Similar Clinical Course and Significance of Circulating Innate and Adaptive Immune Cell Counts in STEMI and COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Study in STEMI Patients
2.2.1. Circulating White Blood Cell Counts
2.2.2. CMR
2.2.3. Follow Up
2.3. Study in COVID-19 Patients
2.3.1. Circulating White Blood Cell Counts
2.3.2. Image Analysis
2.3.3. Follow Up
2.4. Statistical Analysis
3. Results
3.1. Dynamics of Neutrophil and Lymphocyte Counts and NLR in STEMI and COVID-19 Patients
3.2. Association with Occurrence of Adverse Events and Resultant Structural Damage
3.2.1. Adverse Events
3.2.2. Structural Damage
4. Discussion
4.1. Activation of Innate Immunity after STEMI and COVID-19
4.2. Implication of Adaptive Immunity after STEMI and COVID-19
4.3. Potential Therapeutic Implications
4.4. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Menees, D.S.; Peterson, E.D.; Wang, Y.; Curtis, J.P.; Messenger, J.C.; Rumsfeld, J.S.; Gurm, H.S. Door-to-balloon time and mortality among patients undergoing primary PCI. N. Engl. J. Med. 2013, 369, 901–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prabhu, S.D.; Frangogiannis, N.G. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ. Res. 2016, 119, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Núñez, J.; Núñez, E.; Sanchis, J.; Bodí, V.; Llàcer, A. Prognostic value of leukocytosis in acute coronary syndromes: The cinderella of the inflammatory markers. Curr. Med. Chem. 2006, 13, 2113–2118. [Google Scholar] [CrossRef] [PubMed]
- Bodí, V.; Sanchis, J.; Núñez, J.; Rumiza, E.; Mainar, L.; López-Lereu, M.P.; Monmeneu, J.V.; Oltra, R.; Forteza, M.J.; Chorro, F.J.; et al. Post-reperfusion lymphopenia and microvascular obstruction in ST-segment elevation acute myocardial infarction. Rev. Esp. Cardiol. 2009, 62, 1109–1117. [Google Scholar] [CrossRef]
- Husser, O.; Bodi, V.; Sanchis, J.; Nunez, J.; Mainar, L.; Chorro, F.J.; Lopez-Lereu, M.P.; Monmeneu, J.V.; Chaustre, F.; Forteza, M.J.; et al. White blood cell subtypes after STEMI: Temporal evolution, association with cardiovascular magnetic resonance—Derived infarct size and impact on outcome. Inflammation 2011, 34, 73–84. [Google Scholar] [CrossRef]
- Tan, L.; Wang, Q.; Zhang, D.; Ding, J.; Huang, Q.; Tang, Y.Q.; Wang, Q.; Miao, H. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study. Signal Transduct. Target. Ther. 2020, 5, 16–18. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Bodi, V.; Monmeneu, J.V.; Ortiz-Perez, J.T.; Lopez-Lereu, M.P.; Bonanad, C.; Husser, O.; Minana, G.; Gomez, C.; Nunez, J.; Forteza, M.J.; et al. Prediction of Reverse Remodeling at Cardiac MR Imaging Soon after First ST-Segment-Elevation Myocardial Infarction: Results of a Large Prospective Registry. Radiology 2016, 278, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Bonanad, C.; Monmeneu, J.V.; Lopez-Lereu, M.P.; Hervas, A.; de Dios, E.; Gavara, J.; Nunez, J.; Minana, G.; Husser, O.; Paya, A.; et al. Prediction of long-term major events soon after a first ST-segment elevation myocardial infarction by cardiovascular magnetic resonance. Eur. J. Radiol. 2016, 85, 585–592. [Google Scholar] [CrossRef]
