Pathogenesis of Human Immunodeficiency Virus-Mycobacterium tuberculosis Co-Infection
Abstract
:1. Introduction
2. Pathogenesis of HIV
3. Pathogenesis of Tuberculosis
4. Glutathione Depletion
5. Tuberculous Granuloma
6. T Cell Exhaustion in HIV and Mtb Infections
7. TNF-α Upregulation
8. Difficulties in Co-Treatment of HIV and Tuberculosis
8.1. Drug-Drug Interactions and Co-Toxicities
8.2. IRIS
8.3. Adherence
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization (WHO). Global Tuberculosis Report 2019. Available online: https://www.who.int/tb/publications/global_report/en/ (accessed on 25 June 2020).
- Kwan, C.K.; Ernst, J.D. HIV and tuberculosis: A deadly human syndemic. Clin. Microbiol. Rev. 2011, 24, 351–376. [Google Scholar] [CrossRef] [Green Version]
- Center for Disease Control and Prevention. Fact Sheets. 4 May 2016. Available online: https://www.cdc.gov/tb/publications/factsheets/testing/hivscreening.htm (accessed on 23 June 2020).
- McShane, H. Co-infection with HIV and TB: Double trouble. Int. J. STD AIDS 2005, 16, 95–101. [Google Scholar] [CrossRef]
- Akolo, C.; Adetifa, I.; Shepperd, S.; Volmink, J. Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst. Rev. 2010, 2010, CD000171. [Google Scholar] [CrossRef]
- Diedrich, C.R.; Mattila, J.T.; Klein, E.; Janssen, C.; Phuah, J.; Sturgeon, T.J.; Montelaro, R.C.; Lin, P.L.; Flynn, J.L. Reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS ONE 2010, 5, e9611. [Google Scholar] [CrossRef] [Green Version]
- Selwyn, P.A.; Hartel, D.; Lewis, V.A.; Schoenbaum, E.E.; Vermund, S.H.; Klein, R.S.; Walker, A.T.; Friedland, G.H. A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N. Engl. J. Med. 1989, 320, 545–550. [Google Scholar] [CrossRef]
- Williams, B.G.; Dye, C. Antiretroviral drugs for tuberculosis control in the era of HIV/AIDS. Science 2003, 301, 1535–1537. [Google Scholar] [CrossRef] [Green Version]
- Corbett, E.L.; Watt, C.J.; Walker, N.; Maher, D.; Williams, B.G.; Raviglione, M.C.; Dye, C. The Growing Burden of Tuberculosis. Arch. Intern. Med. 2003, 163, 1009. [Google Scholar] [CrossRef] [Green Version]
- Cock, K.M. Tuberculosis and HIV Infection in Sub-Saharan Africa. JAMA J. Am. Med. Assoc. 1992, 268, 1581–1587. [Google Scholar] [CrossRef]
- Chaisson, R.E.; Golub, J.E. Preventing tuberculosis in people with HIV—No more excuses. Lancet Glob. Health 2017, 5, e1048–e1049. [Google Scholar] [CrossRef] [Green Version]
- Swindells, S.; Ramchandani, R.; Gupta, A.; Benson, C.A.; Leon-Cruz, J.; Mwelase, N.; Chaisson, R.E. One Month of Rifapentine plus Isoniazid to Prevent HIV-Related Tuberculosis. N. Engl. J. Med. 2019, 380, 1001–1011. [Google Scholar] [CrossRef]
- World Health Organization (WHO). TB and HIV and Other Co-Morbidities. Available online: https://www.who.int/tb/areas-of-work/tb-hiv/en/ (accessed on 25 June 2020).
