Incidence of Differentiation Syndrome Associated with Treatment Regimens in Acute Myeloid Leukemia: A Systematic Review of the Literature
Abstract
:1. Introduction
2. Methods
2.1. Literature Search and Article Selection
2.2. Data Extraction
2.3. Risk of Bias Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Montesinos, P.; Bergua, J.M.; Vellenga, E.; Rayon, C.; Parody, R.; de la Serna, J.; Leon, A.; Esteve, J.; Milone, G.; Deben, G.; et al. Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: Characteristics, outcome, and prognostic factors. Blood 2009, 113, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.uptodate.com/contents/initial-treatment-of-acute-promyelocytic-leukemia-in-adults?search=acute (accessed on 9 August 2019).
- Leukemia & Lymphoma Society. Acute Promyelocytic Leukemia Facts. Available online: https://www.lls.org/sites/default/files/National/USA/Pdf/Publications/APL_FactSheet_10_15FINAL.pdf (accessed on 9 August 2019).
- Ryan, M.M. Acute Promyelocytic Leukemia: A Summary. J. Adv. Pr. Oncol. 2018, 9, 178–187. [Google Scholar]
- Lallemand-Breitenbach, V.; De Thé, H. Retinoic acid plus arsenic trioxide, the ultimate panacea for acute promyelocytic leukemia? Blood 2013, 122, 2008–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jillella, A.; Kota, V. The global problem of early deaths in acute promyelocytic leukemia: A strategy to decrease induction mortality in the most curable leukemia. Blood Rev. 2018, 32, 89–95. [Google Scholar] [CrossRef]
- Available online: https://www.uptodate.com/contents/differentiation-syndrome-associated-with-treatment-of-acute-leukemia (accessed on 15 August 2019).
- Montesinos, P.; Sanz, M.A. The differentiation syndrome in patients with acute promyelocytic leukemia: Experience of the Pethema group and review of the literature. Mediterr. J. Hematol. Infect. Dis. 2011, 3, 2011059. [Google Scholar] [CrossRef]
- Frankel, S.R.; Eardley, A.; Lauwers, G.; Weiss, M.; Warrell, R.P. The “Retinoic Acid Syndrome” in Acute Promyelocytic Leukemia. Ann. Intern. Med. 1992, 117, 292–296. [Google Scholar] [CrossRef]
- Sanz, M.A.; Montesinos, P. How we prevent and treat differentiation syndrome in patients with acute promyelocytic leukemia. Blood 2014, 123, 2777–2782. [Google Scholar] [CrossRef]
- Available online: https://www.meddra.org/ (accessed on 15 August 2019).
- Fathi, A.T.; Dinardo, C.D.; Kline, I.; Kenvin, L.; Gupta, I.; Attar, E.C.; Stein, E.M.; De Botton, S.; for the AG221-C-001 Study Investigators. Differentiation Syndrome Associated With Enasidenib, a Selective Inhibitor of Mutant Isocitrate Dehydrogenase 2. JAMA Oncol. 2018, 4, 1106–1110. [Google Scholar] [CrossRef]
- Dinardo, C.D.; Stein, E.M.; De Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; et al. Durable Remissions with Ivosidenib inIDH1-Mutated Relapsed or Refractory AML. N. Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef]
- Norsworthy, K.; Mulkey, F.; Scott, E.C.; Ward, A.F.; Przepiorka, D.; Charlab, R.; Dorff, S.E.; Deisseroth, A.; Kazandjian, D.; Sridhara, R.; et al. Differentiation syndrome with ivosidenib and enasidenib treatment in patients with relapsed or refractory IDH-mutated AML: A U.S. Food and Drug Administration systematic analysis. Clin. Cancer Res. 2020, 26. [Google Scholar] [CrossRef]
- Zeidner, J.F. Differentiating the Differentiation Syndrome Associated with IDH Inhibitors in AML. Clin. Cancer Res. 2020, 26. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. FDA approves ivosidenib as first-line treatment for AML with IDH1 mutation. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-ivosidenib-first-line-treatment-aml-idh1-mutation (accessed on 15 August 2019).
- De Thé, H. Differentiation therapy revisited. Nat. Rev. Cancer 2017, 18, 117–127. [Google Scholar] [CrossRef]
- IDHIFA—Full Prescribing Information. Available online: https://packageinserts.bms.com/pi/pi_idhifa.pdf (accessed on 15 October 2020).
- Available online: https://www.tibsovopro.com/pdf/prescribinginformation.pdf (accessed on 15 November 2019).
- Available online: https://www.ema.europa.eu/en/documents/medicine-qa/questions-answers-withdrawal-application-marketing-authorisation-idhifa-enasidenib_en.pdf (accessed on 15 November 2019).