- Monmeneu, J.V.; Bodí, V.; Sanchis, J.; López-Lereu, M.P.; Mainar, L.; Núñez, J.; Chaustre, F.; Rumiz, E.; Chorro, F.J.; Llácer, A. Cardiac magnetic resonance evaluation of edema after ST-elevation acute myocardial infarction. Rev. Esp. Cardiol. 2009, 62, 858–866. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction (2018). J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef]
- National Health Commission & National Administration of Traditional Chinese Medicine. Diagnosis and treatment protocol for novel coronavirus pneumonia (Trial version 7). Chin. Med. J. (Engl). 2020, 133, 1087–1095. [Google Scholar] [CrossRef]
- El Homsi, M.; Chung, M.; Bernheim, A.; Jacobi, A.; King, M.J.; Lewis, S.; Taouli, B. Review of chest CT manifestations of COVID-19 infection. Eur. J. Radiol. Open 2020, 7, 100239. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Lou, J.; Xi, D.; Bai, Y.; Ma, G.; Zhao, B.; Liu, D.; Bao, G.; Lei, Z.; Wang, M. Chest computed tomography findings of coronavirus disease 2019 (COVID-19) pneumonia. Eur. Radiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hansell, D.M.; Bankier, A.A.; MacMahon, H.; McLoud, T.C.; Müller, N.L.; Remy, J. Fleischner Society: Glossary of terms for thoracic imaging. Radiology 2008, 246, 697–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cozzi, D.; Albanesi, M.; Cavigli, E.; Moroni, C.; Bindi, A.; Luvarà, S.; Lucarini, S.; Busoni, S.; Mazzoni, L.N.; Miele, V. Chest X-ray in new Coronavirus Disease 2019 (COVID-19) infection: Findings and correlation with clinical outcome. Radiol. Med. 2020, 125, 730–737. [Google Scholar] [CrossRef]
- Rios-Navarro, C.; Gavara, J.; Vidal, V.; Bonanad, C.; Racugno, P.; Bayes-Genis, A.; Miñana, G.; Husser, O.; Oltra, R.; Nuñez, J.; et al. Characterization and implications of the dynamics of eosinophils in blood and in the infarcted myocardium after coronary reperfusion. PLoS ONE 2018, 13, e0206344. [Google Scholar] [CrossRef]
- Forteza, M.J.; Trapero, I.; Hervas, A.; de Dios, E.; Ruiz-Sauri, A.; Minana, G.; Bonanad, C.; Gómez, C.; Oltra, R.; Rios-Navarro, C.; et al. Apoptosis and Mobilization of Lymphocytes to Cardiac Tissue Is Associated with Myocardial Infarction in a Reperfused Porcine Model and Infarct Size in Post-PCI Patients. Oxid. Med. Cell. Longev. 2018, 2018, 1975167. [Google Scholar] [CrossRef]
- Zhang, S.; Wan, Z.; Zhang, Y.; Fan, Y.; Gu, W.; Li, F.; Meng, L.; Zeng, X.; Han, D.; Li, X. Neutrophil count improves the GRACE risk score prediction of clinical outcomes in patients with ST-elevation myocardial infarction. Atherosclerosis 2015, 241, 723–728. [Google Scholar] [CrossRef]
- Puhl, S.-L.; Steffens, S. Neutrophils in Post-myocardial Infarction Inflammation: Damage vs Resolution? Front. Cardiovasc. Med. 2019, 6, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodi, V.; Sanchis, J.; Nunez, J.; Mainar, L.; Minana, G.; Benet, I.; Solano, C.; Chorro, F.J.; Llacer, A. Uncontrolled immune response in acute myocardial infarction: Unraveling the thread. Am. Heart J. 2008, 156, 1065–1073. [Google Scholar] [CrossRef] [PubMed]
- Epelman, S.; Mann, D.L. Communication in the heart: The role of the innate immune system in coordinating cellular responses to ischemic injury. J. Cardiovasc. Transl. Res. 2012, 5, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Carbone, F.; Nencioni, A.; Mach, F.; Vuilleumier, N.; Montecucco, F. Pathophysiological role of neutrophils in acute myocardial infarction. Thromb. Haemost. 2013, 110, 501–514. [Google Scholar] [CrossRef] [Green Version]
