Functional Recovery in Parkinson’s Disease: Current State and Future Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Criteria
2.2. Selection Strategy
2.3. Dynamic Extraction Data
2.4. Pattern Quality Assessment
3. Results
3.1. Strategies to Improve Functional Outcomes in PD Patients
3.1.1. Impact of Non-Assisted Recovery Strategies with Instruments of Quantify the Motor and Cognition Functions
3.1.2. Impact of Assisted Recovery Strategies with Instruments for Quantifying the Motor and Cognition Functions
3.1.3. The Future of Assisted Recovery Strategies Using Tele-Medicine
4. Discussions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dickson, D.W. Parkinson’s disease and parkinsonism: Neuropathology. Cold Spring Harb. Perspect. Med. 2012, 2, a009258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef]
- Martinez-Martin, P.; Rodriguez-Blazquez, C.; Kurtis, M.M.; Chaudhuri, K.R.; Group, N.V. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov. Disord. 2011, 26, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Politis, M.; Wu, K.; Molloy, S.; Peter, G.B.; Chaudhuri, K.R.; Piccini, P. Parkinson’s disease symptoms: The patient’s perspective. Mov. Disord. 2010, 25, 1646–1651. [Google Scholar] [CrossRef]
- Amara, A.W.; Chahine, L.M.; Videnovic, A. Treatment of Sleep Dysfunction in Parkinson’s Disease. Curr. Treat. Options Neurol. 2017, 19, 26. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.G.; Weintraub, D. Advances in the treatment of cognitive impairment in Parkinson’s disease. Mov. Disord. 2015, 30, 1471–1489. [Google Scholar] [CrossRef]
- Shulman, L.M. Understanding Disability in Parkinson’s Disease. Mov. Disord. 2010, 25 (Suppl. 1), S131–S135. [Google Scholar] [CrossRef]
- Keus, S.; Munneke, M.; Graziano, M.; Paltamaa, J.; Pelosin, E.; Domingos, J.; Bruhlmann, S.; Ramaswamy, B.; Prins, J.; Struiksma, C.; et al. European Physiotherapy Guideline for Parkinson’s Disease; KNGF/ParkinsonNet: Niejmegen, The Netherlands, 2014. [Google Scholar]
- Tomlinson, C.L.; Herd, C.P.; Clarke, C.E.; Meek, C.; Patel, S.; Stowe, R.; Deane, K.H.; Shah, L.; Sackley, C.M.; Wheatley, K.; et al. Physiotherapy for Parkinson’s disease: A comparison of techniques. Cochrane Database Syst. Rev. 2014. [Google Scholar] [CrossRef] [Green Version]
- Bhidayasiri, R. Differential diagnosis of common tremor syndromes. Postgrad. Med. J. 2005, 81, 756–762. [Google Scholar] [CrossRef] [Green Version]
- Nutt, J.G.; Bloem, B.R.; Giladi, N.; Hallett, M.; Horak, F.B.; Nieuwboer, A. Freezing of gait: Moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011, 10, 734–744. [Google Scholar] [CrossRef]
- Nonnekes, J.; Goselink, R.J.M.; Ruzicka, E.; Fasano, A.; Nutt, J.G.; Bloem, B.R. Neurological disorders of gait, balance and posture: A sign-based approach. Nat. Rev. Neurol. 2018, 14, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Bloem, B.R.; Hausdorff, J.M.; Visser, J.E.; Giladi, N. Falls and freezing of gait in Parkinson’s disease: A review of two interconnected, episodic phenomena. Mov. Disord. 2004, 19, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Canning, C.G.; Paul, S.S.; Nieuwboer, A. Prevention of falls in Parkinson’s disease: A review of fall risk factors and the role of physical interventions. Neurodegener. Dis. Manag. 2014, 4, 203–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferster, M.L.; Mazilu, S.; Troster, G. Gait Parameters Change Prior to Freezing in Parkinson’s Disease: A Data-Driven Study with Wearable Inertial Units. In Proceedings of the 10th EAI International Conference on Body Area Networks, Sydney, Australia, 28–30 September 2015. [Google Scholar]
- De Lima, A.L.S.; Evers, L.J.W.; Hahn, T.; Bataille, L.; Hamilton, J.L.; Little, M.A.; Okuma, Y.; Bloem, B.R.; Faber, M.J. Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: A systematic review. J. Neurol. 2017, 264, 1642–1654. [Google Scholar] [CrossRef] [Green Version]
- Yasuyuki, O. Freezing of Gait and Falls in Parkinson’s Disease. J. Parkinsons Dis. 2014, 4, 255–260. [Google Scholar]
- Bloem, B.R.; van Vugt, J.P.; Beckley, D.J. Postural instability and falls in Parkinson’s disease. Adv. Neurol. 2001, 87, 209–223. [Google Scholar]
- Morris, M.E.; Huxham, F.E.; McGinley, J.; Iansek, R. Gait disorders and gait rehabilitation in Parkinson’s disease. Adv. Neurol. 2001, 87, 347–361. [Google Scholar]
- Canning, C.G.; Ada, L.; Johnson, J.J.; McWhirter, S. Walking capacity in mild to moderate Parkinson’s disease. Arch. Phys. Med. Rehabil. 2006, 87, 371–375. [Google Scholar] [CrossRef]
- al Parkinson’s Disease Survey Steering Committee. Factors impacting on quality of life in Parkinson’s disease: Results from an international survey. Mov. Disord. 2002, 17, 60–67. [CrossRef]
