Assessment of Inflammation and Calcification in Pseudoxanthoma Elasticum Arteries and Skin with 18F-FluroDeoxyGlucose and 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography Imaging: The GOCAPXE Trial
Abstract
:1. Introduction
2. Experimental Section
2.1. Clinical Trial Registration
2.2. Patients
2.2.1. Ethical Standards
2.2.2. Patient Population
2.2.3. PXE Patients
2.2.4. Healthy Volunteers
2.3. Clinical and Biological Assessment
2.3.1. Multiplex Immunoassays Using Luminex® Technology
2.3.2. PPi Assay
2.4. Aortic Stiffness Assessment
Carotid–Femoral PWV Measurement
2.5. Vascular and Skin Imaging
2.5.1. PET-CT and CT-Scan Imaging Techniques
2.5.2. Image Analysis: 18F-FDG/18F-NaF-PET-CT
2.5.3. Image Analysis: CS in Lower Limb Arteries
2.6. Statistical Analysis
3. Results
3.1. Patient Population
3.2. Assessment of LGCI
3.3. Assessment of Ectopic Calcification
3.4. 18F-FDG/18F-NaF Uptake Correlation in the Vascular Network
3.5. Assessment of Blood Circulating Factors
4. Discussion
4.1. PXE: A Seemingly Non-Inflammatory Condition
4.2. PXE as a Prime Example of Chronic Skin and Arterial Calcification
4.3. Aortic Stiffness Correlated with 18F-NaF Not 18F-FDG in PXE
4.4. 18F-NaF as a Diagnostic and Follow-Up Biomarker in PXE
4.5. Study Limitations
5. Conclusions
Clinical Perspectives for PXE Patients
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Leftheriotis, G.; Omarjee, L.; Le Saux, O.; Henrion, D.; Abraham, P.; Prunier, F.; Willoteaux, S.; Martin, L. The vascular phenotype in Pseudoxanthoma elasticum and related disorders: Contribution of a genetic disease to the understanding of vascular calcification. Front. Genet. 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Saux, O.; Urban, Z.; Tschuch, C.; Csiszar, K.; Bacchelli, B.; Quaglino, D.; Pasquali-Ronchetti, I.; Pope, F.M.; Richards, A.; Terry, S.; et al. Mutations in a gene encoding an ABC transporter cause pseudoxanthoma elasticum. Nat. Genet. 2000, 25, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Bergen, A.A.; Plomp, A.S.; Schuurman, E.J.; Terry, S.; Breuning, M.; Dauwerse, H.; Swart, J.; Kool, M.; van Soest, S.; Baas, F.; et al. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat. Genet. 2000, 25, 228–231. [Google Scholar] [CrossRef]
- Jansen, R.S.; Küçükosmanoglu, A.; de Haas, M.; Sapthu, S.; Otero, J.A.; Hegman, I.E.M.; Bergen, A.A.B.; Gorgels, T.G.M.F.; Borst, P.; van de Wetering, K. ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. Proc. Natl. Acad. Sci. USA 2013, 110, 20206–20211. [Google Scholar] [CrossRef] [Green Version]
- Jansen, R.S.; Duijst, S.; Mahakena, S.; Sommer, D.; Szeri, F.; Váradi, A.; Plomp, A.; Bergen, A.A.; Oude Elferink, R.P.J.; Borst, P.; et al. ABCC6-mediated ATP secretion by the liver is the main source of the mineralization inhibitor inorganic pyrophosphate in the systemic circulation-brief report. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1985–1989. [Google Scholar] [CrossRef] [Green Version]