- Filippi, M.-D. Neutrophil transendothelial migration: Updates and new perspectives. Blood 2019, 133, 2149–2158. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Zhou, X.; Ji, W.-J.; Lu, R.-Y.; Zhang, Y.; Zhang, Y.-D.; Ma, Y.-Q.; Zhao, J.-H.; Li, Y.-M. Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: Therapeutic potential of DNase-based reperfusion strategy. Am. J. Physiol. Heart Circ. Physiol. 2015, 308, H500–H509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, M.; Fan, M.; Jing, R.; Wang, H.; Qin, J.; Sheng, H.; Wang, Y.; Wu, X.; Zhang, L.; Zhu, J.; et al. Cell-Free circulating DNA: A new biomarker for the acute coronary syndrome. Cardiology 2013, 124, 76–84. [Google Scholar] [CrossRef]
- Zuo, Y.; Zuo, M.; Yalavarthi, S.; Gockman, K.; Madison, J.A.; Shi, H.; Woodard, W.; Lezak, S.P.; Lugogo, N.L.; Knight, J.S.; et al. Neutrophil extracellular traps and thrombosis in COVID-19. medRxiv Prepr. Serv. Heal. Sci. 2020. [Google Scholar] [CrossRef]
- De Waha, S.; Patel, M.R.; Granger, C.B.; Ohman, E.M.; Maehara, A.; Eitel, I.; Ben-Yehuda, O.; Jenkins, P.; Thiele, H.; Stone, G.W. Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: An individual patient data pooled analysis from seven randomized trials. Eur. Heart J. 2017, 38, 3502–3510. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Davoine, F.; Lacy, P. Eosinophil cytokines, chemokines, and growth factors: Emerging roles in immunity. Front. Immunol. 2014, 5, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merad, M.; Martin, J.C. Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 2020, 20, 355–362. [Google Scholar] [CrossRef]
- Girardot, T.; Rimmelé, T.; Venet, F.; Monneret, G. Apoptosis-induced lymphopenia in sepsis and other severe injuries. Apoptosis 2017, 22, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Taghiloo, S.; Aliyali, M.; Abedi, S.; Mehravaran, H.; Sharifpour, A.; Zaboli, E.; Eslami-Jouybari, M.; Ghasemian, R.; Vahedi-Larijani, L.; Hossein-Nattaj, H.; et al. Apoptosis and immunophenotyping of peripheral blood lymphocytes in Iranian COVID-19 patients: Clinical and laboratory characteristics. J. Med. Virol. 2020. [Google Scholar] [CrossRef]
- Boag, S.E.; Das, R.; Shmeleva, E.V.; Bagnall, A.; Egred, M.; Howard, N.; Bennaceur, K.; Zaman, A.; Keavney, B.; Spyridopoulos, I. T lymphocytes and fractalkine contribute to myocardial ischemia/reperfusion injury in patients. J. Clin. Invest. 2015, 125, 3063–3076. [Google Scholar] [CrossRef] [Green Version]
- Carsana, L.; Sonzogni, A.; Nasr, A.; Rossi, R.S.; Pellegrinelli, A.; Zerbi, P.; Rech, R.; Colombo, R.; Antinori, S.; Corbellino, M.; et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: A two-centre descriptive study. Lancet. Infect. Dis. 2020, 20, 1135–1140. [Google Scholar] [CrossRef]
- Hofmann, U.; Frantz, S. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction. Circ. Res. 2015, 116, 354–367. [Google Scholar] [CrossRef] [Green Version]
- Dyck, L.; Mills, K.H.G. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur. J. Immunol. 2017, 47, 765–779. [Google Scholar] [CrossRef]