- Schüklenk, U. Retraction watch. Bioethics 2012, 26. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanz, M.A.; Martín, G.; González, M.; León, A.; Rayón, C.; Rivas, C.; Colomer, D.; Amutio, E.; Capote, F.J.; Milone, G.A.; et al. Risk-adapted treatment of acute promyelocytic leukemia with all-trans-retinoic acid and anthracycline monochemotherapy: A multicenter study by the PETHEMA group. Blood 2003, 103, 1237–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohno, R.; Yoshida, H.; Fukutani, H.; Naoe, T.; Ohshima, T.; Kyo, T.; Endoh, N.; Fujimoto, T.; Kobayashi, T.; Hiraoka, A. Multi-institutional study of all-trans-retinoic acid as a differentiation therapy of refractory acute promyelocytic leukemia. Leukaemia Study Group of the Ministry of Health and Welfare. Leukemia 1993, 7, 1722–1727. [Google Scholar] [PubMed]
- Mourad, Y.A.; Jabr, F.; Salem, Z. Scrotal ulceration induced by all-trans retinoic acid in a patient with acute promyelocytic leukemia. Int. J. Dermatol. 2005, 44, 67–68. [Google Scholar] [CrossRef]
- Tallman, M.S.; Nabhan, C.; Feusner, J.H.; Rowe, J.M. Acute promyelocytic leukemia: Evolving therapeutic strategies. Blood 2002, 99, 759–767. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhang, Y.; Li, J.; Li, X.; Hou, J.; Zhao, Y.; Liu, X.; Han, X.; Hu, L.; Wang, S.; et al. Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood 2010, 115, 1697–1702. [Google Scholar] [CrossRef] [Green Version]
- Li, E.-Q.; Xu, L.; Zhang, Z.-Q.; Xiao, Y.; Guo, H.-X.; Luo, X.-Q.; Hu, Q.; Lai, D.-B.; Tu, L.-M.; Jin, R.-M. Retrospective analysis of 119 cases of pediatric acute promyelocytic leukemia: Comparisons of four treatment regimes. Exp. Ther. Med. 2012, 4, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Soignet, S.L.; Frankel, S.R.; Douer, D.; Tallman, M.S.; Kantarjian, H.; Calleja, E.; Stone, R.M.; Kalaycio, M.; Scheinberg, D.A.; Steinherz, P.; et al. United States Multicenter Study of Arsenic Trioxide in Relapsed Acute Promyelocytic Leukemia. J. Clin. Oncol. 2001, 19, 3852–3860. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.A.; Martín, G.; Rayón, C.; Esteve, J.; González, M.; Díaz-Mediavilla, J.; Bolufer, P.; Barragán, E.; Terol, M.J.; González, J.D.; et al. A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RARalpha-positive acute promyelocytic leukemia. PETHEMA group. Blood 1999, 94, 3015–3021. [Google Scholar] [PubMed]
- Powell, B.L.; Moser, B.; Stock, W.; Gallagher, R.E.; Willman, C.L.; Stone, R.M.; Rowe, J.M.; Coutre, S.; Feusner, J.H.; Gregory, J.; et al. Arsenic trioxide improves event-free and overall survival for adults with acute promyelocytic leukemia: North American Leukemia Intergroup Study C9710. Blood 2010, 116, 3751–3757. [Google Scholar] [CrossRef] [Green Version]
- Fenaux, P.; Chastang, C.; Chevret, S.; Sanz, M.; Dombret, H.; Archimbaud, E.; Fey, M.; Rayon, C.; Huguet, F.; Sotto, J.J.; et al. A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood 1999, 94, 1192–1200. [Google Scholar] [CrossRef] [PubMed]
- Gaínza, F.J.; García, J.; Iruretagoyena, J.R. Continuous hemofiltration in the management of ‘retinoic acid syndrome’. Leuk. Res. 1997, 21, 891. [Google Scholar] [CrossRef]
- Asou, N.; Kishimoto, Y.; Kiyoi, H.; Okada, M.; Kawai, Y.; Tsuzuki, M.; Horikawa, K.; Matsuda, M.; Shinagawa, K.; Kobayashi, T.; et al. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARα transcript after consolidation therapy: The Japan Adult Leukemia Study Group (JALSG) APL97 study. Blood 2007, 110, 59–66. [Google Scholar] [CrossRef]
- Burnett, A.K.; Grimwade, D.; Solomon, E.; Wheatley, K.; Goldstone, A.H. Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: Result of the Randomized MRC Trial. Blood 1999, 93, 4131–4143. [Google Scholar] [CrossRef]
- Mahendra, P.; Harman, K.; Phillips, M.; Gunning, K.; Marcus, R. Rapid progression of‘retinoic acid syndrome’in the hypogranular variant of acute promyelocytic leukaemia, despite treatment with dexamethasone and conventional chemotherapy. Int. J. Lab. Hematol. 2008, 16, 371–374. [Google Scholar] [CrossRef]
- Metage, C.; Hazarika, B.; Sarma, J.; Karwa, R. Retinoic acid syndrome in a elderly male with psoriasis- A case report. Respir. Med. Case Rep. 2018, 24, 81–83. [Google Scholar] [CrossRef]
- Hu, J.; Shen, Z.-X.; Sun, G.-L.; Chen, S.-J.; Wang, Z.; Chen, Z. Long-term survival and prognostig study in acute promyelocytic leukemia treated with all-trans retinoic acid, chemotherapy, and As2O3—An experience of 120 patients at a single institution. Int. J. Hematol. 1999, 70, 248–260. [Google Scholar]
- Avvisati, G.; Coco, F.L.; Diverio, D.; Falda, M.; Ferrara, F.; Lazzarino, M.; Russo, D.; Petti, M.; Mandelli, F. AIDA (all-trans retinoic acid + idarubicin) in newly diagnosed acute promyelocytic leukemia: A Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto (GIMEMA) pilot study. Blood 1996, 88, 1390–1398. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.-H.; Wan, W.-Q.; Luo, J.-S.; Zheng, M.-C.; Huang, K.; Yang, L.-H.; Mai, H.-R.; Li, J.; Chen, H.-Q.; Sun, X.-F.; et al. Multicenter randomized trial of arsenic trioxide and Realgar-Indigo naturalisformula in pediatric patients with acute promyelocytic leukemia: Interim results of the SCCLG-APL clinical study. Am. J. Hematol. 2018, 93, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Charles, K.S.; Kanaa, M.; Winfield, D.; Reilly, J.T. Scrotal ulceration during all-trans retinoic (ATRA) therapy for acute promyelocytic leukaemia. Int. J. Lab. Hematol. 2000, 22, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Sakakura, M.; Nishii, K.; Usui, E.; Monma, F.; Tsukada, T.; Shikua, H. Bilateral Osteonecrosis of the Head of the Femur during Treatment with Retinoic Acid in a Young Patient with Acute Promyelocytic Leukemia. Int. J. Hematol. 2006, 83, 252–253. [Google Scholar] [CrossRef] [PubMed]
