Acute Effects of Metformin and Vildagliptin after a Lipid-Rich Meal on Postprandial Microvascular Reactivity in Patients with Type 2 Diabetes and Obesity: A Randomized Trial
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Study Design
2.2. Anthropometric, Clinical, and Laboratory Measurements
2.3. Lipid-Rich Meal
2.4. Microvascular Reactivity and Vasomotion
2.5. Plasma Viscosity
2.6. Biomarkers of Low-Grade Inflammation, Oxidative Stress, and Gastrointestinal Peptides
2.7. Statistics
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Poirier, P.; Giles, T.D.; Bray, G.A.; Hong, Y.; Stern, J.S.; Pi-Sunyer, F.X.; Eckel, R.H. Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss: An update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006, 113, 898–918. [Google Scholar]
- Hubert, H.B.; Feinleib, M.; McNamara, P.M.; Castelli, W.P. Obesity as an independent risk factor for cardiovascular disease: A 26-year follow-up of participants in the Framingham Heart Study. Circulation 1983, 67, 968–977. [Google Scholar] [CrossRef] [Green Version]
- Golay, A.; Ybarra, J. Link between obesity and type 2 diabetes. Best Pract. Res. Clin. Endocrinol. Metab. 2005, 19, 649–663. [Google Scholar] [CrossRef]
- Verma, S.; Anderson, T.J. Fundamentals of endothelial function for the clinical cardiologist. Circulation 2002, 105, 546–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheatcroft, S.; Williams, I.; Shah, A.; Kearney, M. Pathophysiological implications of insulin resistance on vascular endothelial function. Diabet. Med. 2003, 20, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Maranhão, P.A.; de Souza, M.D.G.C.; Panazzolo, D.G.; Nogueira Neto, J.F.; Bouskela, E.; Kraemer-Aguiar, L.G. Metabolic Changes Induced by High-Fat Meal Evoke Different Microvascular Responses in Accordance with Adiposity Status. Biomed. Res. Int. 2018, 2018, 5046508. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.J.; Xie, Z.; Viollet, B.; Zou, M.-H. Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase. Diabetes 2006, 55, 496–505. [Google Scholar] [CrossRef] [Green Version]
- Vella, A.; Bock, G.; Giesler, P.D.; Burton, D.B.; Serra, D.B.; Saylan, M.L.; Dunning, B.E.; Foley, J.E.; Rizza, R.A.; Camilleri, M. Effects of dipeptidyl peptidase-4 inhibition on gastrointestinal function, meal appearance, and glucose metabolism in type 2 diabetes. Diabetes 2007, 56, 1475–1480. [Google Scholar] [CrossRef] [Green Version]
- Association, A.D. Classification and diagnosis of diabetes. Diabetes Care 2017, 40 (Suppl. 1), S11–S24. [Google Scholar] [CrossRef] [Green Version]
- Maranhão, P.A.; Kraemer-Aguiar, L.G.; de Oliveira, C.L.; Kuschnir, M.C.; Vieira, Y.R.; Souza, M.G.; Koury, J.C.; Bouskela, E. Brazil nuts intake improves lipid profile, oxidative stress and microvascular function in obese adolescents: A randomized controlled trial. Nutr. Metab. 2011, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Buss, C.; Kraemer-Aguiar, L.G.; Maranhão, P.A.; Marinho, C.; Maria das Graças, C.; Wiernsperger, N.; Bouskela, E. Novel findings in the cephalic phase of digestion: A role for microcirculation? Physiol. Behav. 