- Schrag, A.; Jahanshahi, M.; Quinn, N. What contributes to quality of life in patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2000, 69, 308–312. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Esteban, J.C.; Zarranz, J.; Lezcano, E.; Tijero, B.; Luna, A.; Velasco, F.; Rouco, I.; Garamendi, I. Influence of Motor Symptoms upon the Quality of Life of Patients with Parkinson’s Disease. Eur. Neurol. 2007, 57, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Schestatsky, P.; Zanatto, V.C.; Margis, R.; Chachamovich, E.; Reche, M.; Batista, R.G.; Fricke, D.; Rieder, C.R.D.M. Quality of life in a Brazilian sample of patients with Parkinson’s disease and their caregivers. Rev. Bras. Psiquiatr. 2006, 28, 209–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lana, R.C.; Álvares, L.M.R.S.; Nasciutti-Prudente, C.; Goulart, F.R.P.; Teixeira-Salmela, L.F.; Cardoso, F.E. Percepção da qualidade de vida de indivíduos com doença de Parkinson através do PDQ-39. Rev. Bras. Fisioter. 2007, 11, 397–402. [Google Scholar] [CrossRef] [Green Version]
- Bloem, B.R.; de Vries, N.M.; Ebersbach, G. Nonpharmacological treatments for patients with Parkinson’s disease. Mov. Disord. 2015, 30, 1504–1520. [Google Scholar] [CrossRef]
- Lauzé, M.; Daneault, J.-F.; Duval, C. The Effects of Physical Activity in Parkinson’s Disease: A Review. J. Park. Dis. 2016, 6, 685–698. [Google Scholar] [CrossRef] [Green Version]
- Hidalgo-Agudo, R.D.; Lucena-Anton, D.; Luque-Moreno, C.; Heredia-Rizo, A.M.; Moral-Munoz, J.A. Additional Physical Interventions to Conventional Physical Therapy in Parkinson’s Disease: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Clin. Med. 2020, 9, 1038. [Google Scholar] [CrossRef] [Green Version]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 1–21. [Google Scholar] [CrossRef]
- Levi, V.; Carrabba, G.; Rampini, P.; Locatelli, M. Short term surgical complications after subthalamic deep brain stimulation for Parkinson’s disease: Does old age matter? BMC Geriatr. 2015, 15, 116–134. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Wang, L.; Liu, S.; Zhu, L.; Loprinzi, P.D.; Fan, X. The Impact of Mind-body Exercises on Motor Function, Depressive Symptoms, and Quality of Life in Parkinson’s Disease: A Systematic Review and Meta-analysis. Int. J. Environ. Res. Public Health 2019, 17, 31. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, K.R.; Healy, D.G.; Schapira, A.H. Non-motor symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurol. 2006, 5, 235–245. [Google Scholar] [CrossRef]
- Huang, Y.-Z.; Chang, F.-Y.; Liu, W.-C.; Chuang, Y.-F.; Chuang, L.-L.; Chang, Y.-J. Fatigue and Muscle Strength Involving Walking Speed in Parkinson’s Disease: Insights for Developing Rehabilitation Strategy for PD. Neural Plast. 2017. [Google Scholar] [CrossRef]
- Li, H.; Zhang, M.; Chen, L.; Zhang, J.; Pei, Z.; Hu, A.; Wang, Q. Nonmotor symptoms are independently associated with impaired health-related quality of life in Chinese patients with Parkinson’s disease. Mov. Disord. 2010, 25, 2740–2746. [Google Scholar] [CrossRef] [PubMed]
- Miwa, H.; Miwa, T. Fatigue in Patients with Parkinson’s Disease: Impact on Quality of Life. Intern. Med. 2011, 50, 1553–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metman, L.V.; Myre, B.; Verwey, N.; Hassin-Baer, S.; Arzbaecher, J.; Sierens, D.; Bakay, R. Test–Retest Reliability of UPDRS-III, Dyskinesia Scales, and Timed Motor Tests in Patients With Advanced Parkinson’ s Disease: An Argument Against Multiple Baseline Assessments. Mov. Disord. 2004, 19, 1079–1084. [Google Scholar] [CrossRef]
- Hoehn, M.M.; Yahr, M.D. Parkinsonism: Onset, progression, and mortality. Neurology 1967, 17, 427. [Google Scholar] [CrossRef] [Green Version]
- Tesio, L.; Granger, C.V.; Perucca, L.; Franchignoni, F.P.; Battaglia, M.A.; Russell, C.F. The FIM instrument in the United States and Italy: A comparative study. Am. J. Phys. Med. Rehabil. 2002, 81, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.; Wood-Dauphinee, S.; Williams, J.I.; Maki, B. Measuring balance in the elderly: Validation of an instrument. Can. J. Pub. Health 1992, 83 (Suppl. 2), 7–11. [Google Scholar]
- Kegelmeyer, D.A.; Kloos, A.D.; Thomas, K.M.; Kostyk, S.K. Reliability and validity of the Tinetti Mobility Test for individuals with Parkinson disease. Phys. Ther. 2007, 87, 1369–1378. [Google Scholar] [CrossRef] [Green Version]
- Whitney, S.L.; Wrisley, D.M.; Marchetti, G.F.; Gee, M.A.; Redfern, M.S.; Furman, J.M. Clinical measurement of sit-to-stand performance in people with balance disorders: Validity of data for the Five-Times-Sit-to-Stand Test. Phys. Ther. 2005, 85, 1034–1045. [Google Scholar] [CrossRef] [Green Version]