- Fenaux, P.; Le Deley, M.C.; Castaigne, S.; Archimbaud, E.; Chomienne, C.; Link, H.; Guerci, A.; Duarte, M.; Daniel, M.T.; Bowen, D.; et al. Effect of all transretinoic acid in newly diagnosed acute promyelocytic leukemia. Results of a multicenter randomized trial. Blood 1993, 82, 3241–3249. [Google Scholar] [CrossRef] [Green Version]
- Sanz, M.A.; Montesinos, P.; Rayón, C.; Holowiecka, A.; De La Serna, J.; Milone, G.; De Lisa, E.; Brunet, S.; Rubio, V.; Ribera, J.; et al. Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: Further improvements in treatment outcome. Blood 2010, 115, 5137–5146. [Google Scholar] [CrossRef]
- Iland, H.J.; Bradstock, K.; Seymour, J.; Hertzberg, M.; Grigg, A.; Taylor, K.; Catalano, J.; Cannell, P.; Horvath, N.; Deveridge, S.; et al. Results of the APML3 trial incorporating all-trans-retinoic acid and idarubicin in both induction and consolidation as initial therapy for patients with acute promyelocytic leukemia. Haematologica 2011, 97, 227–234. [Google Scholar] [CrossRef]
- Raanani, P.; Segal, E.; Levi, I.; Bercowicz, M.; Berkenstat, H.; Avigdor, A.; Perel, A.; Ben-Bassat, I. Diffuse Alveolar Hemorrhage in Acute Promyelocytic Leukemia Patients Treated with ATRA - A Manifestation of the Basic Disease or the Treatment. Leuk. Lymphoma 2000, 37, 605–610. [Google Scholar] [CrossRef]
- Goldschmidt, N.; Gural, A.; Ben Yehuda, D. Extensive Splenic Infarction, Deep Vein Thrombosis and Pulmonary Emboli Complicating Induction Therapy with All-trans-retinoic Acid (ATRA) for Acute Promyelocytic Leukemia. Leuk. Lymphoma 2003, 44, 1433–1437. [Google Scholar] [CrossRef]
- Burnett, A.K.; Russell, N.H.; Hills, R.K.; Bowen, D.T.; Kell, J.; Knapper, S.; Morgan, Y.G.; Lok, J.; Grech, A.; Jones, G.; et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): Results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2015, 16, 1295–1305. [Google Scholar] [CrossRef]
- Abaza, Y.; Kantarjian, H.; Garcia-Manero, G.; Estey, E.; Borthakur, G.; Jabbour, E.; Faderl, S.; O’Brien, S.; Wierda, W.; Pierce, S.; et al. Long-term outcome of acute promyelocytic leukemia treated with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab. Blood 2017, 129, 1275–1283. [Google Scholar] [CrossRef] [Green Version]
- Mandelli, F.; Diverio, D.; Avvisati, G.; Luciano, A.; Barbui, T.; Bernasconi, C.; Broccia, G.; Cerri, R.; Falda, M.; Fioritoni, G.; et al. Molecular Remission in PML/RARA-Positive Acute Promyelocytic Leukemia by Combined All-Trans Retinoic Acid and Idarubicin (AIDA) Therapy. Blood 1997, 90, 1014–1021. [Google Scholar] [PubMed]
- Platzbecker, U.; Avvisati, G.; Cicconi, L.; Thiede, C.; Paoloni, F.; Vignetti, M.; Ferrara, F.; Divona, M.; Albano, F.; Efficace, F.; et al. Improved Outcomes With Retinoic Acid and Arsenic Trioxide Compared With Retinoic Acid and Chemotherapy in Non–High-Risk Acute Promyelocytic Leukemia: Final Results of the Randomized Italian-German APL0406 Trial. J. Clin. Oncol. 2017, 35, 605–612. [Google Scholar] [CrossRef]
- Lo-Coco, F.; Avvisati, G.; Vignetti, M.; Thiede, C.; Orlando, S.M.; Iacobelli, S.; Ferrara, F.; Fazi, P.; Cicconi, L.; Di Bona, E.; et al. Retinoic Acid and Arsenic Trioxide for Acute Promyelocytic Leukemia. N. Engl. J. Med. 2013, 369, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, H.-H.; Wu, D.-P.; Jin, J.; Li, J.-Y.; Ma, J.; Wang, J.-X.; Jiang, H.; Chen, S.-J.; Huang, X.-J. Oral Tetra-Arsenic Tetra-Sulfide Formula Versus Intravenous Arsenic Trioxide As First-Line Treatment of Acute Promyelocytic Leukemia: A Multicenter Randomized Controlled Trial. J. Clin. Oncol. 2013, 31, 4215–4221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, C.-W.; Zhang, G.-S.; Shen, J.-K.; Zheng, W.-L.; Pei, M.-F.; Xu, Y.-X.; Cao, Y.-X.; Yi, Y.; Yang, J.-J.; Peng, H.-L.; et al. Use of All-trans Retinoic Acid in Combination with Arsenic Trioxide for Remission Induction in Patients with Newly Diagnosed Acute Promyelocytic Leukemia and for Consolidation/Maintenance in CR Patients. Acta Haematol. 2009, 121, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ravandi, F.; Estey, E.; Jones, D.; Faderl, S.; O’Brien, S.; Fiorentino, J.; Pierce, S.; Blamble, D.; Estrov, Z.; Wierda, W.; et al. Effective Treatment of Acute Promyelocytic Leukemia With All-Trans-Retinoic Acid, Arsenic Trioxide, and Gemtuzumab Ozogamicin. J. Clin. Oncol. 2009, 27, 504–510. [Google Scholar] [CrossRef] [Green Version]
- Testi, A.M.; Biondi, A.; Albano, F.; Moleti, M.L.; Giona, F.; Vignetti, M.; Menna, G.; Locatelli, F.; Pession, A.; Barisone, E.; et al. GIMEMA-AIEOPAIDA protocol for the treatment of newly diagnosed acute promyelocytic leukemia (APL) in children. Blood 2005, 106, 447–453. [Google Scholar] [CrossRef] [Green Version]
- De Botton, S.; for the European Apl Group; Chevret, S.; Coiteux, V.; Dombret, H.; Sanz, M.A.; San-Miguel, J.F.; Caillot, D.; Vekhoff, A.; Gardembas, M.; et al. Early onset of chemotherapy can reduce the incidence of ATRA syndrome in newly diagnosed acute promyelocytic leukemia (APL) with low white blood cell counts: Results from APL 93 trial. Leukemia 2003, 17, 339–342. [Google Scholar] [CrossRef] [Green Version]
- Battistella, M.; Burry, L.; Seki, J.T. Retinoic acid syndrome after one dose of all-transretinoic acid. J. Oncol. Pharm. Pr. 2004, 10, 149–154. [Google Scholar] [CrossRef]
- Kienast, J.; Stelljes, M.; Berning, B.; Kröger, M.; Sauerland, M.C.; Heinecke, A.; Schoch, C.; Wörmann, B.; Büchner, T.; Hiddemann, W.; et al. Satelite Symposium V, Meet-the-Professor Sessions I and II, Main Sessions I-IX. Ann. Hematol. 2004, 83, 59–137. [Google Scholar] [CrossRef]