2012, 105, 1082–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefanovska, A.; Bracic, M.; Kvernmo, H.D. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE Trans. Biomed. Eng. 1999, 46, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Panazzolo, D.G.; da Silva, L.H.; Maranhao, P.A.; Souza, M.G.; Nogueira Neto, J.F.; Leao, L.M.; Bouskela, E.; Kraemer-Aguiar Luiz, G. Short-term effects of low-dose estradiol on endothelial function and blood viscosity in nondiabetic postmenopausal overweight women: A double-blind, placebo-controlled study. Menopause 2016, 23, 1114–1121. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- De Aguiar LG, K.; Bahia, L.R.; Villela, N.; Laflor, C.; Sicuro, F.; Wiernsperger, N.; Bottino, D.; Bouskela, E. metformin improves endothelial vascular reactivity in first-degree relatives of type 2 diabetic patients with metabolic syndrome and normal glucose tolerance. Diabetes Care 2006, 29, 1083–1089. [Google Scholar] [CrossRef]
- Ayaori, M.; Iwakami, N.; Uto-Kondo, H.; Sato, H.; Sasaki, M.; Komatsu, T.; Iizuka, M.; Takiguchi, S.; Yakushiji, E.; Nakaya, K.; et al. Dipeptidyl peptidase-4 inhibitors attenuate endothelial function as evaluated by flow-mediated vasodilatation in type 2 diabetic patients. J. Am. Heart Assoc. 2013, 2, e003277. [Google Scholar] [CrossRef] [Green Version]
- Klauser, R.; Prager, R.; Schernthaner, G.; Olefsky, J.M. Contribution of postprandial insulin and glucose to glucose disposal in normal and insulin-resistant obese subjects. J. Clin. Endocrinol. Metab. 1991, 73, 758–764. [Google Scholar] [CrossRef]
- Enkhmaa, B.; Ozturk, Z.; Anuurad, E.; Berglund, L. Postprandial lipoproteins and cardiovascular disease risk in diabetes mellitus. Curr. Diabetes Rep. 2010, 10, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Boquist, S.; Ruotolo, G.; Tang, R.; Björkegren, J.; Bond, M.G.; de Faire, U.; Karpe, F.; Hamsten, A. Alimentary lipemia, postprandial triglyceride-rich lipoproteins, and common carotid intima-media thickness in healthy, middle-aged men. Circulation 1999, 100, 723–728. [Google Scholar] [CrossRef] [Green Version]
- Matheeussen, V.; Baerts, L.; De Meyer, G.; De Keulenaer, G.; Van der Veken, P.; Augustyns, K.; Dubois, V.; Scharpe, S.; De Meester, I. Expression and spatial heterogeneity of dipeptidyl peptidases in endothelial cells of conduct vessels and capillaries. Biol. Chem. 2011, 392, 189–198. [Google Scholar] [CrossRef]
- Pala, L.; Pezzatini, A.; Dicembrini, I.; Ciani, S.; Gelmini, S.; Vannelli, B.G.; Cresci, B.; Mannucci, E.; Rotella, C.M. Different modulation of dipeptidyl peptidase-4 activity between microvascular and macrovascular human endothelial cells. Acta Diabetol. 2012, 49, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Júnior, W.S.; de Souza, M.d.G.C.; Neto, J.F.N.; Bouskela, E.; Kraemer-Aguiar, L.G. Constitutive DPP4 activity, inflammation, and microvascular reactivity in subjects with excess body weight and without diabetes. Microvasc. Res. 2018, 120, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.; Nyström, T. Antidiabetic agents and endothelial dysfunction–beyond glucose control. Basic Clin. Pharmacol. Toxicol. 2015, 117, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Martinez-Lemus, L.A.; Zhang, C. Endothelium-derived hyperpolarizing factor and diabetes. World J. Cardiol. 2011, 3, 25. [Google Scholar] [CrossRef]