- Watson, M.J. Refining the ten-metre walking test for use with neurologically impaired people. Physiotherapy 2002, 88, 386–397. [Google Scholar] [CrossRef]
- Lohnes, C.A.; Earhart, G.M. External validation of abbreviated versions of the activities-specific balance confidence scale in Parkinson’s disease. Mov. Disord. 2010, 15, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Medijainen, K.; Pääsuke, M.; Lukmann, A.; Taba, P. Versatile guideline-based physiotherapy intervention in groups to improve gait speed in Parkinson’s disease patients. NeuroRehabilitation 2019, 44, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Lang, K.C.; Hackney, M.E.; Ting, L.H.; McKay, J.L. Antagonist muscle activity during reactive balance responses is elevated in Parkinson’s disease and in balance impairment. PLoS ONE 2019, 14, e0211137. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.-C.; Lu, C.-S.; Chiou, W.-D.; Chen, C.-C.; Weng, Y.-H.; Chang, Y.-J. An 8-Week Low-Intensity Progressive Cycling Training Improves Motor Functions in Patients with Early-Stage Parkinson’s Disease. J. Clin. Neurol. 2018, 14, 225. [Google Scholar] [CrossRef] [Green Version]
- Silva-Batista, C.; Mattos, E.C.T.; Corcos, D.M.; Wilson, J.M.; Heckman, C.J.; Kanegusuku, H.; Piemonte, M.E.P.; de Mello, M.T.; Forjaz, C.; Roschel, H.; et al. Resistance training with instability is more effective than resistance training in improving spinal inhibitory mechanisms in Parkinson’s disease. J. Appl. Physiol. 2017, 122, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dubois, B.; Slachevsky, A.; Litvan, I.; Pillon, B. The FAB: A Frontal Assessment Battery at bedside. Neurology 2000, 55, 1621–1626. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.C.; Magalhães, L.C.; Teixeira-Salmela, L.F. Cross-cultural adaptation and analysis of the psychometric properties in the Brazilian version of the Human Activity Profile. Cad. Saude Publica 2006, 22, 2623–2636. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues-de-Paula, F.; Lana, R.d.C.; Lopes, L.K.R.; Cardoso, F.; Lindquist, A.R.R.; Piemonte, M.E.P.; Correa, C.L.; Israel, V.L.; Mendes, F.; Lima, L.O. Determinants of the use of physiotherapy services among individuals with Parkinson’s disease living in Brazil. Arq. Neuro-Psiquiatr. 2018, 76, 592–598. [Google Scholar] [CrossRef]
- Gibson, M.J. The prevention of falls in later life: A report of the Kellog International Work Group on the Prevention of Falls by the Elderly. Dan Med. Bull. 1987, 34 (Suppl. 4), 1–24. [Google Scholar]
- Trăistaru, R.; Kamal, D. Kinetic Program and Functional Status in Patients with Parkinson’s Disease. Curr. Health Sci. J. 2016, 1, 51–60. [Google Scholar] [CrossRef]
- Stożek, J.; Rudzińska, M.; Pustułka-Piwnik, U.; Szczudlik, A. The effect of the rehabilitation program on balance, gait, physical performance and trunk rotation in Parkinson’s disease. Aging Clin. Exp. Res. 2016, 28, 1169–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, S.; Morris, M.E.; Iansek, R. Reliability of measurements obtained with the Timed “Up Go” test in people with Parkinson disease. Phys. Ther. 2001, 81, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Daneshvar, P.; Ghasemi, G.; Zolaktaf, V.; Karimi, M.T. Comparison of the Effect of 8-Week Rebound Therapy-Based Exercise Program and Weight-Supported Exercises on the Range of Motion, Proprioception, and the Quality of Life in Patients with Parkinson’s Disease. Int. J. Prev. Med. 2019, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Hoops, S.; Nazem, S.; Siderowf, A.D.; Duda, J.E.; Xie, S.X.; Stern, M.B.; Weintraub, D. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology 2009, 73, 1738–1745. [Google Scholar] [CrossRef]
- Ehlen, F.; Schindlbeck, K.; Nobis, L.; Maier, A.; Klostermann, F. Relationships between activity and well-being in people with parkinson’s disease. Brain Behav. 2018, 8, e00976. [Google Scholar] [CrossRef]
- Trampisch, U.; Platen, P.; Burghaus, I.; Moschny, A.; Wilm, S.; Thiem, U.; Hinrichs, T. Reliability of the PRISCUS-PAQ. Questionnaire to assess physical activity of persons aged 70 years and older. Z. Gerontol. Geriatr. 2010, 43, 399–406. [Google Scholar] [CrossRef]
- Fundarò, C.; Maestri, R.; Ferriero, G.; Chimento, P.; Taveggia, G.; Casale, R. Self-selected speed gait training in Parkinson’s disease: Robot-assisted gait training with virtual reality versus gait training on the ground. Eur. J. Phys. Rehabil. Med. 2019. [Google Scholar] [CrossRef]
- Nackaerts, E.; Broeder, S.; Pereira, M.P.; Swinnen, S.P.; Vandenberghe, W.; Nieuwboer, A.; Heremans, E. Handwriting training in Parkinson’s disease: A trade-off between size, speed and fluency. PLoS ONE 2017, 12, e0190223. [Google Scholar] [CrossRef] [Green Version]