- Becker, Y. The changes in the T helper 1 (Th1) and T helper 2 (Th2) cytokine balance during HIV-1 infection are indicative of an allergic response to viral proteins that may be reversed by Th2 cytokine inhibitors and immune response modifiers--a review and hypothesis. Virus Genes 2004, 28, 5–18. [Google Scholar] [CrossRef]
- Esser, R.; von Briesen, H.; Brugger, M.; Ceska, M.; Glienke, W.; Müller, S.; Rehm, A.; Rübsamen-Waigmann, H.; Andreesen, R. Secretory repertoire of HIV-infected human monocytes/macrophages. Pathobiol. J. Immunopathol. Mol. Cell. Biol. 1991, 59, 219–222. [Google Scholar] [CrossRef]
- Romagnani, S.; Del Prete, G.; Manetti, R.; Ravina, A.; Annunziato, F.; De Carli, M.; Mazzetti, M.; Piccinni, M.P.; D’Elios, M.M.; Parronchi, P. Role of TH1/TH2 cytokines in HIV infection. Immunol. Rev. 1994, 140, 73–92. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Wang, Y.; Li, Y.; Dong, Y.; Yang, A.; Zhang, J.; Li, F.; Zhang, R. Genome-wide expression profiling analysis to identify key genes in the anti-HIV mechanism of CD4+ and CD8+ T cells. J. Med. Virol. 2018, 90, 1199–1209. [Google Scholar] [CrossRef]
- Clerici, M.; Hakim, F.T.; Venzon, D.J.; Blatt, S.; Hendrix, C.W.; Wynn, T.A.; Shearer, G.M. Changes in interleukin-2 and interleukin-4 production in asymptomatic, human immunodeficiency virus-seropositive individuals. J. Clin. Investig. 1993, 91, 759–765. [Google Scholar] [CrossRef] [Green Version]
- Secord, E.A.; Kleiner, G.I.; Auci, D.L.; Smith-Norowitz, T.; Chice, S.; Finkielstein, A.; Nowakowski, M.; Fikrig, S.; Durkin, H.G. IgE against HIV proteins in clinically healthy children with HIV disease. J. Allergy Clin. Immunol. 1996, 98 Pt 1, 979–984. [Google Scholar] [CrossRef]
- Granich, R.; Akolo, C.; Gunneberg, C.; Getahun, H.; Williams, P.; Williams, B. Prevention of tuberculosis in people living with HIV. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2010, 50 (Suppl. 3), S215–S222. [Google Scholar] [CrossRef] [Green Version]
- Doyle, T.; Goujon, C.; Malim, M.H. HIV-1 and interferons: Who’s interfering with whom? Nat. Rev. Microbiol. 2015, 13, 403–413. [Google Scholar] [CrossRef]
- Okumura, A.; Lu, G.; Pitha-Rowe, I.; Pitha, P.M. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc. Natl. Acad. Sci. USA 2006, 103, 1440–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doitsh, G.; Galloway, N.L.; Geng, X.; Yang, Z.; Monroe, K.M.; Zepeda, O.; Hunt, P.W.; Hatano, H.; Sowinski, S.; Muñoz-Arias, I.; et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 2014, 505, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Bell, L.; Noursadeghi, M. Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection. Nat. Rev. Microbiol. 2018, 16, 80–90. [Google Scholar] [CrossRef]
- Harman, A.N.; Wilkinson, J.; Bye, C.R.; Bosnjak, L.; Stern, J.L.; Nicholle, M.; Lai, J.; Cunningham, A.L. HIV induces maturation of monocyte-derived dendritic cells and Langerhans cells. J. Immunol. 2006, 177, 7103–7113. [Google Scholar] [CrossRef] [Green Version]
- Bertram, K.M.; Botting, R.A.; Baharlou, H.; Rhodes, J.W.; Rana, H.; Graham, J.D.; Patrick, E.; Fletcher, J.; Plasto, T.M.; Truong, N.R.; et al. Identification of HIV transmitting CD11c+ human epidermal dendritic cells. Nat. Commun. 2019, 10, 2759. [Google Scholar] [CrossRef]
- Shah, A.; Kumar, S.; Simon, S.D.; Singh, D.P.; Kumar, A. HIV gp120- and methamphetamine-mediated oxidative stress induces astrocyte apoptosis via cytochrome P450 2E1. Cell Death Dis. 2013, 4, e850. [Google Scholar] [CrossRef] [Green Version]