- Al-Aly, Z. Medial vascular calcification in diabetes mellitus and chronic kidney disease: The role of inflammation. Cardiovasc. Hematol. Disord. Drug Targets. 2007, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bessueille, L.; Magne, D. Inflammation: A culprit for vascular calcification in atherosclerosis and diabetes. Cell. Mol. Life Sci. CMLS 2015, 72, 2475–2489. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, C.M. Inflammation ushers in calcification: A cycle of damage and protection? Circulation 2007, 116, 2782–2785. [Google Scholar] [CrossRef]
- Tarkin, J.M.; Joshi, F.R.; Rudd, J.H.F. PET imaging of inflammation in atherosclerosis. Nat. Rev. Cardiol. 2014, 11, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Derlin, T.; Richter, U.; Bannas, P.; Begemann, P.; Buchert, R.; Mester, J.; Klutmann, S. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2010, 51, 862–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dweck, M.R.; Jones, C.; Joshi, N.V.; Fletcher, A.M.; Richardson, H.; White, A.; Marsden, M.; Pessotto, R.; Clark, J.C.; Wallace, W.A.; et al. Assessment of valvular calcification and inflammation by positron emission tomography in patients with aortic stenosis. Circulation 2012, 125, 76–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minciullo, P.L.; Catalano, A.; Mandraffino, G.; Casciaro, M.; Crucitti, A.; Maltese, G.; Morabito, N.; Lasco, A.; Gangemi, S.; Basile, G. Inflammaging and anti-inflammaging: The role of cytokines in extreme longevity. Arch. Immunol. Ther. Exp. 2016, 64, 111–126. [Google Scholar] [CrossRef]
- Derlin, T.; Tóth, Z.; Papp, L.; Wisotzki, C.; Apostolova, I.; Habermann, C.R.; Mester, J.; Klutmann, S. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: A dual-tracer PET/CT study. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2011, 52, 1020–1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plomp, A.S.; Toonstra, J.; Bergen, A.A.B.; van Dijk, M.R.; de Jong, P.T.V.M. Proposal for updating the pseudoxanthoma elasticum classification system and a review of the clinical findings. Am. J. Med. Genet. A 2010, 152A, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Aboyans, V.; Criqui, M.H.; Abraham, P.; Allison, M.A.; Creager, M.A.; Diehm, C.; Fowkes, F.G.R.; Hiatt, W.R.; Jönsson, B.; Lacroix, P.; et al. Measurement and interpretation of the ankle-brachial index: A scientific statement from the American Heart Association. Circulation 2012, 126, 2890–2909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvi, P.; Lio, G.; Labat, C.; Ricci, E.; Pannier, B.; Benetos, A. Validation of a new non-invasive portable tonometer for determining arterial pressure wave and pulse wave velocity: The PulsePen device. J. Hypertens. 2004, 22, 2285–2293. [Google Scholar] [CrossRef] [Green Version]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.K.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.S.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef] [Green Version]
- Janssen, T.; Bannas, P.; Herrmann, J.; Veldhoen, S.; Busch, J.D.; Treszl, A.; Münster, S.; Mester, J.; Derlin, T. Association of linear 18F-sodium fluoride accumulation in femoral arteries as a measure of diffuse calcification with cardiovascular risk factors: A PET/CT study. J. Nucl. Cardiol. Off. Publ. Am. Soc. Nucl. Cardiol. 2013, 20, 569–577. [Google Scholar] [CrossRef]