- Eleftheriadou, I.; Grigoropoulou, P.; Katsilambros, N.; Tentolouris, N. The effects of medications used for the management of diabetes and obesity on postprandial lipid metabolism. Curr. Diabetes Rev. 2008, 4, 340–356. [Google Scholar] [CrossRef] [PubMed]
- Juntti-Berggren, L.; Pigon, J.; Karpe, F.; Hamsten, A.; Gutniak, M.; Vignati, L.; Efendic, S. The antidiabetogenic effect of GLP-1 is maintained during a 7-day treatment period and improves diabetic dyslipoproteinemia in NIDDM patients. Diabetes Care 1996, 19, 1200–1206. [Google Scholar] [CrossRef]
- Wulffelé, e.M.; Kooy, A.; De Zeeuw, D.; Stehouwer, C.; Gansevoort, R. The effect of metformin on blood pressure, plasma cholesterol and triglycerides in type 2 diabetes mellitus: A systematic review. J. Intern. Med. 2004, 256, 1–14. [Google Scholar] [CrossRef]
- Monami, M.; Lamanna, C.; Desideri, C.M.; Mannucci, E. DPP-4 inhibitors and lipids: Systematic review and meta-analysis. Adv. Ther. 2012, 29, 14–25. [Google Scholar] [CrossRef]
- Qin, X.; Shen, H.; Liu, M.; Yang, Q.; Zheng, S.; Sabo, M.; D’Alessio, D.A.; Tso, P. GLP-1 reduces intestinal lymph flow, triglyceride absorption, and apolipoprotein production in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 288, G943–G949. [Google Scholar] [CrossRef]
- Ansar, S.; Koska, J.; Reaven, P.D. Postprandial hyperlipidemia, endothelial dysfunction and cardiovascular risk: Focus on incretins. Cardiovasc. Diabetol. 2011, 10, 61. [Google Scholar] [CrossRef] [Green Version]
- Expert Panel on Detection, Evaluation. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001, 285, 2486. [Google Scholar] [CrossRef]
- Ebenbichler, C.F.; Kirchmair, R.; Egger, C.; Patsch, J.R. Postprandial state and atherosclerosis. Curr. Opin. Lipidol. 1995, 6, 286–290. [Google Scholar] [CrossRef]
- Kraemer-Aguiar, L.G.; Maranhão, P.A.; Sicuro, F.L.; Bouskela, E. Microvascular dysfunction: A direct link among BMI, waist circumference and glucose homeostasis in young overweight/obese normoglycemic women? Int. J. Obes. 2010, 34, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Van Genugten, R.; Serné, E.; Heymans, M.; van Raalte, D.; Diamant, M. Postprandial microvascular function deteriorates in parallel with gradual worsening of insulin sensitivity and glucose tolerance in men with the metabolic syndrome or type 2 diabetes. Diabetologia 2013, 56, 583–587. [Google Scholar] [CrossRef]
Vildagliptin (n = 19) | Metformin (n = 19) | p-Value | |
---|---|---|---|
Clinic-anthropometric aspects | |||
Age (years) | 39.0 ± 5.3 | 39.8 ± 7.7 | 0.44 |
Weight (kg) | 94.0 ± 14.0 | 99.5 ± 16.1 | 0.31 |
BMI (Kg/m2) | 36.0 ± 3.0 | 38.5 ± 6.1 | 0.25 |
Waist Circumference (cm) | 105.6 ± 10.5 | 106.55 ± 12.0 | 0.51 |
Hip Circumference (cm) | 116.1 ± 9.0 | 122.7 ± 11.9 | 0.09 |
WHR | 0.91 ± 0.05 | 0.88 ± 0.07 | 0.57 |
Systolic BP (mmHg) | 131.5 ± 20.9 | 134.6 ± 27.2 | 0.75 |
Diastolic BP (mmHg) | 84.0 ± 13.4 | 83.0 ± 13.1 | 0.97 |