- Factor, V.M.; Laskowska, D.; Jensen, M.R.; Woitach, J.T.; Popescu, N.C.; Thorgeirsson, S.S. Vitamin E reduces chromosomal damage and inhibits hepatic tumor formation in a transgenic mouse model. Proc. Natl. Acad. Sci. USA 2000, 97, 2196–2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Nguyen, L.; Nguyen, L.N.; Dang, X.; Cao, D.; Khanal, S.; Schank, M.; Thakuri, B.; Ogbu, S.C.; Morrison, Z.D.; et al. ATM Deficiency Accelerates DNA Damage, Telomere Erosion, and Premature T Cell Aging in HIV-Infected Individuals on Antiretroviral Therapy. Front. Immunol. 2019, 10, 2531. [Google Scholar] [CrossRef]
- Van Epps, P.; Kalayjian, R.C. Human Immunodeficiency Virus and Aging in the Era of Effective Antiretroviral Therapy. Infect. Dis. Clin. N. Am. 2017, 31, 791–810. [Google Scholar] [CrossRef]
- Riley, R.L. Aerial dissemination of pulmonary tuberculosis. Am. Rev. Tuberc. 1957, 76, 931–941. [Google Scholar] [CrossRef]
- Armstrong, J.A.; Hart, P.D. Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusion of lysosomes with phagosomes. J. Exp. Med. 1971, 134 Pt 1, 713–740. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.B.; Gern, B.H.; Delahaye, J.L.; Adams, K.N.; Plumlee, C.R.; Winkler, J.K.; Sherman, D.R.; Gerner, M.Y.; Urdahl, K.B. Alveolar Macrophages Provide an Early Mycobacterium tuberculosis Niche and Initiate Dissemination. Cell Host Microbe 2018, 24, 439–446.e4. [Google Scholar] [CrossRef] [Green Version]
- Sturgill-Koszycki, S.; Schlesinger, P.H.; Chakraborty, P.; Haddix, P.L.; Collins, H.L.; Fok, A.K.; Allen, R.D.; Gluck, S.L.; Heuser, J.; Russell, D.G. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 1994, 263, 678–681. [Google Scholar] [CrossRef]
- Buter, J.; Cheng, T.Y.; Ghanem, M.; Grootemaat, A.E.; Raman, S.; Feng, X.; Layre, E. Mycobacterium tuberculosis releases an antacid that remodels phagosomes. Nat. Chem. Biol. 2019, 15, 889–899. [Google Scholar] [CrossRef]
- Schnappinger, D.; Ehrt, S.; Voskuil, M.I.; Liu, Y.; Mangan, J.A.; Monahan, I.M.; Dolganov, G.; Efron, B.; Butcher, P.D.; Nathan, C.; et al. Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J. Exp. Med. 2003, 198, 693–704. [Google Scholar] [CrossRef] [Green Version]
- Van der Wel, N.; Hava, D.; Houben, D.; Fluitsma, D.; van Zon, M.; Pierson, J.; Brenner, M.; Peters, P.J.M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 2007, 129, 1287–1298. [Google Scholar] [CrossRef] [Green Version]
- Wolf, A.J.; Linas, B.; Trevejo-Nuñez, G.J.; Kincaid, E.; Tamura, T.; Takatsu, K.; Ernst, J.D. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J. Immunol. 2007, 179, 2509–2519. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 2012, 12, 352–366. [Google Scholar] [CrossRef]
- Orme, I.M.; Basaraba, R.J. The formation of the granuloma in tuberculosis infection. Semin. Immunol. 2014, 26, 601–609. [Google Scholar] [CrossRef]
- Guerrini, V.; Gennaro, M.L. Foam Cells: One Size Doesn’t Fit All. Trends Immunol. 2019, 40, 1163–1179. [Google Scholar] [CrossRef]
- Davis, J.M.; Ramakrishnan, L. The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell 2009, 136, 37–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarathy, J.P.; Dartois, V. Caseum: A Niche for Mycobacterium tuberculosis Drug-Tolerant Persisters. Clin. Microbiol. Rev. 2020, 33, e00159-19. [Google Scholar] [CrossRef]
- Peyron, P.; Vaubourgeix, J.; Poquet, Y.; Levillain, F.; Botanch, C.; Bardou, F.; Daffé, M.; Emile, J.F.; Marchou, B.; Cardona, P.J.; et al. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 2008, 4, e1000204. [Google Scholar] [CrossRef]
- Kim, M.J.; Wainwright, H.C.; Locketz, M.; Bekker, L.G.; Walther, G.B.; Dittrich, C.; Visser, A.; Wang, W.; Hsu, F.F.; Wiehart, U.; et al. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol. Med. 2010, 2, 258–274. [Google Scholar] [CrossRef]