- Rudd, J.H.F.; Myers, K.S.; Bansilal, S.; Machac, J.; Pinto, C.A.; Tong, C.; Rafique, A.; Hargeaves, R.; Farkouh, M.; Fuster, V.; et al. Atherosclerosis inflammation imaging with 18F-FDG PET: Carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2008, 49, 871–878. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Dilsizian, V. PET assessment of vascular inflammation and atherosclerotic plaques: SUV or TBR? J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2015, 56, 503–504. [Google Scholar] [CrossRef] [Green Version]
- de Boer, S.A.; Hovinga-de Boer, M.C.; Heerspink, H.J.L.; Lefrandt, J.D.; van Roon, A.M.; Lutgers, H.L.; Glaudemans, A.W.J.M.; Kamphuisen, P.W.; Slart, R.H.J.A.; Mulder, D.J. Arterial stiffness is positively associated with 18 F-fluorodeoxyglucose positron emission tomography–assessed subclinical vascular inflammation in people with early type 2 diabetes. Diabetes Care 2016, 39, 1440–1447. [Google Scholar] [CrossRef] [Green Version]
- Mention, P.; Lacoeuille, F.; Leftheriotis, G.; Martin, L.; Omarjee, L. 18F-flurodeoxyglucose and 18F-sodium fluoride positron emission tomography/computed tomography imaging of arterial and cutaneous alterations in pseudoxanthoma elasticum. Circ. Cardiovasc. Imaging 2018, 11, e007060. [Google Scholar] [CrossRef] [Green Version]
- Leftheriotis, G.; Kauffenstein, G.; Hamel, J.F.; Abraham, P.; Le Saux, O.; Willoteaux, S.; Henrion, D.; Martin, L. The contribution of arterial calcification to peripheral arterial disease in pseudoxanthoma elasticum. PLoS ONE 2014, 9, e96003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Marconi, B.; Bobyr, I.; Campanati, A.; Molinelli, E.; Consales, V.; Brisigotti, V.; Scarpelli, M.; Racchini, S.; Offidani, A. Pseudoxanthoma elasticum and skin: Clinical manifestations, histopathology, pathomechanism, perspectives of treatment. Intractable Rare Dis. Res. 2015, 4, 113–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quaglino, D.; Boraldi, F.; Barbieri, D.; Croce, A.; Tiozzo, R.; Pasquali Ronchetti, I. Abnormal phenotype of in vitro dermal fibroblasts from patients with Pseudoxanthoma elasticum (PXE). Biochim. Biophys. Acta 2000, 1501, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Germain, D.P. Pseudoxanthoma elasticum. Orphanet J. Rare Dis. 2017, 12, 85. [Google Scholar] [CrossRef]
- Saadoun, D.; Garrido, M.; Comarmond, C.; Desbois, A.C.; Domont, F.; Savey, L.; Terrier, B.; Geri, G.; Rosenzwajg, M.; Klatzmann, D.; et al. Th1 and Th17 Cytokines drive inflammation in takayasu arteritis. Arthritis Rheumatol. 2015, 67, 1353–1360. [Google Scholar] [CrossRef]
- Agmon, Y.; Khandheria, B.K.; Meissner, I.; Schwartz, G.L.; Petterson, T.M.; O’Fallon, W.M.; Gentile, F.; Whisnant, J.P.; Wiebers, D.O.; Seward, J.B. Independent association of high blood pressure and aortic atherosclerosis: A population-based study. Circulation 2000, 102, 2087–2093. [Google Scholar] [CrossRef]
- Al-Mashhadi, R.H.; Tolbod, L.P.; Bloch, L.Ø.; Bjørklund, M.M.; Nasr, Z.P.; Al-Mashhadi, Z.; Winterdahl, M.; Frøkiær, J.; Falk, E.; Bentzon, J.F. 18-Fluorodeoxyglucose accumulation in arterial tissues determined by PET signal analysis. J. Am. Coll. Cardiol. 2019, 74, 1220–1232. [Google Scholar] [CrossRef]