- Levasseur, S.D.; Tantiworawik, A.; Maberley, D.A.L. All-Trans Retinoic Acid Differentiation Syndrome Chorioretinopathy. Retin. Cases Brief Rep. 2013, 7, 46–49. [Google Scholar] [CrossRef]
- Asou, N.; Adachi, K.; Tamura, J.; Kanamaru, A.; Kageyama, S.; Hiraoka, A.; Omoto, E.; Sakamaki, H.; Tsubaki, K.; Saito, K.; et al. All-trans retinoic acid therapy for newly diagnosed acute promyelocytic leukemia: Comparison with intensive chemotherapy. The Japan Adult Leukemia Study Group (JALSG). Cancer Chemother. Pharmacol. 1997, 40, 30–35. [Google Scholar] [CrossRef]
- Newman, A.; Leung, B.; Richards, A.; Campbell, T.; Wellwood, J.; Imrie, F. Two cases of differentiation syndrome with ocular manifestations in patients with acute promyelocytic leukaemia treated with all-trans retinoic acid and arsenic trioxide. Am. J. Ophthalmol. Case Rep. 2018, 9, 106–111. [Google Scholar] [CrossRef] [PubMed]
- De Botton, S.; Coiteux, V.; Chevret, S.; Rayon, C.; Vilmer, E.; Sanz, M.A.; De La Serna, J.; Philippe, N.; Baruchel, A.; Leverger, G.; et al. Outcome of Childhood Acute Promyelocytic Leukemia With All-Trans-Retinoic Acid and Chemotherapy. J. Clin. Oncol. 2004, 22, 1404–1412. [Google Scholar] [CrossRef]
- Mathews, V.; George, B.; Lakshmi, K.M.; Viswabandya, A.; Bajel, A.; Balasubramanian, P.; Shaji, R.V.; Srivastava, V.M.; Srivastava, A.; Chandy, M. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: Durable remissions with minimal toxicity. Blood 2006, 107, 2627–2632. [Google Scholar] [CrossRef] [PubMed]
- Kakkar, N.; Dhameja, N.; Jasmina; Das, A.; Radotra, B.; Varma, S. ATRA syndrome with extensive organ infiltration. Am. J. Hematol. 2002, 71, 62–64. [Google Scholar] [CrossRef]
- Chou, W.-C.; Tang, J.-L.; Yao, M.; Liang, Y.J.; Lee, F.Y.; Lin, M.T.; Wang, C.H.; Shen, M.C.; Chen, Y.C.; Tien, H.-F. Clinical and biological characteristics of acute promyelocytic leukemia in Taiwan: A high relapse rate in patients with high initial and peak white blood cell counts during all-trans retinoic acid treatment. Leukemia 1997, 11, 921–928. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-L.; Shen, K.; Huang, J. Diffuse Pulmonary Alveolar Hemorrhage Secondary to All-Trans-Retinoic Acid in Acute Promyelocytic Leukemia. Chin. Med J. 2018, 131, 2386–2387. [Google Scholar] [CrossRef]
- Tallman, M.S.; Andersen, J.W.; Schiffer, C.A.; Appelbaum, F.R.; Feusner, J.H.; Ogden, A.; Shepherd, L.; Willman, C.; Bloomfield, C.D.; Rowe, J.M.; et al. All-trans-Retinoic Acid in Acute Promyelocytic Leukemia. N. Engl. J. Med. 1997, 337, 1021–1028. [Google Scholar] [CrossRef]
- Estey, E.; Garcia-Manero, G.; Ferrajoli, A.; Faderl, S.; Verstovsek, S.; Jones, D.; Kantarjian, H. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood 2006, 107, 3469–3473. [Google Scholar] [CrossRef] [Green Version]
- Lo-Coco, F.; Avvisati, G.; Vignetti, M.; Breccia, M.; Gallo, E.; Rambaldi, A.; Paoloni, F.; Fioritoni, G.; Ferrara, F.; Specchia, G.; et al. Front-line treatment of acute promyelocytic leukemia with AIDA induction followed by risk-adapted consolidation for adults younger than 61 years: Results of the AIDA-2000 trial of the GIMEMA Group. Blood 2010, 116, 3171–3179. [Google Scholar] [CrossRef]
- Ades, L.; for the European Apl Group; Chevret, S.; De Botton, S.; Thomas, X.; Dombret, H.; Beve, B.; Sanz, M.A.; Guerci, A.; Miguel, J.S.; et al. Outcome of acute promyelocytic leukemia treated with all trans retinoic acid and chemotherapy in elderly patients: The European group experience. Leukemia 2004, 19, 230–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghavamzadeh, A.; Alimoghaddam, K.; Ghaffari, S.H.; Rostami, S.; Jahani, M.; Hosseini, R.; Mossavi, A.; Baybordi, E.; Khodabadeh, A.; Iravani, M.; et al. Treatment of acute promyelocytic leukemia with arsenic trioxide without ATRA and/or chemotherapy. Ann. Oncol. 2006, 17, 131–134. [Google Scholar] [CrossRef]
- Wiley, J.S.; Firkin, F.C. Reduction of pulmonary toxicity by prednisolone prophylaxis during all-trans retinoic acid treatment of acute promyelocytic leukemia. Australian Leukaemia Study Group. Leukemia 1995, 9, 774–778. [Google Scholar] [PubMed]
- Lengfelder, E.; for the German AML Cooperative Group (AMLCG); Haferlach, C.; Saussele, S.; Schultheis, B.; Schnittger, S.; Ludwig, W.-D.; Staib, P.; Aul, C.; Grüeisen, A.; et al. High dose ara-C in the treatment of newly diagnosed acute promyelocytic leukemia: Long-term results of the German AMLCG. Leukemia 2009, 23, 2248–2258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asou, N.; Adachi, K.; Tamura, J.-I.; Kanamaru, A.; Kageyama, S.-I.; Hiraoka, A.; Omoto, E.; Akiyama, H.; Tsubaki, K.; Saito, K.; et al. Analysis of prognostic factors in newly diagnosed patients with acute promyelocytic leukemia: The APL92 study of the Japan Adult Leukemia Study Group (JALSG). Cancer Chemother. Pharmacol. 2001, 48, 65–71. [Google Scholar] [CrossRef]
- Soignet, S.L.; Maslak, P.; Wang, Z.-G.; Jhanwar, S.; Calleja, E.; Dardashti, L.J.; Corso, D.; DeBlasio, A.; Gabrilove, J.; A Scheinberg, D.; et al. Complete Remission after Treatment of Acute Promyelocytic Leukemia with Arsenic Trioxide. N. Engl. J. Med. 1998, 339, 1341–1348. [Google Scholar] [CrossRef]
- Douer, D.; Estey, E.; Santillana, S.; Bennett, J.M.; Lopez-Bernstein, G.; Boehm, K.; Williams, T. Treatment of newly diagnosed and relapsed acute promyelocytic leukemia with intravenous liposomal all-transretinoic acid. Blood 2001, 97, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, F.; Finizio, O.; D’Arco, A.; Mastrullo, L.; Cantore, N.; Musto, P. Acute promyelocytic leukemia in patients aged over 60 years: Multicenter experience of 34 consecutive unselected patients. Anticancer. Res. 2010, 30, 967–972. [Google Scholar]