- Mishra, B.B.; Lovewell, R.R.; Olive, A.J.; Zhang, G.; Wang, W.; Eugenin, E.; Smith, C.M.; Phuah, J.Y.; Long, J.E.; Dubuke, M.L.; et al. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis. Nat. Microbiol. 2017, 2, 17072. [Google Scholar] [CrossRef] [Green Version]
- Marzo, E.; Vilaplana, C.; Tapia, G.; Diaz, J.; Garcia, V.; Cardona, P.J. Damaging role of neutrophilic infiltration in a mouse model of progressive tuberculosis. Tuberculosis 2014, 94, 55–64. [Google Scholar] [CrossRef]
- Grosset, J. Mycobacterium tuberculosis in the extracellular compartment: An underestimated adversary. Antimicrob. Agents Chemother. 2003, 47, 833–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffith, O.W. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med. 1999, 27, 922–935. [Google Scholar] [CrossRef]
- Jones, D.P. Redox potential of GSH/GSSG couple: Assay and biological significance. Methods Enzymol. 2002, 348, 93–112. [Google Scholar] [CrossRef]
- Morris, D.; Guerra, C.; Khurasany, M.; Guilford, F.; Saviola, B.; Huang, Y.; Venketaraman, V. Glutathione supplementation improves macrophage functions in HIV. J. Interferon Cytokine Res. 2013, 33, 270–279. [Google Scholar] [CrossRef]
- Wu, G.; Fang, Y.-Z.; Yang, S.; Lupton, J.R.; Turner, N.D. Glutathione Metabolism and Its Implications for Health. J. Nutr. 2004, 134, 489–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, M.E. Glutathione: An overview of biosynthesis and modulation. Chem. Biol. Interact. 1998, 111–112, 1–14. [Google Scholar] [CrossRef]
- Valdivia, A.; Ly, J.; Gonzalez, L.; Hussain, P.; Saing, T.; Islamoglu, H.; Pearce, D.; Ochoa, C.; Venketaraman, V. Restoring Cytokine Balance in HIV-Positive Individuals with Low CD4 T Cell Counts. Aids Res. Hum. Retrovir. 2017, 33, 905–918. [Google Scholar] [CrossRef]
- Buhl, R.; Jaffe, H.A.; Holroyd, K.J.; Wells, F.B.; Mastrangeli, A.; Saltini, C.; Cantin, A.M.; Crystal, R.G. Systemic glutathione deficiency in symptom-free HIV-seropositive individuals. Lancet 1989, 2, 1294–1298. [Google Scholar] [CrossRef]
- Pacht, E.R.; Diaz, P.; Clanton, T.; Hart, J.; Gadek, J.E. Alveolar fluid glutathione decreases in asymptomatic HIV-seropositive subjects over time. Chest 1997, 112, 785–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, K.M.; Sutliff, R.L. HIV-1, reactive oxygen species, and vascular complications. Free Radic. Biol. Med. 2012, 53, 143–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Liu, R.M.; Kundu, R.K.; Sangiorgi, F.; Wu, W.; Maxson, R.; Forman, H.J. Molecular mechanism of decreased glutathione content in human immunodeficiency virus type 1 Tat-transgenic mice. J. Biol. Chem. 2000, 275, 3693–3698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, S.; Tawakol, A.; Burdo, T.H.; Abbara, S.; Wei, J.; Vijayakumar, J.; Corsini, E.; Abdelbaky, A.; Zanni, M.V.; Hoffmann, U.; et al. Arterial inflammation in patients with HIV. JAMA 2012, 308, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Bourgi, K.; Wanjalla, C.; Koethe, J.R. Inflammation and Metabolic Complications in HIV. Curr. HIV/AIDS Rep. 2018, 15, 371–381. [Google Scholar] [CrossRef]
- Fukui, S.M.; Piggott, D.A.; Erlandson, K.M. Inflammation Strikes Again: Frailty and HIV. Curr. HIV/AIDS Rep. 2018, 15, 20–29. [Google Scholar] [CrossRef]
- Roca, F.J.; Ramakrishnan, L. TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell 2013, 153, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Ndlovu, H.; Marakalala, M.J. Granulomas and Inflammation: Host-Directed Therapies for Tuberculosis. Front. Immunol. 2016, 7, 434. [Google Scholar] [CrossRef] [Green Version]
- Domingo-Gonzalez, R.; Prince, O.; Cooper, A.; Khader, S.A. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, V.; Zychlinsky, A. Neutrophil extracellular traps: Is immunity the second function of chromatin? J. Cell Biol. 2012, 198, 773–783. [Google Scholar] [CrossRef] [Green Version]