- Van der Valk, F.M.; Verweij, S.L.; Zwinderman, K.A.H.; Strang, A.C.; Kaiser, Y.; Marquering, H.A.; Nederveen, A.J.; Stroes, E.S.G.; Verberne, H.J.; Rudd, J.H.F. Thresholds for arterial wall inflammation quantified by 18F-FDG PET imaging. JACC Cardiovasc. Imaging 2016, 9, 1198–1207. [Google Scholar] [CrossRef]
- Gutierrez-Cardo, A.; Lillo, E.; Murcia-Casas, B.; Carrillo-Linares, J.L.; García-Argüello, F.; Sánchez-Sánchez, P.; Rodriguez-Morata, A.; Aranda, I.B.; Sánchez-Chaparro, M.Á.; García-Fernández, M.; et al. Skin and arterial wall deposits of 18F-NaF and severity of disease in patients with pseudoxanthoma elasticum. J. Clin. Med. 2020, 9, 1393. [Google Scholar] [CrossRef]
- Oudkerk, S.F.; de Jong, P.A.; Blomberg, B.A.; Scholtens, A.M.; Mali, W.P.T.M.; Spiering, W. Whole-body visualization of ectopic bone formation of arteries and skin in pseudoxanthoma elasticum. JACC Cardiovasc. Imaging 2016, 9, 755–756. [Google Scholar] [CrossRef] [PubMed]
- Narula, N.; Dannenberg, A.J.; Olin, J.W.; Bhatt, D.L.; Johnson, K.W.; Nadkarni, G.; Min, J.; Torii, S.; Poojary, P.; Anand, S.S.; et al. Pathology of peripheral artery disease in patients with critical limb ischemia. J. Am. Coll. Cardiol. 2018, 72, 2152–2163. [Google Scholar] [CrossRef] [PubMed]
- Bartstra, J.W.; de Jong, P.A.; Spiering, W. Accelerated peripheral vascular aging in pseudoxanthoma elasticum—Proof of concept for arterial calcification-induced cardiovascular disease. Aging 2019, 11, 1062–1064. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Kingman, J.; Sundberg, J.P.; Uitto, J.; Li, Q. Plasma PPi deficiency is the major, but not the exclusive, cause of ectopic mineralization in an Abcc6−/− mouse model of PXE. J. Investig. Dermatol. 2017, 137, 2336–2343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diekmann, U.; Zarbock, R.; Hendig, D.; Szliska, C.; Kleesiek, K.; Götting, C. Elevated circulating levels of matrix metalloproteinases MMP-2 and MMP-9 in pseudoxanthoma elasticum patients. J. Mol. Med. 2009, 87, 965–970. [Google Scholar] [CrossRef]
- Leclercq, A.; Houard, X.; Philippe, M.; Ollivier, V.; Sebbag, U.; Meilhac, O.; Michel, J.-B. Involvement of intraplaque hemorrhage in atherothrombosis evolution via neutrophil protease enrichment. J. Leukoc. Biol. 2007, 82, 1420–1429. [Google Scholar] [CrossRef]
- Manka, S.W.; Bihan, D.; Farndale, R.W. Structural studies of the MMP-3 interaction with triple-helical collagen introduce new roles for the enzyme in tissue remodelling. Sci. Rep. 2019, 9, 18785. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, M.E.; Averill, M.M.; Bennett, B.J.; Schwartz, S.M. Progression and disruption of advanced atherosclerotic plaques in murine models. Curr. Drug Targets 2008, 9, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Kranenburg, G.; Visseren, F.L.J.; de Borst, G.J.; de Jong, P.A.; Spiering, W. SMART studygroup Arterial stiffening and thickening in patients with pseudoxanthoma elasticum. Atherosclerosis 2018, 270, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Germain, D.P.; Boutouyrie, P.; Laloux, B.; Laurent, S. Arterial remodeling and stiffness in patients with pseudoxanthoma elasticum. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 836–841. