15.0 (10.0–30.0) | 0.16 |
Delta24-6 | ||||
IF/TA-score | 0.5 (0–1) | 1 (0–1) | 0 (0–1) | 0.23 |
PSR, % | 4.0 (11.4) | 6.7 (13.1) | 0.9 (7.9) | 0.01 |
ti-score, % | 10 (0–30) | 10 (0–45) | 5 (0–20) | 0.09 |
Histological Analyses | 6-Months PRO-C6 | 24-Months PRO-C6 | Delta24-6 PRO-C6 | |||
---|---|---|---|---|---|---|
Plasma, ng/mL | Urine, ng/mg | Plasma, ng/mL | Urine, ng/mg | Plasma, ng/mL | Urine, ng/mg | |
Std. β | Std. β | Std. β | Std. β | Std. β | Std. β | |
6 Months | ||||||
IF/TA | 0.34 ** | 0.20 | ||||
PSR | 0.11 | −0.18 | ||||
ti-score | 0.04 | 0.08 | ||||
24 Months | ||||||
IF/TA | 0.24 * | 0.06 | 0.08 | 0.13 | −0.04 | 0.02 |
PSR | 0.01 | −0.30 * | 0.06 | −0.24 | −0.01 | 0.04 |
ti-score | 0.23 * | 0.23 | 0.16 | 0.09 | 0.05 | −0.03 |
Delta24-6 | ||||||
IF/TA | −0.03 | −0.08 | −0.20 | −0.07 | −0.16 | 0.01 |
PSR | −0.06 | −0.17 | −0.009 | −0.19 | 0.04 | −0.04 |
ti-score | 0.22 * | 0.20 | 0.11 | −0.02 | 0.01 | −0.02 |
Histological Analyses | 24 Months | Delta24-6 | ||||||
---|---|---|---|---|---|---|---|---|
Plasma PRO-C6, ng/mL | Urine PRO-C6, ng/mg | Plasma PRO-C6, ng/mL | Urine PRO-C6, ng/mg | |||||
CsA | EVL | CsA | EVL | CsA | EVL | CsA | EVL | |
Std. β | Std. β | Std. β | Std. β | Std. β | Std. β | Std. β | Std. β | |
24 Months | ||||||||
IF/TA | −0.11 | 0.32 | −0.25 | 0.30 | −0.31 | 0.16 | 0.13 | −0.11 |
PSR | −0.07 | 0.18 | −0.09 | −0.31 | −0.47 | 0.25 | 0.12 | −0.11 |
ti-score | −0.07 | 0.40 | 0.18 | 0.14 | −0.37 | 0.32 | 0.08 | −0.07 |
Delta24-6 | ||||||||
IF/TA | −0.30 | −0.07 | −0.43 * | 0.07 | −0.40 | −0.01 | 0.12 | −0.003 |
PSR | 0.001 | −0.06 | −0.10 | −0.27 | −0.28 | 0.25 | 0.03 | −0.18 |
ti-score | −0.08 | 0.33 | 0.07 | 0.05 | −0.35 | 0.25 | 0.09 | 0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yepes-Calderón, M.; Sotomayor, C.G.; Rasmussen, D.G.K.; Hijmans, R.S.; te Velde-Keyzer, C.A.; van Londen, M.; van Dijk, M.; Diepstra, A.; Berger, S.P.; Karsdal, M.A.; et al. Biopsy-Controlled Non-Invasive Quantification of Collagen Type VI in Kidney Transplant Recipients: A Post-Hoc Analysis of the MECANO Trial. J. Clin. Med. 2020, 9, 3216. https://doi.org/10.3390/jcm9103216
Yepes-Calderón M, Sotomayor CG, Rasmussen DGK, Hijmans RS, te Velde-Keyzer CA, van Londen M, van Dijk M, Diepstra A, Berger SP, Karsdal MA, et al. Biopsy-Controlled Non-Invasive Quantification of Collagen Type VI in Kidney Transplant Recipients: A Post-Hoc Analysis of the MECANO Trial. Journal of Clinical Medicine. 2020; 9(10):3216. https://doi.org/10.3390/jcm9103216
Chicago/Turabian StyleYepes-Calderón, Manuela, Camilo G. Sotomayor, Daniel Guldager Kring Rasmussen, Ryanne S. Hijmans, Charlotte A. te Velde-Keyzer, Marco van Londen, Marja van Dijk, Arjan Diepstra, Stefan P. Berger, Morten Asser Karsdal, and et al. 2020. "Biopsy-Controlled Non-Invasive Quantification of Collagen Type VI in Kidney Transplant Recipients: A Post-Hoc Analysis of the MECANO Trial" Journal of Clinical Medicine 9, no. 10: 3216. https://doi.org/10.3390/jcm9103216
APA StyleYepes-Calderón, M., Sotomayor, C. G., Rasmussen, D. G. K., Hijmans, R. S., te Velde-Keyzer, C. A., van Londen, M., van Dijk, M., Diepstra, A., Berger, S. P., Karsdal, M. A., Bemelman, F. J., de Fijter, J. W., Kers, J., Florquin, S., Genovese, F., Bakker, S. J. L., Sanders, J. -S., & Van Den Born, J. (2020). Biopsy-Controlled Non-Invasive Quantification of Collagen Type VI in Kidney Transplant Recipients: A Post-Hoc Analysis of the MECANO Trial. Journal of Clinical Medicine, 9(10), 3216. https://doi.org/10.3390/jcm9103216