- Frazzitta, G.; Maestri, R.; Ferrazzoli, D.; Riboldazzi, G.; Bera, R.; Fontanesi, C.; Rossi, R.P.; Pezzoli, G.; Ghilardi, M.F. Multidisciplinary intensive rehabilitation treatment improves sleep quality in Parkinson’s disease. J. Clin. Mov. Dis. 2015. [Google Scholar] [CrossRef]
- Harper, S.A.; Dowdell, B.T.; Kim, J.H.; Pollock, B.S.; Ridgel, A.L. Published: Non-Motor Symptoms after one week of high cadence cycling in Parkinson’s Disease. Int J. Environ. Res. Public Health 2019, 16, 2104. [Google Scholar] [CrossRef] [Green Version]
- Beck, A.T.; Steer, R.A.; Ball, R.; Ciervo, C.A.; Kabat, M. Use of the beck anxiety and depression inventories for primary care with medical outpatients. Assessment 1997, 4, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Medijainen, K.; Pääsuke, M.; Lukmann, A.; Taba, P. Functional performance and associations between performance tests and neurological assessment differ in men and women with Parkinson’s disease. Behav. Neurol. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Paula, F.R.; Teixeira-Salmela, L.F.; de Morais, F.D.C.; de Brito, P.R.; Cardoso, F. Impact of an exercise program on physical, emotional, and social aspects of quality of life of individuals with Parkinson’s disease. Mov. Disord. 2006, 21, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, K.R.; Pal, S.; DiMarco, A.; Whately-Smith, C.; Bridgman, K.; Mathew, R.; Pezzela, F.R.; Forbes, A.; Högl, B.; Trenkwalder, C. The Parkinson’s disease sleep scale: A new instrument for assessing sleep and nocturnal disability in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2002, 73, 629–635. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, C.M.C.; Stella, F.; Garlipp, C.R.; Santos, R.F.; Gobbi, S.; Gobbi, L.T.B. Serum homocysteine and physical exercise in patients with Parkinson’s disease. Psychogeriatrics 2011, 11, 105–112. [Google Scholar] [CrossRef]
- Almeida, O.P.; Almeida, S.A. Reliability of the Brazilian version of the abbreviated form of Geriatric Depression Scale (GDS) short form. Arq Neuropsiquiatr. 1999, 57, 421–426. (In Portuguese) [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, K.; Zhang, T.; Wang, J.; Chen, F.; Qin, W.; Tong, W.; Guan, Q.; He, Y.; Gu, C.; et al. Exercise Reverses Dysregulation of T-Cell-related function in blood leukocytes of patients with Parkinson’s Disease, Front. Neurol. 2020. [Google Scholar] [CrossRef]
- Kaseda, Y.; Ikeda, J.; Sugihara, K.; Yamawaki, T.; Kohriyama, T.; Matsumoto, M. Therapeutic effects of intensive inpatient rehabilitation in advanced Parkinson’s disease. Neurol. Clin. Neurosci. 2017, 5, 18–21. [Google Scholar] [CrossRef] [Green Version]
- Lana, R.d.C.; de Araujo, L.N.; Cardoso, F.; Rodrigues-de-Paula, F. Main determinants of physical activity levels in individuals with Parkinson’s disease. Arq Neuropsiquiatr. 2016, 74, 112–116. [Google Scholar] [CrossRef] [Green Version]
- Van Nimwegen, M.; Speelman, A.D.; Hofman-van Rossum, E.J.; Overeem, S.; Deeg, D.J.; Borm, G.F.; van der Horst, M.H.; Bloem, B.R.; Munneke, M. Physical inactivity in Parkinson’s disease. J. Neurol. 2011, 258, 2214–2221. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.M.; Shieh, W.Y.; Ho, C.S.; Hu, Y.W.; Wu, Y.R. Home-Based Orolingual Exercise (OLE) Improves the Coordination of Swallowing and Respiration in Early Parkinson Disease: A Quasi-Experimental Before-and-After Exercise Program Study. Front. Neurol. 2018, 30, 624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Sun, D.; Liu, M. Implementation of a standardized out-of-hospital management method for Parkinson dysphagia. Rev. Assoc. Med. Bras. 2017, 63, 1076–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warlop, T.; Detrembleur, C.; Bollens, B.; Stoquart, G.; Crevecoeur, F.; Jeanjean, A.; Lejeune, T.M. Temporal organization of stride duration variability as a marker of gait instability in Parkinson’s disease. J. Rehabil. Med. 2016, 11, 865–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martelli, D.; Luo, L.; Kang, J.; Kang, U.J.; Fahn, S.; Agrawal, S.K. Adaptation of Stability during Perturbed Walking in Parkinson’s Disease. Sci. Rep. 2017, 19, 17875. [Google Scholar] [CrossRef]
- Shah, C.; Beall, E.B.; Frankemolle, A.M.; Penko, A.; Phillips, M.D.; Lowe, M.J.; Alberts, J.L. Exercise Therapy for Parkinson’s Disease: Pedaling Rate Is Related to Changes in Motor Connectivity. Brain Connect. 2016, 6, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, R.; Damodaran, H.; Werner, W.G.; Powell, W.; Deutsch, J.E. Auditory and visual cueing modulate cycling speed of older adults and persons with Parkinson’s disease in a Virtual Cycling (V.-Cycle) system. J. Neuroeng. Rehabil. 2016, 19, 77. [Google Scholar] [CrossRef] [Green Version]