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Fujiyoshi, A.; Willcox, B.; Choo, J.; Vishnu, A.; Hisamatsu, T.; Ahuja, V.; Takashima, N.; Barinas-Mitchell, E.; Kadota, A.; et al. Increased aortic calcification is associated with arterial stiffness progression in multiethnic middle-aged men. Hypertension 2017, 69, 102–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, C.W.; Pencina, K.M.; Massaro, J.M.; Benjamin, E.J.; Levy, D.; Vasan, R.S.; Hoffmann, U.; O’Donnell, C.J.; Mitchell, G.F. Cross-sectional relations of arterial stiffness, pressure pulsatility, wave reflection, and arterial calcification. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2495–2500. [Google Scholar] [CrossRef] [Green Version]
- Ben-Shlomo, Y.; Spears, M.; Boustred, C.; May, M.; Anderson, S.G.; Benjamin, E.J.; Boutouyrie, P.; Cameron, J.; Chen, C.-H.; Cruickshank, J.K.; et al. Aortic pulse wave velocity improves cardiovascular event prediction. J. Am. Coll. Cardiol. 2014, 63, 636–646. [Google Scholar] [CrossRef]
- Chen, J.; Budoff, M.J.; Reilly, M.P.; Yang, W.; Rosas, S.E.; Rahman, M.; Zhang, X.; Roy, J.A.; Lustigova, E.; Nessel, L.; et al. Coronary artery calcification and risk of cardiovascular disease and death among patients with chronic kidney disease. JAMA Cardiol. 2017, 2, 635–643. [Google Scholar] [CrossRef] [Green Version]
- Babic, M.; Schuchardt, M.; Tölle, M.; van der Giet, M. In times of tobacco-free nicotine consumption: The influence of nicotine on vascular calcification. Eur. J. Clin. Investig. 2019, 49, e13077. [Google Scholar] [CrossRef] [Green Version]
- Tyson, K.L.; Reynolds, J.L.; McNair, R.; Zhang, Q.; Weissberg, P.L.; Shanahan, C.M. Osteo/Chondrocytic transcription factors and their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 489–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutsch, F.; Nitschke, Y.; Terkeltaub, R. Genetics in arterial calcification: Pieces of a puzzle and cogs in a wheel. Circ. Res. 2011, 109, 578–592. [Google Scholar] [CrossRef]
- Den Harder, A.M.; Wolterink, J.M.; Bartstra, J.W.; Spiering, W.; Zwakenberg, S.R.; Beulens, J.W.; Slart, R.H.J.A.; Luurtsema, G.; Mali, W.P.; de Jong, P.A. Vascular uptake on 18F-sodium fluoride positron emission tomography: Precursor of vascular calcification? J. Nucl. Cardiol. 2020. [Google Scholar] [CrossRef] [Green Version]
- Doherty, T.M.; Fitzpatrick, L.A.; Inoue, D.; Qiao, J.-H.; Fishbein, M.C.; Detrano, R.C.; Shah, P.K.; Rajavashisth, T.B. Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr. Rev. 2004, 25, 629–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kranenburg, G.; de Jong, P.A.; Bartstra, J.W.; Lagerweij, S.J.; Lam, M.G.; Ossewaarde-van Norel, J.; Risseeuw, S.; van Leeuwen, R.; Imhof, S.M.; Verhaar, H.J.; et al. Etidronate for prevention of ectopic mineralization in patients with pseudoxanthoma elasticum. J. Am. Coll. Cardiol. 2018, 71, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | All | PXE Patients | Healthy Volunteers | p |
---|---|---|---|---|
Age | 46 | 23 | 23 | 0.79 |
(mean ± sd) | 46.67 ± 13.53 | 47.22 ± 14.10 | 46.13 ± 13.23 | |
Sex | 46 | 23 | 23 | 1.00 |
Female | 24 (52.2%) | 12 (52.2%) | 12 (52.2%) | |
Male | 22 (47.8%) | 11 (47.8%) | 11 (47.8%) | |
BMI (Kg/m2) | 44 | 23 | 21 | 0.20 |
(median (IQR)) | 23.57 (22.23;26.54) | 24.01 (22.68;28.41) | 23.24 (21.07;25.68) | |