- Shastri, M.D.; Shukla, S.D.; Chong, W.C.; Dua, K.; Peterson, G.M.; Patel, R.P.; Hansbro, P.M.; Eri, R.; O’Toole, R.F. Role of Oxidative Stress in the Pathology and Management of Human Tuberculosis. Oxidative Med. Cell. Longev. 2018, 2018, 7695364. [Google Scholar] [CrossRef] [Green Version]
- Ly, J.; Lagman, M.; Saing, T.; Singh, M.K.; Tudela, E.V.; Morris, D.; Anderson, J.; Daliva, J.; Ochoa, C.; Patel, N.; et al. Liposomal Glutathione Supplementation Restores TH1 Cytokine Response to Mycobacterium tuberculosis Infection in HIV-Infected Individuals. J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res. 2015, 35, 875–887. [Google Scholar] [CrossRef] [Green Version]
- Millman, A.C.; Salman, M.; Dayaram, Y.K.; Connell, N.D.; Venketaraman, V. Natural killer cells, glutathione, cytokines, and innate immunity against Mycobacterium tuberculosis. J. Interferon Cytokine Res. Off. J. Int. Soc. Interferon Cytokine Res. 2008, 28, 153–165. [Google Scholar] [CrossRef]
- Herzenberg, L.A.; De Rosa, S.C.; Dubs, J.G.; Roederer, M.; Anderson, M.T.; Ela, S.W.; Deresinski, S.C.; Herzenberg, L.A. Glutathione deficiency is associated with impaired survival in HIV disease. Proc. Natl. Acad. Sci. USA 1997, 94, 1967–1972. [Google Scholar] [CrossRef] [Green Version]
- Morris, D.; Ly, J.; Chi, P.T.; Daliva, J.; Nguyen, T.; Soofer, C.; Chen, Y.C.; Lagman, M.; Venketaraman, V. Glutathione synthesis is compromised in erythrocytes from individuals with HIV. Front. Pharmacol. 2014, 5, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerra, C.; Morris, D.; Sipin, A.; Kung, S.; Franklin, M.; Gray, D.; Tanzil, M.; Guilford, F.; Khasawneh, F.T.; Venketaraman, V. Glutathione and adaptive immune responses against Mycobacterium tuberculosis infection in healthy and HIV infected individuals. PLoS ONE 2011, 6, e28378. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Danaviah, S.; Muema, D.M.; Akilimali, N.A.; Moodley, P.; Ndung’U, T.; Das, G. Cellular Architecture of Spinal Granulomas and the Immunological Response in Tuberculosis Patients Coinfected with HIV. Front. Immunol. 2017, 8, 1120. [Google Scholar] [CrossRef] [Green Version]
- Müller, H.; Krüger, S. Immunohistochemical Analysis of Cell Composition and in situ Cytokine Expression in HIV-and non-HIV-Associated Tuberculous Lymphadenitis. Immunobiology 1994, 191, 354–368. [Google Scholar] [CrossRef]
- Van der Ende, M.E.; Schutten, M.; Raschdorff, B.; Groschupff, G.; Racz, P.; Osterhaus, A.D.; Tenner-Racz, K. CD4 T cells remain the major source of HIV-1 during end stage disease. Aids 1999, 13, 1015–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diedrich, C.R.; O’Hern, J.; Gutierrez, M.G.; Allie, N.; Papier, P.; Meintjes, G.; Coussens, A.K.; Wainwright, H.; Wilkinson, R.J. Relationship Between HIV Coinfection, Interleukin 10 Production, and Mycobacterium tuberculosis in Human Lymph Node Granulomas. J. Infect. Dis. 2016, 214, 1309–1318. [Google Scholar] [CrossRef] [Green Version]
- Diedrich, C.; O’Hern, J.; Wilkinson, R. HIV-1 and the Mycobacterium tuberculosis granuloma: A systematic review and meta-analysis. Tuberculosis 2016, 98, 62–76. [Google Scholar] [CrossRef] [Green Version]
- Bezuidenhout, J.; Roberts, T.; Muller, L.; Helden, P.V.; Walzl, G. Pleural Tuberculosis in Patients with Early HIV Infection Is Associated with Increased TNF-Alpha Expression and Necrosis in Granulomas. PLoS ONE 2009, 4, e4228. [Google Scholar] [CrossRef]