- Young, W.R.; Shreve, L.; Quinn, E.J.; Craig, C.; Bronte-Stewart, H. Auditory cueing in Parkinson’s patients with freezing of gait. What matters most: Action-relevance or cue-continuity? Neuropsychologia 2016, 87, 54–62. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Mak, M.K. Repetitive step training with preparatory signals improves stability limits in patients with Parkinson’s disease. J. Rehabil Med. 2012, 44, 944–949. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.; Lim, B.O.; Socie, M.J.; Sosonff, J.J.; Lee, K.K. Fourier-Based Footfall Placement Variability in Parkinson’s Disease. BioMed Res. Int. 2019, 2019, 2689609. [Google Scholar] [CrossRef] [Green Version]
- Galli, M.; Cimolin, V.; De Pandis, M.F.; Le Pera, D.; Sova, I.; Albertini, G.; Stocchi, F.; Franceschini, M. Robot-assisted gait training versus treadmill training in patients with Parkinson’s disease: A kinematic evaluation with gait profile score. Funct. Neurol. 2016, 31, 163–170. [Google Scholar]
- Soltaninejad, S.; Cheng, I.; Basu, A. Kin-FOG: Automatic Simulated Freezing of Gait (FOG) Assessment System for Parkinson’s Disease. Sensors 2019, 19, 2416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hell, F.; Plate, A.; Mehrkens, J.H.; Bötzel, K. Subthalamic oscillatory activity and connectivity during gait in PD. Neuroimage Clin. 2018, 19, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; El-Gohary, M.; Pearson, S.; McNames, J.; Schlueter, H.; Nutt, J.G.; King, L.A.; Horak, F.B. Continuous Monitoring of Turning in Parkinson’s disease: Rehabilitation Potential. NeuroRehabilitation 2015, 37, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Dibilio, V.; Stummer, C.; Drenthen, L.; Bloem, B.R.; Nonnekes, J.; Weerdesteyn, V. Secondary task performance during challenging walking tasks and freezing episodes in Parkinson’s disease. J. Neural. Transm. 2016, 123, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Ellis, T.; Boudreau, J.K.; DeAngelis, T.R.; Brown, L.E.; Cavanaugh, J.T.; Earhart, G.M.; Ford, M.P.; Foreman, K.B.; Dibble, L.E. Barriers to exercise in people with PD. Phys. Ther. 2013, 93, 628–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, B.; Sasaki, J.E.; Jeng, B.; Cederberg, K.L.; Bamman, M.M.; Motl, R.W. Accuracy and Precision of Three Consumer-Grade Motion Sensors During Overground and Treadmill Walking in People With Parkinson Disease: Cross-Sectional Comparative Study. JMIR Rehabil. Assist. Technol. 2020, 16, e14059. [Google Scholar] [CrossRef]
- Hssayeni, M.D.; Jimenez-Shahed, J.; Burack, M.A.; Ghoraani, B. Wereable sensors-for estimate of tremor severity during free body movements. Sensors 2019, 19, 4215. [Google Scholar] [CrossRef] [Green Version]
- Zalecki, T.; Gorecka-Mazur, A.; Pietraszko, W.; Surowka, A.D.; Novak, P.; Moskala, M.; Krygowska-Wajs, A. Visual feedback training using WII Fit improves balance in Parkinson’s disease. Folia Med. Cracoviensia 2013, 53, 65–78. [Google Scholar]
- Hammond, C.; Bergman, H.; Brown, P. Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends Neurosci. 2007. [Google Scholar] [CrossRef]
- Kühn, A.A.; Kupsch, A.; Schneider, G.H.; Brown, P. Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci. 2006, 23, 1956–1960. [Google Scholar] [CrossRef]
- Neumann, W.J.; Staub, F.; Horn, A.; Schanda, J.; Mueller, J.; Schneider, G.H.; Brown, P.; Kühn, A.A. Deep brain recordings using an implanted pulse generator in Parkinson’s disease. Neuromodulation 2016, 19, 20–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirra, M.; Marsili, L.; Wattley, L.; Sokol, L.L.; Keeling, E.; Maule, S.; Sobrero, G.; Artusi, C.A.; Romagnolo, A.; Zibetti, M.; et al. Telemedicine in Neurological Disorders: Opportunities and Challenges. Telemed. E-Health 2019, 25, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Kannan, M.; Solenski, N. Acceptance of Telemedicine within an Academic Neurology Department (1021). Neurology 2020, 94 (Suppl. 15), 1021. [Google Scholar]
- Dias, A.E.; Limongi, J.; Hsing, W.T.; Barbosa, E.R. Telerehabilitation in Parkinson’s disease: Influence of cognitive status. Dement. Neuropsychol. 2016, 10, 327–332. [Google Scholar] [CrossRef]
- Molini-Avejonas, D.R.; Rondon-Melo, S.; Amato, C.A.; Samelli, A.G. A systematic review of the use of telehealth in speech language and hearing sciences. J. Telemed. Telecare 2015, 21, 367–376. [Google Scholar] [CrossRef]
- Choi, N.G.; Dinitto, D.M. Internet use among older adults: Association with health needs, psychological capital, and social capital. J. Med. Internet Res. 2013, 15, e97. [Google Scholar] [CrossRef]