SBP (mmHg) | 40 | 23 | 17 | 0.15 |
(median (IQR)) | 120.50 (112.50;131.50) | 121.00 (114.00;142.00) | 118.00 (110.00;126.00) | |
DBP (mmHg) | 40 | 23 | 17 | 0.60 |
(median (IQR)) | 70.00 (63.00;74.50) | 69.00 (63.00;78.00) | 71.00 (66.00;73.00) | |
Right ABI | 40 | 23 | 17 | 0.10 |
(mean ± sd) | 1.02 ± 0.18 | 0.98 ± 0.20 | 1.07 ± 0.14 | |
Left ABI | 40 | 23 | 17 | 0.16 |
(mean ± sd) | 1.02 ± 0.20 | 0.98 ± 0.23 | 1.07 ± 0.13 | |
Total Cholesterol (mmol/L) | 39 | 23 | 16 | 0.80 |
(mean ± sd) | 5.20 ± 1.01 | 5.24 ± 0.95 | 5.16 ± 1.12 | |
LDL Cholesterol (mmol/L) | 38 | 23 | 15 | 0.84 |
(mean ± sd) | 3.21 ± 0.87 | 3.23 ± 0.89 | 3.17 ± 0.86 | |
HbA1c % | 31 | 20 | 11 | 0.76 |
(mean ± sd) | 5.44 ± 0.45 | 5.42 ± 0.51 | 5.47 ± 0.33 | |
hsCRP (mg/L) | 46 | 23 | 23 | 0.49 |
1.74 ± 2.70 | 2.11 ± 3.45 | 1.37 ± 1.67 | ||
PPi (μmol/L) | 17 | 17 | ||
Only for PXE patients | 7.00E-07 ± 6.00E-07 | 7.00E-07 ± 6.00E-07 | ||
Current Smoker | 46 | 23 | 23 | 0.02 |
No | 40 (87.0%) | 17 (73.9%) | 23 (100.0%) | |
Yes | 6 (13.0%) | 6 (26.1%) | 0 (0.0%) | |
Stroke | 46 | 23 | 23 | 1.00 |
No | 45 (97.8%) | 22 (95.7%) | 23 (100.0%) | |
Yes | 1 (2.2%) | 1 (4.3%) | 0 (0.0%) | |
Myocardial Infarction | 46 | 23 | 23 | 1.00 |
No | 45 (97.8%) | 22 (95.7%) | 23 (100.0%) | |
Yes | 1 (2.2%) | 1 (4.3%) | 0 (0.0%) | |
PAD | 46 | 23 | 23 | 0.002 |
No | 37 (80.4%) | 14 (60.9%) | 23 (100.0%) | |
Yes | 9 (19.6%) | 9 (39.1%) | 0 (0.0%) |
All PXE Patients (n = 23) | ||||||||
18F-FDG PET-CT | 18F-NaF PET-CT | |||||||
SKIN | SUV max | p | SUV max | p | ||||
Lumbar (Reference Region) (median (IQR)) | 0.90 (0.80;1.10) | 0.70 (0.50;0.90) | ||||||
Neck (median (IQR)) | 1.30 (1.20;1.90) | <0.0001 | 4.50 (3.20;5.10) | <0.0001 | ||||
Axillary Folds (median (IQR)) | 1.80 (1.60;1.90) | <0.0001 | 2.75 (1.90;3.30) | <0.0001 | ||||
All PXE Patients (n = 23) | PXE Patients with CS = 0HU (n = 11) | |||||||
18F-FDG PET-CT | 18F-NaF PET-CT | 18F-FDG PET-CT | 18F-NaF PET-CT | |||||
ARTERIES | TBR max | p | TBR max | p | TBR max | p | TBR max | p |
Popliteal (Reference Region) (median (IQR)) | 0.91 (0.80;1.14) | 1.12 (0.99;1.30) | 1.06 (0.73;1.14) | 1.00 (0.85;1.15) | ||||
Carotid (median (IQR)) | 1.04 (0.88;1.18) | 0.93 | 1.25 (0.93;1.75) | 0.16 | 0.88 (0.74;1.08) | 0.32 | 1.14 (0.93;1.92) | 0.01 |
Aorta (Ascending and Arch) (median (IQR)) | 1.32 (1.13;1.57) | <0.0001 | 1.42 (1.25;1.63) | 0.0004 | 1.24 (1.05;1.43) | 0.03 | 1.29 (1.06;1.64) | <0.01 |
Aorta (Descending and Adominal) (median (IQR)) | 1.02 (0.88;1.36) | 0.09 | 0.78 (0.70;1.04) | 0.07 | 0.95 (0.88;1.29) | 0.24 | 0.78 (0.70;0.90) | 0.19 |
Iliac (median (IQR)) | 0.93 (0.74;1.15) | 0.29 | 0.90 (0.75;1.32) | 0.48 | 0.93 (0.63;1.04) | 0.23 | 0.86 (0.65;1.00) | 0.52 |
Femoral (median (IQR)) | 0.89 (0.75;1.02) | 0.03 | 1.55 (1.26;2.00) | <0.0001 | 0.88 (0.79;1.02) | 0.31 | 1.50 (1.11;1.79) | 0.02 |
PXE Patients (n = 19) | ||
---|---|---|
Adjusted Correlation between Aorta Wall 18F-NaF Uptake and PWW (m/s) | Spearman Partial Correlation Coefficient | p |
Adjusted correlation for SBP (mmHg) | 0.57 | 0.01 |
Adjusted Correlation for DBP (mmHg) | 0.57 | 0.01 |
Adjusted correlation for SBP (mmHg) and DBP (mmHg) | 0.58 | 0.02 |