Mean BP (mmHg) | 100.0 ± 15.6 | 100.2 ± 17.2 | 0.86 |
Fat mass (%) | 39.5 ± 3.9 | 41.1 ± 4.2 | 0.29 |
Lean mass (%) | 60.4 ± 6.5 | 59.2 ± 6.1 | 0.30 |
Laboratory aspects | |||
Insulin (mIU/l) | 1.8 ± 0.9 | 1.9 ± 1.2 | 0.75 |
PG (mg/dl) | 200.3 ± 95.1 | 190.3 ± 74.0 | 0.88 |
Post-load PG (mg/dl) | 253.4 ± 60.9 | 255.9 ± 56.9 | 1.0 |
HbA1c (%) | 8.0 ± 1.8 | 7.8 ± 2.0 | 0.64 |
Total Cholesterol (mg/dl) | 183.9 ± 36.7 | 198.0 ± 37.8 | 0.18 |
Triglycerides (mg/dl) | 161.0 ± 79.8 | 141.2 ± 78.7 | 0.28 |
HDL-cholesterol (mg/dl) | 43.0 ± 8.2 | 46.7 ± 11.3 | 0.38 |
LDL-cholesterol (mg/dl) | 108.6 ± 26.3 | 112.90 ± 25.9 | 0.13 |
VLDL-cholesterol (mg/dl) | 32.3 ± 16.0 | 28.3 ± 15.7 | 0.29 |
C-Reactive Protein (mg/dl) | 1.1 ± 1.4 | 0.9 ± 0.6 | 0.94 |
GIP (pg/mL) | 24.3 ± 14.6 | 20.3 ± 12.3 | 0.32 |
GLP-1 (pM/l)) | 1.1 ± 1.0 | 1.0 ± 0.7 | 0.98 |
Glucagon (pg/mL) | 23.5 ± 20.7 | 31.5 ± 53.5 | 0.53 |
LDLox (U/L) | 74.8 ± 31.3 | 62.1 ± 16.8 | 0.24 |
Endothelin-1 (pg/mL) | 1.7 ± 0.5 | 1.6 ± 0.5 | 0.83 |
DPP4act (uM/mL/min) | 9.4 ± 3.5 | 9.6 ± 3.7 | 0.86 |
Vildagliptin Baseline | Vildagliptin Post-Treatment | Metformin Baseline | Metformin Post-Treatment | |
---|---|---|---|---|
PGintercept | 226.8 ± 93.0 | 216.3 ± 109.2 | 213.8 ± 80.1 | 175.3 ± 61.7 *** |
Insulinintercept | 847.8 ± 476.7 | 1034 ± 636.1 *** | 1001 ± 526.2 | 993.5 ± 415.7 |
Total Cholesterolintercept | 180.3 ± 36.8 | 177.2 ± 40.4 | 188.5 ± 35.6 | 184.7 ± 27.6 |
Triglyceridesintercept | 157.4 ± 75.5 | 146.2 ± 80.4 | 135.9 ± 74.4 | 144.7 ± 67.6 |
HDL-cholesterolintercept | 41.7 ± 8.5 | 42.9 ± 9.5 | 44.1 ± 10.9 | 43.5 ± 9.5 |
LDL-cholesterolintercept | 107 ± 27.0 | 102.1 ± 22.1 | 116.8 ± 23.4 | 112.1 ± 21.7 |
VLDL-cholesterolintercept | 31.0 ± 16.1 | 26.1 ± 8.9 | 27.4 ± 15.2 | 29.3 ± 13.6 |
GLP-1intercept | 2.5 ± 1.9 | 5.3 ± 4.1 ** | 2.1 ± 1.1 | 2.3 ± 1.7 &&& |
Glucagonintercept | 15.4 ± 28.4 | 26.6 ± 25.3 | 29.0 ± 43.6 | 28.1 ± 40.4 |
LDLox intercept | 44.6 ± 59.4 | 72.2 ± 31.0 | 61.5 ± 17.8 | 61.4 ± 21.4 |
Endotelinintercept | 1.5 ± 1.3 | 1.6 ± 0.5 | 1.6 ± 0.5 | 1.6 ± 0.6 |
DPP4 actintercept | 10.3 ± 3.4 | 7.6 ± 3.0 *** | 9.6 ± 3.6 | 9.2 ± 3.7 |
PlasmaViscosity 30mPa.sintercept | 1.8 ± 0.1 | 1.8 ± 0.1 | 1.9 ± 0.1 | 1.9 ± 0.2 |
Plasma Viscosity 50mPa.sintercept | 1.8 ± 1.1 | 1.8 ± 0.1 | 1.7 ± 0.5 | 1.8 ± 0.2 |
Nutritive Microvascular Reactivity. | Vildagliptin Baseline | Vildagliptin Post-Treatment | Metformin Baseline | Metformin Post-Treatment |
---|---|---|---|---|
Resting FCDintercept | 28.4 ± 13.2 | 33.4 ± 12.6 | 36.1 ± 16.2 | 43.1 ± 14.4 |
FCD during PORHintercept | 31.1 ± 15.9 | 29.1 ± 13.8 | 38.7 ± 19.6 | 45.1 ± 14.5 & |
TIME (min) | ||||||
---|---|---|---|---|---|---|
Group | Baseline | 30 | 60 | 120 | 180 | |
Non-nutritive microflow | ||||||
Mean Value (PU) | ||||||
post-treatment | MET | 12[5.9–15.7] | 10.2[5.7–12.3] | 10.1[5.4–13.2] | 10[5.5–11] | 10.4[5.6–16] |
post-treatment | VIL | 13.1[8.5–2] | 12.3[7.8–18.4] & | 12[7.5–18] & | 11.4[5.7–18] & | 10.9[5.6–17.7] |
Mean Total (PU) | ||||||
post-treatment | MET | 0.2[0.1–0.3] | 0.1[0.1–0.3] | 0.1[0.1–0.3] | 0.1[0.1–0.2] | 0.1[0.1–0.2] |