- De-Medeiros, B.; Strapasson, E.; Pasquini, R.; De-Medeiros, C. Effect of all-trans retinoic acid on newly diagnosed acute promyelocytic leukemia patients: Results of a Brazilian center. Braz. J. Med. Biol. Res. 1998, 31, 1537–1543. [Google Scholar] [CrossRef]
- Shigeno, K.; Naito, K.; Sahara, N.; Kobayashi, M.; Nakamura, S.; Fujisawa, S.; Shinjo, K.; Takeshita, A.; Ohno, R.; Ohnishi, K. Arsenic Trioxide Therapy in Relapsed or Refractory Japanese Patients with Acute Promyelocytic Leukemia: Updated Outcomes of the Phase II Study and Postremission Therapies. Int. J. Hematol. 2005, 82, 224–229. [Google Scholar] [CrossRef]
- Frankel, S.R.; Eardley, A.; Heller, G.; Berman, E.; Miller, W.H.; Dmitrovsky, E.; Warrell, R.P. All-trans Retinoic Acid for Acute Promyelocytic Leukemia: Results of the New York Study. Ann. Intern. Med. 1994, 120, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Tallman, M.S.; Andersen, J.W.; A Schiffer, C.; Appelbaum, F.R.; Feusner, J.H.; Ogden, A.; Shepherd, L.; Rowe, J.M.; François, C.; Larson, R.S.; et al. Clinical description of 44 patients with acute promyelocytic leukemia who developed the retinoic acid syndrome. Blood 2000, 95, 90–95. [Google Scholar]
- Ohnishi, K.; Yoshida, H.; Shigeno, K.; Nakamura, S.; Fujisawa, S.; Naito, K.; Shinjo, K.; Fujita, Y.; Matsui, H.; Sahara, N.; et al. Arsenic trioxide therapy for relapsed or refractory Japanese patients with acute promyelocytic leukemia: Need for careful electrocardiogram monitoring. Leukemia 2002, 16, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, Z.; Li, J.; Li, L.; Han, X.; Han, L.; Hu, L.; Wang, S.; Zhao, Y.; Li, X.; et al. Long-term efficacy and safety of arsenic trioxide for first-line treatment of elderly patients with newly diagnosed acute promyelocytic leukemia. Cancer 2012, 119, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Camacho, L.H.; Soignet, S.L.; Chanel, S.; Ho, R.; Heller, G.; Scheinberg, D.A.; Ellison, R.; Warrell, R.P. Leukocytosis and the Retinoic Acid Syndrome in Patients With Acute Promyelocytic Leukemia Treated With Arsenic Trioxide. J. Clin. Oncol. 2000, 18, 2620–2625. [Google Scholar] [CrossRef]
- Mandegary, A.; Hosseini, R.; Ghaffari, S.H.; Alimoghaddam, K.; Rostami, S.; Ghavamzadeh, A.; Ghahremani, M.H. The expression of p38, ERK1 and Bax proteins has increased during the treatment of newly diagnosed acute promyelocytic leukemia with arsenic trioxide. Ann. Oncol. 2010, 21, 1884–1890. [Google Scholar] [CrossRef] [PubMed]
- Iland, H.J.; Bradstock, K.; Supple, S.G.; Catalano, A.; Collins, M.; Hertzberg, M.; Browett, P.; Grigg, A.; Firkin, F.; Hugman, A.; et al. All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood 2012, 120, 1570–1580. [Google Scholar] [CrossRef]
- Tobita, T.; Takeshita, A.; Kitamura, K.; Ohnishi, K.; Yanagi, M.; Hiraoka, A.; Karasuno, T.; Takeuchi, M.; Miyawaki, S.; Ueda, R.; et al. Treatment With a New Synthetic Retinoid, Am80, of Acute Promyelocytic Leukemia Relapsed From Complete Remission Induced by All-trans Retinoic Acid. Blood 1997, 90, 967–973. [Google Scholar] [CrossRef] [Green Version]
- Castaigne, S.; Lefebvre, P.; Chomienne, C.; Suc, E.; Rigal-Huguet, F.; Gardin, C.; Delmer, A.; Archimbaud, E.; Tilly, H.; Janvier, M. Effectiveness and pharmacokinetics of low-dose all-trans retinoic acid (25 mg/m2) in acute promyelocytic leukemia. Blood 1993, 82, 3560–3563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Čolović, M.D.; Janković, G.M.; Elezović, I.; Vidović, A.; Bila, J.S.; Novak, A.; Babić, D. Effect of all-trans-retinoic acid alone or in combination with chemotherapy in newly diagnosed acute promyelocytic leukaemia. Med Oncol. 1997, 14, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Stein, E.M.; Dinardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017, 130, 722–731. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, M.; Tawa, A.; Hanada, R.; Tsuchida, M.; Tabuchi, K.; Kigasawa, H.; Kobayashi, R.; Morimoto, A.; Nakayama, H.; Hamamoto, K.; et al. Prospective study of a therapeutic regimen with all-trans retinoic acid and anthracyclines in combination of cytarabine in children with acute promyelocytic leukaemia: The Japanese childhood acute myeloid leukaemia cooperative study. Br. J. Haematol. 2010, 152, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Tsai, D.E.; Luger, S.M.; Andreadis, C.; Vogl, D.T.; Kemner, A.; Potuzak, M.; Goradia, A.; Loren, A.W.; Perl, A.E.; Schuster, S.J.; et al. A Phase I Study of Bexarotene, a Retinoic X Receptor Agonist, in Non-M3 Acute Myeloid Leukemia. Clin. Cancer Res. 2008, 14, 5619–5625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Advani, S.H.; Nair, R.; Bapna, A.; Gladstone, B.; Kadam, P.; Saikia, T.K.; Parekh, P.M.; Gopal, R.; Nair, C.N. Acute promyelocytic leukemia: All-trans retinoic acid (ATRA) along with chemotherapy is superior to ATRA alone. Am. J. Hematol. 1999, 60, 87–93. [Google Scholar] [CrossRef]
- Hao, L.; Zhao, J.; Wang, X.; Wang, H.; Wang, H.; Xu, G. Hepatotoxicity From Arsenic Trioxide for Pediatric Acute Promyelocytic Leukemia. J. Pediatr. Hematol. 2013, 35, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Teva Announces U.S. FDA Approval of TRISENOX® (arsenic trioxide) Injection for First Line Treatment of Acute Promyelocytic Leukemia. Available online: https://ir.tevapharm.com/news-and-events/press-releases/press-release-details/2018/Teva-Announces-US-FDA-Approval-of-TRISENOX-arsenic-trioxide-Injection-for-First-Line-Treatment-of-Acute-Promyelocytic-Leukemia/default.aspx (accessed on 15 October 2020).