- Hoshino, Y.; Hoshino, S.; Gold, J.A.; Raju, B.; Prabhakar, S.; Pine, R.; Rom, W.N.; Nakata, K.; Weiden, M. Mechanisms of polymorphonuclear neutrophil-mediated induction of HIV-1 replication in macrophages during pulmonary tuberculosis. J. Infect. Dis. 2007, 195, 1303–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrait, V.; Cadranel, J.; Esvant, H.; Herry, I.; Morinet, P.; Mayaud, C.; Israel-Biet, D. Tuberculosis generates a microenvironment enhancing the productive infection of local lymphocytes by HIV. J. Immunol. 1997, 159, 2824–2830. [Google Scholar]
- Noronha, A.L.; Báfica, A.; Nogueira, L.; Barral, A.; Barral-Netto, M. Lung granulomas from Mycobacterium tuberculosis/HIV-1 co-infected patients display decreased in situ TNF production. Pathol. Res. Pract. 2008, 204, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Costamanga, P.; Furst, K.; Tully, K.; Landis, J.; Moser, K.; Quach, L.; Kwak, J. Tuberculosis Associated with Blocking Agents Against Tumor Necrosis Factor-Alpha—California, 2002–2003. Morb. Mortal. Wkly. Rep. 2004, 53, 683–686. [Google Scholar]
- Wherry, E.J.; Ahmed, R. Memory CD8 T-cell differentiation during viral infection. J. Virol. 2004, 78, 5535–5545. [Google Scholar] [CrossRef] [Green Version]
- Dyck, L.; Mills, K. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur. J. Immunol. 2017, 47, 765–779. [Google Scholar] [CrossRef]
- Fenwick, C.; Joo, V.; Jacquier, P.; Noto, A.; Banga, R.; Perreau, M.; Pantaleo, G. T-cell exhaustion in HIV infection. Immunol. Rev. 2019, 292, 149–163. [Google Scholar] [CrossRef]
- Jayaraman, P.; Jacques, M.K.; Zhu, C.; Steblenko, K.M.; Stowell, B.L.; Madi, A.; Anderson, A.C.; Kuchroo, V.K.; Behar, S.M. TIM3 Mediates T Cell Exhaustion during Mycobacterium tuberculosis Infection. PLoS Pathog. 2016, 12, e1005490. [Google Scholar] [CrossRef]
- Tezera, L.B.; Bielecka, M.K.; Ogongo, P.; Walker, N.F.; Ellis, M.; Garay-Baquero, D.J.; Thomas, K.; Reichmann, M.T.; Johnston, D.A.; Wilkinson, K.A.; et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. eLife 2020, 9, e52668. [Google Scholar] [CrossRef]
- Robainas, M.; Otano, R.; Bueno, S.; Ait-Oudhia, S. Understanding the role of PD-L1/PD1 pathway blockade and autophagy in cancer therapy. Oncotargets Ther. 2017, 10, 1803–1807. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Wherry, E.J. CD8 T cell dysfunction during chronic viral infection. Curr. Opin. Immunol. 2007, 19, 408–415. [Google Scholar] [CrossRef]
- McLane, L.M.; Abdel-Hakeem, M.S.; Wherry, E.J. CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu. Rev. Immunol. 2019, 37, 457–495. [Google Scholar] [CrossRef] [Green Version]
- Lalvani, A.; Millington, K.A. T Cells and Tuberculosis: Beyond Interferon-gamma. J. Infect. Dis. 2008, 197, 941–943. [Google Scholar] [CrossRef]
- Antoine, P.; Olislagers, V.; Huygens, A.; Lecomte, S.; Liesnard, C.; Donner, C.; Marchant, A. Functional exhaustion of CD4+ T lymphocytes during primary cytomegalovirus infection. J. Immunol. 2012, 189, 2665–2672. [Google Scholar] [CrossRef] [Green Version]
- Urbani, S.; Amadei, B.; Fisicaro, P.; Tola, D.; Orlandini, A.; Sacchelli, L.; Mori, C.; Missale, G.; Ferrari, C. Outcome of acute hepatitis C is related to virus-specific CD4 function and maturation of antiviral memory CD8 responses. Hepatology 2006, 44, 126–139. [Google Scholar] [CrossRef]
- Macian, F. NFAT proteins: Key regulators of T-cell development and function. Nat. Rev. Immunol. 2005, 5, 472–484. [Google Scholar] [CrossRef]
- Yao, C.; Sun, H.W.; Lacey, N.E.; Ji, Y.; Moseman, E.A.; Shih, H.Y.; Heuston, E.F.; Kirby, M.; Anderson, S.; Cheng, J.; et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nat. Immunol. 2019, 20, 890–901. [Google Scholar] [CrossRef]
- Wang, X.; He, Q.; Shen, H.; Xia, A.; Tian, W.; Yu, W.; Sun, B. TOX Promotes the Exhaustion of Antitumor CD8 + T Cells by Preventing PD1 Degradation in Hepatocellular Carcinoma. J. Hepatol. 2019, 71, 731–741. [Google Scholar] [CrossRef]