- Forteza, M.J.; Hervas, A.; de Dios, E.; Trapero, I.; Ruiz-Sauri, A.; Minana, G.; Bonanad, C.; Gomez, C.; Husser, O.; Nunez, J.; et al. Programmed death-1 (PD-1): A novel mechanism for understanding the acute immune deregulation in ST-segment elevation myocardial infarction. Int. J. Cardiol. 2014, 177, 8–10. [Google Scholar] [CrossRef]
- Diao, B.; Wang, C.; Tan, Y.; Chen, X.; Liu, Y.; Ning, L.; Chen, L.; Li, M.; Liu, Y.; Wang, G.; et al. Reduction and Functional Exhaustion of T Cells in Patients with Coronavirus Disease 2019 (COVID-19). medRxiv 2020. [Google Scholar] [CrossRef]
- Tardif, J.-C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
- Hennessy, T.; Soh, L.; Bowman, M.; Kurup, R.; Schultz, C.; Patel, S.; Hillis, G.S. The Low Dose Colchicine after Myocardial Infarction (LoDoCo-MI) study: A pilot randomized placebo controlled trial of colchicine following acute myocardial infarction. Am. Heart J. 2019, 215, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef]
- Bodí, V.; Sanchis, J.; López-Lereu, M.P.; Losada, A.; Núñez, J.; Pellicer, M.; Bertomeu, V.; Chorro, F.J.; Llácer, A. Usefulness of a comprehensive cardiovascular magnetic resonance imaging assessment for predicting recovery of left ventricular wall motion in the setting of myocardial stunning. J. Am. Coll. Cardiol. 2005, 46, 1747–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodi, V.; Sanchis, J.; Nunez, J.; Mainar, L.; Lopez-Lereu, M.P.; Monmeneu, J.V.; Rumiz, E.; Chaustre, F.; Trapero, I.; Husser, O.; et al. Prognostic value of a comprehensive cardiac magnetic resonance assessment soon after a first ST-segment elevation myocardial infarction. JACC Cardiovasc. Imaging 2009, 2, 835–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All | Without MACE | With MACE | p-Value | |
---|---|---|---|---|
Patients, n | 659 | 549 | 110 | |
Age (years) | 60 ± 12 | 58 ± 12 | 66 ± 12 | <0.001 |
Male sex, n (%) | 532 (81) | 455 (83) | 77 (70) | 0.002 |
Diabetes mellitus, n (%) | 146 (22) | 115 (21) | 31 (28) | 0.1 |
Hypertension, n (%) | 324 (49) | 252 (46) | 72 (65) | <0.001 |
Hypercholesterolemia, n (%) | 302 (46) | 250 (46) | 52 (47) | 0.7 |
Smoker, n (%) | 371 (56) | 317 (58) | 54 (49) | 0.09 |
Heart rate (beats per minute) | 78 ± 19 | 77 ± 19 | 84 ± 21 | <0.001 |
Systolic blood pressure (mmHg) | 130 ± 30 | 131 ± 29 | 129 ± 33 | 0.6 |
Creatinine (mg/dL) | 0.92 (0.8–1.1) | 0.91 (0.8–1.09) | 0.96 (0.8–1.18) | 0.1 |
Glucose (mg/dL) | 130 (107–167) | 128 (105–161) | 148 (119–188) | <0.001 |
Killip class >1 (%) | <0.001 | |||
1 | 549 (83) | 475 (87) | 74 (67) | |
>1 | 110 (17) | 74 (13) | 36 (33) | |
Time from chest pain to first medical contact (min) | 190 (130–300) | 180 (120–297) | 225 (160–420) | 0.002 |
CK-MB mass peak value (ng/mL) | 164 (60–290) | 151 (57–278) | 196 (69–318) | 0.06 |
Anterior infarction, n (%) | 332 (50) | 260 (47) | 72 (65) | 0.001 |
TIMI flow grade before PCI (%) | 0.9 | |||
0 | 345 (52) | 286 (52) | 59 (54) | |
1 | 44 (7) | 36 (7) | 8 (7) | |
2 | 73 (11) | 63 (11) | 10 (9) | |
3 | 197 (30) | 164 (30) | 33 (30) | |
TIMI flow grade after PCI (%) | 0.1 | |||
0 | 17 (3) | 12 (2) | 5 (4) | |
1 | 6 (1) | 4 (1) | 2 (2) | |
2 | 50 (7) | 37 (7) | 13 (12) | |