- Dinardo, C.D.; Ky, B.; Vogl, D.T.; Forfia, P.; Loren, A.; Luger, S.; Mato, A.; Tsai, D.E. Differentiation syndrome in non-M3 acute myeloid leukemia treated with the retinoid X receptor agonist bexarotene. Med Oncol. 2008, 25, 299–302. [Google Scholar] [CrossRef]
- Gniadecki, R.; Assaf, C.; Bagot, M.; Dummer, R.; Duvic, M.; Knobler, R.; Ranki, A.; Schwandt, P.; Whittaker, S. The optimal use of bexarotene in cutaneous T-cell lymphoma. Br. J. Dermatol. 2007, 157, 433–440. [Google Scholar] [CrossRef]
- NCI Drug Dictionary—Realgar-Indigo Naturalis Formulation. Available online: https://www.cancer.gov/publications/dictionaries/cancer-drug/def/realgar-indigo-naturalis-formulation (accessed on 15 October 2020).
- Fukasawa, H.; Nakagomi, M.; Yamagata, N.; Katsuki, H.; Kawahara, K.; Kitaoka, K.; Miki, T.; Shudo, K. Tamibarotene: A Candidate Retinoid Drug for Alzheimer’s Disease. Biol. Pharm. Bull. 2012, 35, 1206–1212. [Google Scholar] [CrossRef] [Green Version]
- A Biomarker-Directed Phase 2 Trial of SY-1425 in Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome. Available online: https://clinicaltrials.gov/ct2/show/NCT02807558 (accessed on 15 October 2020).
- Sanford, D.; Lo-Coco, F.; Sanz, M.A.; Di Bona, E.; E Coutre, S.; Altman, J.K.; Wetzler, M.; Allen, S.L.; Ravandi, F.; Kantarjian, H.; et al. Tamibarotene in patients with acute promyelocytic leukaemia relapsing after treatment with all-transretinoic acid and arsenic trioxide. Br. J. Haematol. 2015, 171, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.ncbi.nlm.nih.gov/pubmed. (accessed on 10 November 2019).
- Stahl, M.; Tallman, M.S. Differentiation syndrome in acute promyelocytic leukaemia. Br. J. Haematol. 2019, 187, 157–162. [Google Scholar] [CrossRef] [PubMed]
Clinical Trials | Patients | Treatment | % DS | % Deaths | T.T.O. [d] | (Range) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference | Total | Age | (Range) | % Male | Allocation | Primary Treatment | |||||||
Zhu, 2013 [53] | 231 | 37 | (15–60) | 54.5 | 22.1 | 0 | |||||||
117 | 39 | (15–60) | 55.6 | randomized | ATRA 25 mg/m2 | ATO 0.16 mg/kg | 24.8 | 0 | |||||
114 | 33 | (15–60) | 53.5 | randomized | ATRA 25 mg/m2 | RIF 60 mg/kg | 19.3 | 0 | |||||
Iland, 2012 [87] | 124 | 44 | (3–78) | 50.0 | 13.7 | 0 | |||||||
108 | ≤60 y. | ATRA 45 mg/m2/d tid | ATO 0.15 mg/kg/d qd d9-36 | idarubicin 12 mg/m2/d d2,4,6,8 | |||||||||
9 | 61–70 y. | ATRA 45 mg/m2/d tid | ATO 0.15 mg/kg/d qd d9-36 | idarubicin 9 mg/m2/d d2,4,6,8 | |||||||||
7 | >70 y. | ATRA 45 mg/m2/d tid | ATO 0.15 mg/kg/d qd d9-36 | idarubicin 6 mg/m2/d d2,4,6,8 | |||||||||
Abaza, 2017 [49]; Ravandi, 2009 [55] | 187 | 50 | (14–84) | 51.9 | 11.2 | 0 | |||||||
WBC < 10 × 109/l old | ATRA 45 mg/m2/d bid | ATO 0.15 mg/kg/d qd from d10 | |||||||||||
WBC ≥ 10 × 109/l old | ATRA 45 mg/m2/d bid | ATO 0.15 mg/kg/d qd from d10 | Gemtuzumab ozogamicin 9 mg/m2/d qd d1 | ||||||||||
WBC < 10 × 109/l new | ATRA 45 mg/m2/d bid | ATO 0.15 mg/kg/d qd from d1 | |||||||||||
WBC ≥ 10 × 109/l new | ATRA 45 mg/m2/d bid | ATO 0.15 mg/kg/d qd from d1 | Gemtuzumab ozogamicin 9 mg/m2/d qd d1 | ||||||||||
Dai, 2009 [54] | 162 | 57.4 | 3.1 | 0 | |||||||||
72 | 34 | (14–69) | 54.2 | ATRA 45 mg/m2/d | 2.8 | ||||||||
90 | 32 | (14–67) | 60.0 | ATRA 45 mg/m2/d | ATO 10 mg/d d1-28 | 3.3 | |||||||
Platzbecker, 2016 [51]; LoCoco, 2013 [52] | 266 | 48.9 | 14.3 | 0.8 | |||||||||
129 | 46.6 | (19–70) | 46.5 | randomized | ATRA 45 mg/m2/d bid | ATO 0.15 mg/kg/d qd | 16.3 | 0 | |||||
137 | 46.6 | (18–70) | 51.1 | randomized | ATRA 45 mg/m2/d bid | idarubicin 12 mg/m2/d qd d2,4,6,8 | 12.4 | 1.5 | |||||
Yang, 2018 [40] | 82 | 9.4 | (1–16) | 62.2 | 6.1 | ||||||||