All (n = 46) Median (IQR) | PXE (n = 23) Median (IQR) | Healthy Volunteers (n = 23) Median (IQR) | p | |
---|---|---|---|---|
Chemokines | ||||
CCL2 | 264.69 (225.28;345.65 | 250.01 (229.88;333.75) | 289.51 ± 104.64 | 0.66 |
CCL3 | 0.00 (0.00;56.43) | 0.00 (0.00;82.68) | 0.00 (0.00;56.43) | 0.24 |
CCL4 | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.49 |
CCL5 | 30,948 (23,723;38,964) | 34,155 (23,041;38,964) | 29,601 (25,421;39,548) | 0.83 |
CCL17 | 392.21 (314.88;541.28) | 364.38 (296.11;515.60) | 429.37 (317.54;548.24) | 0.40 |
CCL18 | 44,428 (30,810;59,277) | 44,817 (30,863;54,648) | 41,288 (25,807;60,200) | 0.86 |
CCL22 | 504.85 (460.23;598.45) | 521.49 (472.01;598.45) | 495.82 (405.80;615.17) | 0.14 |
CXCL10 | 21.73 (16.29;26.58) | 22.74 (16.29;25.01) | 20.42 (15.98;28.05) | 0.98 |
Cytokines | ||||
IL-1ra | 587.78 (420.12;832.53) | 591.79 (447.93;912.15) | 497.71 (360.76;799.96) | 0.18 |
IL-1 β | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.34 |
IL-4 | 17.38 (17.38;25.84) | 25.84 (17.38;33.44) | 17.38 (7.06;25.84) | 0.22 |
IL-6 | 0.17 (0.00;0.62) | 0.36 (0.00;0.75) | 0.00 (0.00;0.36) | 0.08 |
IL-8 | 7.23 (6.07;9.96) | 7.62 (6.07;11.15) | 6.84 (6.07;8.01) | 0.24 |
IL-10 | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 1.00 |
IL-12p70 | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 1.00 |
IL-17A | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.34 |
IFNγ | 2.50 (0.00;2.50) | 2.50 (0.00;2.50) | 0.49 (0.00;4.74) | 0.77 |
TNFα | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.61 |
TGFβ1 | 112,133 (100,387;126,496) | 112,509 (103,813;137,997) | 110,248 (91,732;121,820) | 0.16 |
Growth Factors | ||||
G-CSF | 0.00 (0.00;0.76) | 0.00 (0.00;1.82) | 0.00 (0.00;0.00) | 0.71 |
M-CSF | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.95 |
GM-CSF | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.15 |
VEGF-A | 44.46 (18.48;62.10) | 47.49 (18.48;74.52) | 38.02 (18.48;48.83) | 0.25 |
HGF | 132.26 (105.26;184.94) | 169.00 (108.29;217.93) | 131.51 (102.23;169.73) | 0.20 |
PDGF-BB | 5826.27 (4693.62;7024.87) | 6323.78 (4767.44;7167.26) | 5703.14 (4515.93;6796.59) | 0.23 |
Lectin Adhesion Molecules | ||||
E-Selectin | 22,206.12 (17,767.67;34,471.30) | 23,188.95 (17,204.99;35,267.87) | 21,407.08 (17,767.67;30,674.42) | 0.97 |
L-Selectin | 600,330.64 (531,235.56;688,938.90) | 610,241.04 (548,413.23;678,355.84) | 598,640.51 (523,798.06;709,249.07) | 0.95 |
P-Selectin | 49,405.90 (37,883.69;61,905.20) | 42,381.27 (35,790.69;61,905.20) | 51,578.79 (41,755.65;65,608.85) | 0.40 |
Osteogenic Factors | ||||
BMP-2 | 58.56 (54.02;61.45) | 58.56 (52.45;61.45) | 58.56 (54.02;64.24) | 0.67 |
BMP-4 | 44.49 (40.51;54.85) | 44.49 (36.13;53.25) | 46.36 (40.51;56.41) | 0.40 |
Osteoactivin | 22,685.20 (21,353.14;24,640.44) | 22,504.34 (20,212.75;24,640.44) | 22,890.26 (21,353.14;24,934.29) | 0.91 |
Osteopontin | 18,437.45 (14,947.65;21,517.65) | 19,004.67 (15,037.00;21,670.99) | 18,110.55 (12,618.80;21,517.65) | 0.52 |
Osteonectin | 2,588,600.00 (2,255,700.00;2,924,200.00) | 2,820,200.00 (2,229,000.00;3,311,800.00) | 2,545,400.00 (2,255,700.00;2,780,800.00) | 0.15 |
Osteoprotegerin | 628.63 (539.63;736.51) | 658.26 (571.15;813.95) | 584.38 (502.39;707.36) | 0.09 |