- Isernia, S.; Di Tella, S.; Pagliari, C.; Jonsdottir, J.; Castiglioni, C.; Gindri, P.; Salza, M.; Gramigna, C.; Palumbo, G.; Molteni, F.; et al. Effects of an Innovative Telerehabilitation Intervention for People with Parkinson’s Disease on Quality of Life, Motor, and Non-motor Abilities. Front. Neurol. 2020, 11, 846. [Google Scholar] [CrossRef]
- Abraham, A.; Hart, A.; Andrade, I.; Hackney, M.E. Dynamic Neuro-Cognitive Imagery (DNI) Improves Mental Imagery Ability, Disease Severity, and Motor and Cognitive Functions in People with Parkinson’s Disease. Neural Plast. 2018, 2018, 6168507. [Google Scholar] [CrossRef]
Reference | Motor Instruments | Motor Outcomes | Non-Motor Instruments | Non-Motor Outcomes | Physical Exercises | Frequency |
---|---|---|---|---|---|---|
Ehlen F., et al. (2018) [57] | UPDRS III HOEHN and YAHR | rehabilitation of motor functions | PANDA HAM-D PDQ-39 PRISCUS-PAQ | improving quality of life | ADL (household, gardening, cycling, walking outside, tidying, gymnastics, reading, watching, sewing) | 1 week 2 h twice/week |
Frazzitta G., et al. (2015) [61] | UPDRS III HOEHN and YAHR (2–3) | =improving the range of motion improving gait and balance | PDSS—PD MMSE HAM-D | enhancing sleep quality | intensive rehabilitation protocol (occupational therapy, stretching exercises, relaxation, gait training, balance training) | 4 weeks 3 sessions/day 5 days/week |
Hu Y., et.al (2020) [69] | UPDRS III 10-MKT TUG BBS | improving balance - decreasing neuroinflammation | - | - | aerobic exercises (tai chi, multimodal exercises) | 12 weeks 60 min/session twice/week |
Kaseda Y., et al. (2017) [70] | UPDRS III-IV HOEHN and YAHR BBS FIM | delaying progressive motor disorders on PD reconverting IV stage in III stage UPDRS after daily exercise improving BBS, FIM | MMSE | increasing quality of life | ADL rehabilitation training (10 m/6 m normal walking) | 4 weeks 120 min/session 6–7 days/week |
Lana R de C., et al. (2016) [71] | UPDRS III HOEHN and YAHR HAP FSS | rehabilitation motor functions especially on lower limb (bradykinesia) ability to perform daily activities | - | - | ADL | Non available |
Medijainen K., et al. (2015) [64] | UPDRS III HOEHN and YAHR ROM SPPB HFLEX HABD | increasing ROM, FOG improving gait speed improving sitting and standing transitions | MMSE FOG | - | gait training—20 m long, 3.5 wide postural exercises stretching exercises | 10 weeks 1 h/session 16 session Twice/week |
Medijainen K., Pääsuke M., et al. (2019) [44] | UPDRS III HOEHN and YAHR | improving gait, especially speed of lower limbs | MMSE ADL | - | gait self-speed training—12 m TUG test (stand-up, walking 3 m, turn, walking back and then sit down) | 1 day |
Nascimento CM., et al. (2011) [67] | UPDRS III HOEHN and YAHR | decreasing homocysteine level and improvement of motor functions in PD patients | MMSE ADL | - | Aerobic regularly exercises | 6 months 60 min/session 3 sessions/week |
Rodrigues-de-Paula F., et al. (2006) [50] | UPDRS III HOEHN and YAHR 10/6 MKT HAP BESTest | rehabilitation of motor functions | MoCA GDS FOG | - | ADL (speech therapy, occupational therapy) | Non available |
Stożek J., et al. (2016) [53] | UPDRS III HOEHN and YAHR PPT- Pastor Test (Shoulder Tug) | improving the range of motion improving gait and balance | - | - | gait training stretching therapy breathing exercises balance and gait training dance exercises functional training for head (speech therapy and face exercises), trunk and lower and upper limbs (postural reeducation) | 4 weeks I level 120 min/session Twice sessions/day for 2 weeks, II level 120 min/session 1 session/day 3 sessions/weeks for 2 weeks |
Trăistaru R., et al. (2016) [52] | GCS FIM Tinetti Gait and Balance Instrument | improving the range of motion | - | improving quality of life | joints mobilization decrease rigidity breathing exercises dynamic balance optimization postural exercises occupational therapy | 3 weeks 45 min/session 5 days/week |
van Nimwegen M., et al. (2011) [72] | UPDRS III HOEHN and YAHR TUG 6-MKT test CIRS | improving the range of motion improving gait and balance | MMSE FSS HADS FOG LAPAQ–LASA | decreasing fear of falling, depression and anxiety | ADL (walking, cycling, household activities and 2 sport exercises) | 2 weeks 111 min/day 1 session/daily |
Wang CM., et al. (2018) [73] | UPDRS III HOEHN and YAHR | improving the communication line from swallowing and respiration | MMSE | - | home based oro-lingual exercises training (non-invasive method) 1 cycle (OLE program) 3 times: 2 exercises by swallowing saliva 2 exercises of tongue protruding out 2 exercises of tongue rolling back | 12 weeks 3 sessions/day 5 days/week |