42 | 7.8 | (1–13) | 69.0 | randomized | ATRA 25 mg/m2/d | mitoxantrone 10 or 7 mg/m2/d d3 or d2-4 | ATO 0.16 mg/kg/d qd from d5/6 | 9.5 | |||||
40 | 9.9 | (2–16) | 55.0 | randomized | ATRA 25 mg/m2/d | mitoxantrone 10 or 7 mg/m2/d d3 or d2-4 | RIF1 35 mg/kg/d tid from d5/6 | 2.5 | |||||
Burnett, 2015 [77] | 235 | 47 | (16–77) | 51.1 | 23.4 | 0 | |||||||
119 | 47 | (16–77) | 50.4 | randomized | ATRA 45 mg/m2/d bid | idarubicin 12 mg/m2/d qd d2,4,6,8 | 21.0 | ||||||
116 | 47 | (16–75) | 51.7 | randomized | ATRA 45 mg/m2/d bid | ATO 0.3 mg/kg/d qd d1-5 & wk2-8 | 25.9 | ||||||
Imaizumi, 2010 [92] | 58 | 11 | (1–16) | 53.4 | ATRA 45 mg/m2/d | daunorubicin 45 mg/m2/d d6-8 | cytarabine 200 mg/m2/d d6-12 | 7.3 | 0 | ||||
Sanz, 2010 [44] | 402 | 42 | (3–83) | 52.0 | 28.5 | 1.1 | |||||||
20–70 y. | ATRA 45 mg/m2/d bid | idarubicin 12 mg/m2/d qd d2,4,6,8 | |||||||||||
22 | >70 y. | ATRA 45 mg/m2/d bid | idarubicin 12 mg/m2/d qd d2,4,6 | ||||||||||
<20 y. | ATRA 25 mg/m2/d bid | idarubicin 12 mg/m2/d qd d2,4,6,8 | |||||||||||
Lengfelder, 2009 [74] | 142 | 40 | (16–60) | 41.5 | 1st induction cycle | ATRA 45 mg/m2/d | 6-thioguanine 100 mg/m2 bid d3-9 | cytarabine 100 mg/m2 d1-2, bid d3-8 | daunorubicin 60 mg/m2 d3-5 | 21.1 | 0.8 | ||
131 | 2nd induction cycle | cytarabine 3 g/m2 bid d21-23 | mitoxantrone 10 mg/m2 d23-25 | ||||||||||
De Botton, 2003 [57] | 306 | 44.1 | 12.7 | 1.3 | |||||||||
122 | 45.5 | (35–54) | 45.9 | randomized | ATRA 45 mg/m2/d | 18.0 | 2.5 | 10 | |||||
184 | 45 | (34–55) | 42.9 | randomized | ATRA 45 mg/m2/d | daunorubicin 60 mg/kg/d d3-5 | cytarabine 200 mg/m2/d d3-9 | 9.2 | 0.5 | 10.5 | |||
Montesinos, 2009 [1] | 739 | 40 | (2–83) | 50.6 | 24.8 | 1.4 | 12 | (0–46) | |||||
20–70 y. | ATRA 45 mg/m2/d bid | idarubicin 12 mg/m2/d qd d2,4,6,8 | |||||||||||
>70 y. | ATRA 45 mg/m2/d bid | idarubicin 12 mg/m2/d qd d2,4,6 | |||||||||||
<20 y. | ATRA 25 mg/m2/d bid | idarubicin 12 mg/m2/d qd d2,4,6,8 | |||||||||||
LoCoco, 2010 [70]; Testi 2005 [56] | 752 | 53.7 | 11.3 | 0.1 | |||||||||
642 | 38.2 | (18–61) | 54.4 | ≥18 y. | ATRA 45 mg/m2/d | idarubicin 12 mg/m2/d qd d2,4,6,8 | 12.9 | 0.2 | |||||
110 | 11.6 | (1–18) | 50.0 | <18 y. | ATRA 25 mg/m2/d | idarubicin 12 mg/m2/d qd d2,4,6,8 | 1.8 | 0 | 7.5 | (4–11) | |||
LoCoco, 2010 [70] | 453 | 40.9 | (18–61) | 50.6 | ATRA 45 mg/m2/d | idarubicin 12 mg/m2/d qd d2,4,6,8 | 10.3 | 0.2 | |||||
Colovic, 1997 [90] | 30 | 40.0 | 13.3 | 13.3 | |||||||||
15 | 40 | (16–65) | 26.7 | WBC < 5 × 109/l | ATRA 45 mg/m2/d bid | 6.7 | 6.7 | ||||||
15 | 40 | (18–60) | 53.3 | WBC > 5 × 109/l | ATRA 45 mg/m2/d bid | daunorubicin 50 mg/m2/d 3d | cytarabine 200 mg/m2/d 7d | 20.0 | 20 | ||||
Fenaux, 1993 [43] | 101 | 40 | (6–67) | 52.5 | |||||||||
54 | 41.5 | (6–63) | 55.6 | randomized | ATRA 45 mg/m2/d | daunorubicin 60 mg/m2/d 3d | cytarabine 200 mg/m2/d 7d | 5.6 | 0 | 20 | (14–24) | ||
47 | 40 | (17–67) | 48.9 | randomized | daunorubicin 60 mg/m2/d 2 × 3d | cytarabine 200 mg/m2/d 2 × 7d | |||||||
Powell, 2010 [31] | 481 | (15–79) | 51.4 | ATRA 45 mg/m2/d bid | daunorubicin 50 mg/m2/d qd d3-6 | cytarabine 200 mg/m2/d d3-9 | 36.8 | ||||||
Frankel, 1994 [81] | 56 | (9–75) | 44.6 | ATRA 45 mg/m2/d bid | 23.2 | 8.9 | |||||||
Tallman, 1997 [68]; Tallman, 2000 [82] | 346 | 51.7 | |||||||||||
172 | 37 | (1–81) | 47.7 | randomized | ATRA 45 mg/m2/d bid | 26.3 | 1.2 | 11 | (2–47) | ||||
174 | 38 | (1–74) | 55.7 | randomized | daunorubicin 45 mg/m2/d qd d1-36 | cytarabine 100 mg/m2/d d1-7 | |||||||
Castaigne, 1993 [89] | 30 | 56 | (10–81) | 43.3 | ATRA 25 mg/m2/d bid | 6.7 | 6.7 | ||||||
Douer, 2001 [77] | 69 | 44 | (5–82) | 58.0 | liposomal ATRA 90 mg/m2qad | 26.1 | 1.4 | ||||||