RANKL | 9.21 (6.37;11.16) | 10.18 (8.25;11.16) | 9.21 (5.44;11.16) | 0.08 |
Fetuin-A | 487,970,000 (422,850,000;601,000,000) | 512,070,000 (440,520,000;601,000,000) | 463,690,000 (413,500,000;602,390,000) | 0.47 |
Matrix Metalloproteinase | ||||
MMP-1 | 2021.21 (1534.73;3406.60) | 2154.55 (1534.73;3862.47) | 1915.57 (1300.14;3310.01) | 0.48 |
MMP-2 | 514,982.65 (457,406.57;548,911.69) | 478,598.33 (416,138.80;540,719.70) | 533,325.91 (486,092.57;587,136.67) | 0.03 |
MMP-3 | 9704.09 (6387.33;16,945.20) | 7574.66 (5631.33;9816.17) | 14,108.42 (8212.26;20,466.87) | 0.02 |
MMP-7 | 9050.0 ± 1073.3 | 8928.1 ± 1169.9 | 9171.8 ± 978.05 | 0.45 |
MMP-8 | 5432.3 (4744.7;6715.9) | 4977.4 (4468.4;6715.9) | 5544.3 (4783.8;6715.9) | 0.51 |
MMP-9 | 170,124.09 (135,202.28;237,051.11) | 168,637.52 (135,202.28;224,464.92) | 194,727.27 (132,832.22;285,870.08) | 0.55 |
MMP-10 | 967.85 (813.53;1315.12) | 925.02 (776.52;1132.34) | 993.13 (813.53;1330.80) | 0.45 |
MMP-12 | 34.91 (28.45;47.99) | 31.89 (24.60;52.38) | 37.92 (31.89;37.92) | 0.79 |
Fibrogenic Factors | ||||
Endothelin-1 | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.00 (0.00;0.00) | 0.34 |
PAI-1 | 91,900.85 (80,754.77;116,870.76) | 100,095.18 (83,731.81;125,177.18) | 88,542.09 (72,077.73;102,371.86) | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omarjee, L.; Mention, P.-J.; Janin, A.; Kauffenstein, G.; Le Pabic, E.; Meilhac, O.; Blanchard, S.; Navasiolava, N.; Leftheriotis, G.; Couturier, O.; et al. Assessment of Inflammation and Calcification in Pseudoxanthoma Elasticum Arteries and Skin with 18F-FluroDeoxyGlucose and 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography Imaging: The GOCAPXE Trial. J. Clin. Med. 2020, 9, 3448. https://doi.org/10.3390/jcm9113448
Omarjee L, Mention P-J, Janin A, Kauffenstein G, Le Pabic E, Meilhac O, Blanchard S, Navasiolava N, Leftheriotis G, Couturier O, et al. Assessment of Inflammation and Calcification in Pseudoxanthoma Elasticum Arteries and Skin with 18F-FluroDeoxyGlucose and 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography Imaging: The GOCAPXE Trial. Journal of Clinical Medicine. 2020; 9(11):3448. https://doi.org/10.3390/jcm9113448
Chicago/Turabian StyleOmarjee, Loukman, Pierre-Jean Mention, Anne Janin, Gilles Kauffenstein, Estelle Le Pabic, Olivier Meilhac, Simon Blanchard, Nastassia Navasiolava, Georges Leftheriotis, Olivier Couturier, and et al. 2020. "Assessment of Inflammation and Calcification in Pseudoxanthoma Elasticum Arteries and Skin with 18F-FluroDeoxyGlucose and 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography Imaging: The GOCAPXE Trial" Journal of Clinical Medicine 9, no. 11: 3448. https://doi.org/10.3390/jcm9113448
APA StyleOmarjee, L., Mention, P. -J., Janin, A., Kauffenstein, G., Le Pabic, E., Meilhac, O., Blanchard, S., Navasiolava, N., Leftheriotis, G., Couturier, O., Jeannin, P., Lacoeuille, F., & Martin, L. (2020). Assessment of Inflammation and Calcification in Pseudoxanthoma Elasticum Arteries and Skin with 18F-FluroDeoxyGlucose and 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography Imaging: The GOCAPXE Trial. Journal of Clinical Medicine, 9(11), 3448. https://doi.org/10.3390/jcm9113448