Wei H., et al. (2017) [74] | UPDRS | reducing the complications of dysphagia recovering swallowing functions | - | increasing quality of life | swallowing management protocol (oral cavity muscles training, tongue training, inhalation exercises) | 6 months 10 exercises/session 2 sessions/days |
Tools | Motor Instruments | Motor Outcomes | Non-Motor Instruments | Non-Motor Outcomes | Physical Exercises—Type | Frequency and Duration | References |
---|---|---|---|---|---|---|---|
Accelerometer (Vitaport 3) | UPDRS III ABC BESTest | Analyzing variability gait, gait speed, gait cycles, instability postural | MMSE (˃24) | - | normal walking training around oval inner track by 42 m | 1 day 10 min/session 1 session/day | Warlop T., et al. (2016) [75] |
A-TPAD (Active Tethered Assistive Pelvic Device) - treadmill Bertec | UPDRS HOEHN and YAHR TUG 5-MKT | - Improving postural disturbances - Decreasing risk of falling - Intervention in balance reactive | - | - | walking training with different speeds on treadmill | 30 min/session | Martelli D., et al. (2017) [76] |
Biodex Isokinetic—Trampoline | UPDRS HOEHN and YAHR | Rebound therapy exercises improved proprioception, force of contraction for lower extremity muscle and range of movement | PDQ-39 | Enhancing the quality of life | - rebound therapy exercises - weight-supported exercises | 8 weeks 20–45 min/session 3 sessions/week | Daneshvar P., et al. (2019) [55] |
Cycle ergometer - high-intensity cycling - low–intensity cycling with Auditory (metronome) and visual cues—VR—virtual reality | UPDRS HOEHN and YAHR PIGD TUG ABC 10-MKT STST TUG POMA | - Improving performance gait and motor function (akinesia) - Resistance exercises improve postural instability - Endurance physical exercises stimulated connections between thalamus and cortical motor areas - Rehabilitation motor functions by increasing of pedaling rate - Warning for sensory cues for initiating freezing of gait | MoCA BDI-II QOL/QOL PDQ-39 MMSE PGI-C ADL | - subdomain of cognition/emotions were improved through high-cadence cycling training - investigation neurocognitive functions and enhancing emotional recognition - improvement in the quality of life through resistance exercises | cycling training: high intensity low intensity endurance exercises 4-auditory sessions 5-visual sessions with pedaling rate stepping in place and walking on grave for 6 m with auditory cues | 1 week 40 min/session 3 sessions/week 8 weeks 15–40 min/session 2 or 3 sessions/week 12 weeks 50 min/session 5 or 2 sessions/day 8 weeks 40 min/session 3 sessions/week 1 day 9 min/session Non available | Harper SA., et al. (2019) [62] Chang HC., et al. (2018) [46] Silva-Batista C., et al. (2017) [47] Shah C., et al. (2016) [77] Gallagher R., et al. (2016) [78] Young WR., et al. (2016) [79] |
Dynamometer | UPDRS HOEHN and YAHR | Improving pattern gait (step length), balance and postural stability | - | - | strength training | 4 weeks 60 min/session | Shen X., et al. (2012) [80] |
GAITRite System (pressure sensitive carpet) | UPDRS HOEHN and YAHR | - Analyzing variability gait, - Improving walking speed and length, wide and time steps so enhances the gait - Repetitive step training improved postural, gait skills and spatiotemporal gait characteristics | FOG | - | normal walking 22 m of which 4.88 m on pressure sensitive carpet and 17.12 m for walking self-speed | 1 day 2 sessions/day 15 min/session 3 sessions/week | Shin S., et al. (2019) [81] Shen X., et al. (2012) [80] |
GE-O System | UPDRS HOEHN and YAHR | Robotic gait training improved kinematic gait parameters GVSs (pelvic tilt, obliquity, rotation, hip flexion, abduction, rotation, knee flexion, ankle dorsi-plantar flexion, foot regression) but and length, velocity and cadence steps | - | - | gait training | 4 weeks 45 min/session 20 sessions (twice session/day for 5 days)/week | Galli M., et al. (2016) [82] |
KIN-FOG—system which simulates FOG | UPDRS | The accuracy of the instrument is over 90% in anticipation of the episodes of Freezing of Gait | FOG | - | simple walking (SW) 2.64 m walking with turning (WWT) | 3 sessions/day 1 session—SW 2 sessions—WWT (back and forth) 2.64 m/session | Soltaninejad S., et al. (2019) [83] |
Lokomat–RAGT (Robot-assisted gait training) with VR (Virtual Reality) | UPDRS HOEHN and YAHR 10-MKT ROM FIM | Improving gait (especially speed) | MMSE (˃24) | -enhancing cognitive parameters | walking self–speed | 4 weeks 30 min/session 5 sessions/week | Fundarò C., et al. (2019) [59] |
Multidirectional perturbation platform | UPDRS III HOEHN and YAHR DGI PIGD FAB ABC | - Correlation antagonist muscles with reactive balance - Investigating balance, tremor, gait and postural instability | FOG | - | multidirectional disturbance protocol in 12 directions for investigate reactive balance | Not available | Lang KC., et al. (2019) [45] |