Advani, 1999 [94] | 43 | (7–60) | 65.1 | ATRA 45 mg/m2/d | 32.6 | 14.0 | 10 | (4–26) | |||||
de Medeiros, 1998 [79] | 37 | 17.5 | (9–69) | 45.9 | ATRA 45 mg/m2/d | 10.8 | 0 | ||||||
Mandegary, 2010 [86] | 20 | 31 | (15–62) | 35.0 | ATO 15 mg/kg/d qd | 60.0 | 5.0 | ||||||
Ghavamzadeh, 2006 [72] | 111 | 27 | (6–79) | 45.9 | ATO 15 mg/kg/d qd | 20.7 | 7.2 | ||||||
Mathews, 2006 [64] | 72 | 28 | (3–75) | 52.8 | 6.9 | 0 | 13.2 * | (6–21) | |||||
adults | ATO 10 mg/d | hydroxyurea 0–4 g/d | |||||||||||
pediatric patients | ATO 0.15 mg/kg/d | hydroxyurea 0–30 mg/kg/d qd-qid | |||||||||||
Zhou, 2010 [27] | 19 | 10 | (4–15) | 57.9 | 10.5 | 0 | |||||||
5 | 4–6 y. | ATO 0.2 mg/kg/d qd | |||||||||||
14 | >6 y. | ATO 0.16 mg/kg/d qd | |||||||||||
Hao, 2013 [95] | 46 | 8 | (mean) | 76.1 | ATO 0.17–0.33 mg/kg/d qd | 17.4 | |||||||
Soignet, 1998 [76] | 12 | 33.5 | (9–75) | ATO 0.06–0.2 mg/kg/d | 16.7 | 0 | |||||||
Soignet, 2001 [29] | 40 | 60.0 | ATO 0.15 mg/kg/d | 25.0 | 0 | ||||||||
Jin, 2006 [85] | 30 | (18–65) | 60.0 | ATO 10 mg qd | 30.0 | 0 | 13.9 * | (5–25) | |||||
Shigeno, 2005 [80]; Ohnishi, 2002 [83] | 34 | 47 | (17–82) | 64.7 | ATO 0.15 mg/kg/d | 23.5 | 0 | ||||||
DiNardo, 2018 [13] | 258 | 68 | (18–89) | 53.1 | dose-escalation | ivosidenib 100 mg bid/300–1200 mg qd | 11.2 | 0 | |||||
Stein, 2017 [91]; Fathi, 2018 [12] | 239 | 70 | (19–100) | 57.3 | dose-escalation | enasidenib 30–150 mg bid/50–650 mg qd | 9.6 | 48 | (10–340) | ||||
Tsai, 2008 [93] | 27 | 69 | (51–82) | 70.4 | dose-escalation | bexarotene 100–300 mg/m2, 400 mg/m2 | 7.4 | 0 | |||||
Tobita, 1997 [88] | 24 | 49 | (19–76) | 54.2 | tamibarotene 6 mg/m2/d bid | 4.2 | 0 | 18 | |||||
Zhang, 2013 [84] | 33 | 65 | (60–79) | 15.2 | 0 | ||||||||
WBC ≤ 20 × 109/l | ATO 0.16 mg/kg/d qd | ||||||||||||
WBC > 20 × 109/l | ATO 0.08 mg/kg/d qd | daunorubicin 40 mg d1-3 | cytarabine 50–100 mg d1-5 | ||||||||||
Asou, 2007 [34] | 283 | 48 | (15–70) | 55.8 | 21.2 | 0.7 | |||||||
85 | WBC < 3 × 109/l | ATRA 45 mg/m2/d tid | |||||||||||
139 | 3 × 109/l ≤ WBC < 10 × 109/l | ATRA 45 mg/m2/d tid | idarubicin 12 mg/m2/d qd d1-2 | cytarabine 80 mg/m2/d d1-5 | |||||||||
52 | WBC > 10 × 109/l | ATRA 45 mg/m2/d tid | idarubicin 12 mg/m2/d qd d1-3 | cytarabine 100 mg/m2/d d1-5 | |||||||||
Asou, 2001 [75] | 369 | 46 | (15–85) | 46.9 | 7.6 | 0.3 | |||||||
126 | 54.5 | WBC < 3 × 109/l | ATRA 45 mg/m2 tid | ||||||||||
243 | 55.6 | WBC ≥ 3 × 109/l | ATRA 45 mg/m2 tid | daunorubicin 40 mg/m2/d qd 3d | enocitabine 200 mg/m2/d qd 5d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasparovic, L.; Weiler, S.; Higi, L.; Burden, A.M. Incidence of Differentiation Syndrome Associated with Treatment Regimens in Acute Myeloid Leukemia: A Systematic Review of the Literature. J. Clin. Med. 2020, 9, 3342. https://doi.org/10.3390/jcm9103342
Gasparovic L, Weiler S, Higi L, Burden AM. Incidence of Differentiation Syndrome Associated with Treatment Regimens in Acute Myeloid Leukemia: A Systematic Review of the Literature. Journal of Clinical Medicine. 2020; 9(10):3342. https://doi.org/10.3390/jcm9103342
Chicago/Turabian StyleGasparovic, Lucia, Stefan Weiler, Lukas Higi, and Andrea M. Burden. 2020. "Incidence of Differentiation Syndrome Associated with Treatment Regimens in Acute Myeloid Leukemia: A Systematic Review of the Literature" Journal of Clinical Medicine 9, no. 10: 3342. https://doi.org/10.3390/jcm9103342
APA StyleGasparovic, L., Weiler, S., Higi, L., & Burden, A. M. (2020). Incidence of Differentiation Syndrome Associated with Treatment Regimens in Acute Myeloid Leukemia: A Systematic Review of the Literature. Journal of Clinical Medicine, 9(10), 3342. https://doi.org/10.3390/jcm9103342