3 | 586 (89) | 496 (90) | 90 (82) | |
Grace Risk Score | 135 ± 32 | 131 ± 29 | 160 ± 33 | <0.001 |
Timi Risk Score | 2 (1–4) | 2 (1–4) | 4 (2–6) | <0.001 |
All | No Death/ICU | Death/ICU | p-Value | |
---|---|---|---|---|
Patients, n | 103 | 73 | 30 | |
Age (years) | 69 ± 16 | 69 ± 17 | 69 ± 10 | 0.9 |
Male sex, n (%) | 49 (48) | 27 (37) | 22 (73) | <0.001 |
Diabetes mellitus, n (%) | 25 (24) | 15 (21) | 10 (33) | 0.1 |
Hypertension, n (%) | 57 (55) | 39 (53) | 18 (60) | 0.4 |
Hypercholesterolemia, n (%) | 42 (41) | 29 (40) | 13 (43) | 0.6 |
Smoker, n (%) | 5 (5) | 5 (7) | 0 (0) | 0.1 |
Heart rate (beats per minute) | 89 ± 18 | 88 ± 18 | 93 ± 20 | 0.2 |
Systolic blood pressure (mmHg) | 131 ± 26 | 131 ± 26 | 133 ± 26 | 0.7 |
Time to symptoms to first medical contact (min) | 5 (1–10) | 5 (0–11) | 6 (3–10) | 0.7 |
Creatinine (mg/dL) | 0.86 (0.74–1.11) | 0.85 (0.69–1.09) | 0.95 (0.83–1.38) | 0.06 |
Glucose (mg/dL) | 114 (97–135) | 110 (96–126) | 129 (112–168) | 0.002 |
Previous cardiovascular disease (%) | 24 (23) | 16 (22) | 8 (27) | 0.5 |
COPD (%) | 6 (6) | 4 (5) | 2 (7) | 0.8 |
D-dimer (ng/mL) | 602 (297–1248) | 379 (234–760) | 1125 (635–3210) | <0.001 |
GOT (U/L) | 35 (23–52) | 31 (20–45) | 47 (37–67) | <0.001 |
GPT (U/L) | 23 (14–44) | 19 (12–33) | 32 (23–61) | 0.002 |
LDH (U/L) | 590 ± 243 | 500 ± 202 | 793 ± 209 | <0.001 |
CRP (mg/L) | 45 (10–88) | 33 (5–61) | 89 (54–210) | <0.001 |
Hydroxychloroquine (%) | 72 (70) | 44 (60) | 28 (93) | 0.003 |
Azithromycin (%) | 63 (61) | 38 (52) | 25 (83) | 0.004 |
Tocilizumab (%) | 31 (30) | 11 (15) | 20 (67) | <0.001 |
Corticoids (%) | 27 (26) | 10 (14) | 17 (57) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Dios, E.; Rios-Navarro, C.; Perez-Sole, N.; Gavara, J.; Marcos-Garces, V.; Rodríguez, E.; Carratalá, A.; Forner, M.J.; Navarro, J.; Blasco, M.L.; et al. Similar Clinical Course and Significance of Circulating Innate and Adaptive Immune Cell Counts in STEMI and COVID-19. J. Clin. Med. 2020, 9, 3484. https://doi.org/10.3390/jcm9113484
de Dios E, Rios-Navarro C, Perez-Sole N, Gavara J, Marcos-Garces V, Rodríguez E, Carratalá A, Forner MJ, Navarro J, Blasco ML, et al. Similar Clinical Course and Significance of Circulating Innate and Adaptive Immune Cell Counts in STEMI and COVID-19. Journal of Clinical Medicine. 2020; 9(11):3484. https://doi.org/10.3390/jcm9113484
Chicago/Turabian Stylede Dios, Elena, Cesar Rios-Navarro, Nerea Perez-Sole, Jose Gavara, Victor Marcos-Garces, Enrique Rodríguez, Arturo Carratalá, Maria J. Forner, Jorge Navarro, Maria L. Blasco, and et al. 2020. "Similar Clinical Course and Significance of Circulating Innate and Adaptive Immune Cell Counts in STEMI and COVID-19" Journal of Clinical Medicine 9, no. 11: 3484. https://doi.org/10.3390/jcm9113484
APA Stylede Dios, E., Rios-Navarro, C., Perez-Sole, N., Gavara, J., Marcos-Garces, V., Rodríguez, E., Carratalá, A., Forner, M. J., Navarro, J., Blasco, M. L., Bondia, E., Signes-Costa, J., Vila, J. M., Forteza, M. J., Chorro, F. J., & Bodi, V. (2020). Similar Clinical Course and Significance of Circulating Innate and Adaptive Immune Cell Counts in STEMI and COVID-19. Journal of Clinical Medicine, 9(11), 3484. https://doi.org/10.3390/jcm9113484