Neurostimulator DBS | UPDRS | Quantifying gait speed, cadence, stride length, gait cycle | - | - | sitting standing 125 m-normal walking (gait self-speed, back and forth) | 1 day - 2 min sitting - 2 min standing - walking self-speed 3 sessions/day | Hell F., et al. (2018) [84] |
Opal inertial sensors (feet and belt) | UPDRS HOEHN and YAHR | Turning monitoring (turn mean velocity, amplitude, cadence, duration) of PD patients in daily activities inside and outside | - | - | ADL (daily living activities) | 1 week 10 h/day 7 consecutive days | Mancini M., et al. (2015) [85] |
Pressure sensor in the object (ball) | UPDRS PIGD FAB | - Turning gait require additional time for secondary task during walking - Delaying the time for installation FOG | FOG | - | 4 m - normal speed walking - normal and rapidly speed walking with short steps - turning gait in both directions (360°) with secondary task (rubber ball held in the most affected arm) | 1 day 12 sessions/day | Dibilio V., et al. (2016) [86] |
Smart EquiTest Balance Master (voluntary stepping in each of the four directions) | UPDRS HOEHN and YAHR | Improving pattern gait, stance and postural stability and decrease fall trends | - | - | walking with directions forward, backward, left and right (sideways) | 15 min/session (forward, backward, left and right) | Shen X., et al. (2012) [80] |
Step Watch 3 Activity Monitor | PASE | Decreasing gait disorders, improving gait balance, resistance, flexibility | - | - Enhancing the quality of life - Expressing fear of falling | ADL | 6 months 20 min/session 3 sessions/week | Ellis T., et al. (2013) [87] |
Touch tablet | UPDRS HOEHN and YAHR | Improving writing size and fluency Unchanging writing velocity | MMSE | - | writing training | 6 weeks 30 min/session 5 sessions/week | Nackaerts E., et al. (2017) [60] |
Treadmill—BWSTT/Bertec | UPDRS HOEHN and YAHR 10-MKT ROM FIM | - Weight-bearing exercises improved proprioception, force of contraction for lower extremity muscle and range of motion - Improving gait speed - Improving step length - Recording steps in PD during overground walking. - Improving pattern gait, stance and postural stability - Improving postural disturbances - Decreasing risk of falling - Intervention in balance reactive | PDQ-39 MMSE (˃24) | - Enhancing quality of life - Improving cognitive parameters | - Weight supported exercises - Walking self-speed - Overground walking - walking with increasing speeds | 8 weeks 20–45 min/session 3 sessions/week 4 weeks 30 min/session 5 sessions/week 4 weeks 45 min/session 20 sessions (2 session/day for 5 days)/week 1 day 6 min/session 25 min/session for walking with large step 30 min/session | Daneshvar P., et al. (2019) [55] Fundarò C., et al. (2019) [59] Galli M., et al. (2016) [82] Lai B., et al. (2020) [88] Shen X., et al. (2012) [79] Martelli D., et al. [76] |
WEB Neuro (Neurocognitive assessment battery) | - | - | MoCA BDI-II QOL/QOL VAS | Investigating neurocognitive functions and enhancing emotional recognition | Endurance exercises | 1 week 40 min/session 3 sessions/week | Harper SA., et al. (2019) [62] |
Wearable movement sensors (gyroscope sensor) - gradient tree boosting - LSTM | UPDRS III HOEHN and YAHR | - Estimating severity tremor (UPDRS III) - Recording steps in PD during overground walking | - | - | ADL | 120 min/session 2 days/week | Hssayeni MD., et al. (2019) [89] Lai B., et al. (2020) [88] |
WII FIT balance board (video game system) | UPDRS III HOEHN and YAHR ABC 10-MKT STST | Improving performance gait and balance | - | - | Nintendo Wii and Wii Fit games | 6 weeks 20 min/session twice sessions/day | Zalecki T., et al. (2013) [90] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bacanoiu, M.V.; Mititelu, R.R.; Danoiu, M.; Olaru, G.; Buga, A.M. Functional Recovery in Parkinson’s Disease: Current State and Future Perspective. J. Clin. Med. 2020, 9, 3413. https://doi.org/10.3390/jcm9113413
Bacanoiu MV, Mititelu RR, Danoiu M, Olaru G, Buga AM. Functional Recovery in Parkinson’s Disease: Current State and Future Perspective. Journal of Clinical Medicine. 2020; 9(11):3413. https://doi.org/10.3390/jcm9113413
Chicago/Turabian StyleBacanoiu, Manuela Violeta, Radu Razvan Mititelu, Mircea Danoiu, Gabriela Olaru, and Ana Maria Buga. 2020. "Functional Recovery in Parkinson’s Disease: Current State and Future Perspective" Journal of Clinical Medicine 9, no. 11: 3413. https://doi.org/10.3390/jcm9113413
APA StyleBacanoiu, M. V., Mititelu, R. R., Danoiu, M., Olaru, G., & Buga, A. M. (2020). Functional Recovery in Parkinson’s Disease: Current State and Future Perspective. Journal of Clinical Medicine, 9(11), 3413. https://doi.org/10.3390/jcm9113413