- Thommen, D.S.; Koelzer, V.H.; Herzig, P.; Roller, A.; Trefny, M.; Dimeloe, S.; Kiialainen, A.; Hanhart, J.; Schill, C.; Hess, C.; et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat. Med. 2018, 24, 994–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, J.; Gideon, H.; Mattila, J.; Lin, P. Immunology studies in non-human primate models of tuberculosis. Immunol. Rev. 2015, 264, 60–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiNardo, A.R.; Mandalakas, A.M.; Maphalala, G.; Mtetwa, G.; Mndzebele, T.; Ustero, P.; Hlatshwayo, M.; Mace, E.M.; Orange, J.S.; Makedonas, G. HIV Progression Perturbs the Balance of the Cell-Mediated and Anti-Inflammatory Adaptive and Innate Mycobacterial Immune Response. Mediat. Inflamm. 2016, 2016, 1478340. [Google Scholar]
- Jacques, M.K.; Jayaraman, P.; Kuchroo, V.K.; Behar, S.M. Defining the contribution of T cell exhaustion to failed immunity during TB. J. Immunol. 2016, 196, 65.17. [Google Scholar]
- Day, C.L.; Kaufmann, D.E.; Kiepiela, P.; Brown, J.A.; Moodley, E.S.; Reddy, S.; Mackey, E.W.; Miller, J.D.; Leslie, A.J.; DePierres, C.; et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006, 443, 350–354. [Google Scholar] [CrossRef]
- Amelio, P.; Portevin, D.; Hella, J.; Reither, K.; Kamwela, L.; Lweno, O.; Tumbo, A.; Geoffrey, L.; Ohmiti, K.; Ding, S.; et al. HIV Infection Functionally Impairs Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses. J. Virol. 2019, 93, e01728-18. [Google Scholar] [CrossRef] [Green Version]
- Phillips, B.L.; Gautam, U.S.; Bucsan, A.N.; Foreman, T.W.; Golden, N.A.; Niu, T.; Kaushal, D.; Mehra, S. LAG-3 potentiates the survival of Mycobacterium tuberculosis in host phagocytes by modulating mitochondrial signaling in an in-vitro granuloma model. PLoS ONE 2017, 12, e0180413. [Google Scholar] [CrossRef]
- Dupont, M.; Souriant, S.; Balboa, L.; Vu Manh, T.P.; Pingris, K.; Rousset, S.; Cougoule, C.; Rombouts, Y.; Poincloux, R.; Ben Neji, M.; et al. Tuberculosis-associated IFN-I induces Siglec-1 on tunneling nanotubes and favors HIV-1 spread in macrophages. eLife 2020, 9, e52535. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Eddy, J.J.; Jacobson, K.R.; Henderson, A.J.; Agosto, L.M. Enhanced HIV-1 Replication in CD4+ T Cells Derived from Individuals with Latent Mycobacterium tuberculosis Infection. J. Infect. Dis. 2020, 222, 1550–1560. [Google Scholar] [CrossRef] [PubMed]
- Souriant, S.; Balboa, L.; Dupont, M.; Pingris, K.; Kviatcovsky, D.; Cougoule, C.; Lastrucci, C.; Bah, A.; Gasser, R.; Poincloux, R.; et al. Tuberculosis Exacerbates HIV-1 Infection through IL-10/STAT3-Dependent Tunneling Nanotube Formation in Macrophages. Cell Rep. 2019, 26, 3586–3599.e7. [Google Scholar] [CrossRef] [Green Version]
- Stylianou, E.; Aukrust, P.; Kvale, D.; Müller, F.; Frøland, S.S. IL-10 in HIV infection: Increasing serum IL-10 levels with disease progression--down-regulatory effect of potent anti-retroviral therapy. Clin. Exp. Immunol. 1999, 116, 115–120. [Google Scholar] [CrossRef]
- Folks, T.M.; Clouse, K.A.; Justement, J.; Rabson, A.; Duh, E.; Kehrl, J.H.; Fauci, A.S. Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc. Natl. Acad. Sci. USA 1989, 86, 2365–2368. [Google Scholar] [CrossRef] [Green Version]
- Westendorp, M.O.; Shatrov, V.A.; Schulze-Osthoff, K.; Frank, R.; Kraft, M.; Los, M.; Krammer, P.H.; Dröge, W.; Lehmann, V. HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state. EMBO J. 1995, 14, 546–554. [Google Scholar]
- Zauli, G.; Davis, B.; Re, M.; Visani, G.; Furlini, G.; Placa, M.L. Tat protein stimulates production of transforming growth factor-beta 1 by marrow macrophages: A potential mechanism for human immunodeficiency virus-1-induced hematopoietic suppression. Blood 1992, 80, 3036–3043. [Google Scholar] [CrossRef] [Green Version]