post-treatment | VIL | 0.1[0.1–0.3] | 0.2[0.1–0.3] | 0.1[0.1–0.3] | 0.1[0.1–0.2] | 0.1[0.1–0.2] |
Microvascular vasomotion | ||||||
Total Frequency interval (Hz) | ||||||
post-treatment | MET | 32.4[14.2–65.3] | 27.3[12.9–67.2] | 25.7[13.0–66.4] | 23.3[14.2–39.9] | 22.2[15.2–48.6] |
post-treatment | VIL | 29.0[20.6–59.7] | 33.1[18.6–54.3] | 30.6[19.1–52.5] | 30.0[5.5–48.7] | 31.3[16.4–50.0] & |
Endothelial (Hz) | ||||||
post-treatment | MET | 4.2[2.2–7.7] | 3.7[2.1–6.4] | 3.9[2.5–8.8] | 4.1[2.5–7.0] | 4.4[1.8–8.6] |
post-treatment | VIL | 4.7[3.1–7.6] | 3.9[2.2–10.9] | 5.3[2.0–9.0] | 4.9[2.6–8.9] | 4.8[2.4–7.4] |
Sympathetic (Hz) | ||||||
post-treatment | MET | 3.8[2.2–4.9] | 3.7[2.4–6.1] | 3.7[2.3–5.3] | 3.73[2.39–5.6] | 4.0[2.1–5.5] |
post-treatment | VIL | 3.7[1.8–5.3] | 3.9[1.8–6.1] | 3.9[1.8–9.4] | 4.5[2.1–10.0] | 3.9[2.1–8.4] |
Myogenic (Hz) | ||||||
post-treatment | MET | 2.3[1.6–3.5] | 2.3[1.7–3.5] | 2.2[1.6–2.9] | 2.3[1.6–3.7] | 2.2[1.8–3.8] |
post-treatment | VIL | 2.6[1.7–4.1] | 2.3[1.7–3.5] | 2.2[1.8–3.2] | 2.3[1.7–4.2] | 2.1[1.7–3.8] |
Respiratory (Hz) | ||||||
post-treatment | MET | 1.3[1.1–1.5] | 1.3[1.1–1.6] | 1.3[1.0–1.5] | 1.3[1.0–1.5] | 1.7[1.0–1.5] |
post-treatment | VIL | 1.2[0.9–1.4] | 1.2[0.8–1.5] | 1.2[0.8–1.8] | 1.1[0.1–1.5] | 1.2[0.9–1.5] |
Cardiogenic (Hz) | ||||||
post-treatment | MET | 0.7[0.5–0.8] | 0.7[0.6–0.8] | 0.7[0.6–0.8] | 0.7[0.6–0.8] | 0.7[0.6–0.8] |
post-treatment | VIL | 0.7[0.6–0.8] | 0.7[0.6–0.8] | 0.7[0.5–1.0] | 0.7[0.5–0.8] | 0.7[0.5–0.8] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiappacassa, A.; Maranhão, P.A.; Souza, M.d.G.C.d.; Panazzolo, D.G.; Nogueira Neto, J.F.; Bouskela, E.; Kraemer-Aguiar, L.G. Acute Effects of Metformin and Vildagliptin after a Lipid-Rich Meal on Postprandial Microvascular Reactivity in Patients with Type 2 Diabetes and Obesity: A Randomized Trial. J. Clin. Med. 2020, 9, 3228. https://doi.org/10.3390/jcm9103228
Schiappacassa A, Maranhão PA, Souza MdGCd, Panazzolo DG, Nogueira Neto JF, Bouskela E, Kraemer-Aguiar LG. Acute Effects of Metformin and Vildagliptin after a Lipid-Rich Meal on Postprandial Microvascular Reactivity in Patients with Type 2 Diabetes and Obesity: A Randomized Trial. Journal of Clinical Medicine. 2020; 9(10):3228. https://doi.org/10.3390/jcm9103228
Chicago/Turabian StyleSchiappacassa, Alessandra, Priscila A. Maranhão, Maria das Graças Coelho de Souza, Diogo G. Panazzolo, José Firmino Nogueira Neto, Eliete Bouskela, and Luiz Guilherme Kraemer-Aguiar. 2020. "Acute Effects of Metformin and Vildagliptin after a Lipid-Rich Meal on Postprandial Microvascular Reactivity in Patients with Type 2 Diabetes and Obesity: A Randomized Trial" Journal of Clinical Medicine 9, no. 10: 3228. https://doi.org/10.3390/jcm9103228
APA StyleSchiappacassa, A., Maranhão, P. A., Souza, M. d. G. C. d., Panazzolo, D. G., Nogueira Neto, J. F., Bouskela, E., & Kraemer-Aguiar, L. G. (2020). Acute Effects of Metformin and Vildagliptin after a Lipid-Rich Meal on Postprandial Microvascular Reactivity in Patients with Type 2 Diabetes and Obesity: A Randomized Trial. Journal of Clinical Medicine, 9(10), 3228. https://doi.org/10.3390/jcm9103228