- Poli, G.; Kinter, A.; Justement, J.S.; Kehrl, J.H.; Bressler, P.; Stanley, S.; Fauci, A.S. Tumor necrosis factor alpha functions in an autocrine manner in the induction of human immunodeficiency virus expression. Proc. Natl. Acad. Sci. USA 1990, 87, 782–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goletti, D.; Weissman, D.; Jackson, R.W.; Collins, F.; Kinter, A.; Fauci, A.S. The in vitro induction of human immunodeficiency virus (HIV) replication in purified protein derivative-positive HIV-infected persons by recall antigen response to Mycobacterium tuberculosis is the result of a balance of the effects of endogenous interleukin-2 and proinflammatory and antiinflammatory cytokines. J. Infect. Dis. 1998, 177, 1332–1338. [Google Scholar] [CrossRef] [Green Version]
- Kindler, V.; Sappino, A.P.; Grau, G.E.; Piguet, P.F.; Vassalli, P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 1989, 56, 731–740. [Google Scholar] [CrossRef]
- Narendran, G.; Menon, P.A.; Venkatesan, P.; Vijay, K.; Padmapriyadarsini, C.; Ramesh Kumar, S.; Bhavani, K.P.; Sekar, L.; Gomathi, S.N.; Chandrasekhar, C.; et al. Acquired rifampicin resistance in thrice-weekly antituberculosis therapy: Impact of HIV and antiretroviral therapy. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2014, 59, 1798–1804. [Google Scholar] [CrossRef] [Green Version]
- Perlman, D.C.; Segal, Y.; Rosenkranz, S.; Rainey, P.M.; Remmel, R.P.; Salomon, N.; Hafner, R.; Peloquin, C.A. AIDS Clinical Trials Group 309 Team The clinical pharmacokinetics of rifampin and ethambutol in HIV-infected persons with tuberculosis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2005, 41, 1638–1647. [Google Scholar] [CrossRef] [Green Version]
- Weiner, M.; Benator, D.; Burman, W.; Peloquin, C.A.; Khan, A.; Vernon, A.; Jones, B.; Silva-Trigo, C.; Zhao, Z.; Hodge, T. Tuberculosis Trials Consortium Association between acquired rifamycin resistance and the pharmacokinetics of rifabutin and isoniazid among patients with HIV and tuberculosis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2005, 40, 1481–1491. [Google Scholar] [CrossRef] [Green Version]
- Uppuluri, R.; Shah, I. Partial extensively drug-resistant tuberculosis in an HIV-infected child: A case report and review of literature. J. Int. Assoc. Provid. Aids Care 2014, 13, 117–119. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Treatment of Drug-Susceptible Tuberculosis and Patient Care (2017 Update). Available online: https://www.who.int/tb/publications/2017/dstb_guidance_2017/en (accessed on 26 June 2020).
- Ahmad Khan, F.; Minion, J.; Al-Motairi, A.; Benedetti, A.; Harries, A.D.; Menzies, D. An updated systematic review and meta-analysis on the treatment of active tuberculosis in patients with HIV infection. Clin. Infect. Dis. 2012, 55, 1154–1163. [Google Scholar] [CrossRef] [Green Version]
- Falzon, D.; Schünemann, H.J.; Harausz, E.; González-Angulo, L.; Lienhardt, C.; Jaramillo, E.; Weyer, K. World Health Organization treatment guidelines for drug-resistant tuberculosis, 2016 update. Eur. Respir. J. 2017, 49, 1602308. [Google Scholar]
- Mirnejad, R.; Asadi, A.; Khoshnood, S.; Mirzaei, H.; Heidary, M.; Fattorini, L.; Darban-Sarokhalil, D. Clofazimine: A useful antibiotic for drug-resistant tuberculosis. Biomed. Pharmacother. 2018, 105, 1353–1359. [Google Scholar] [CrossRef]
- Nix –TB: TB Alliance (n.d.). Available online: https://www.tballiance.org/portfolio/trial/5089 (accessed on 10 September 2020).
- Pretomanid and the BPaL Regimen. (n.d.). Available online: https://www.tballiance.org/access/pretomanid-and-bpal-regimen (accessed on 10 September 2020).
- Huante, M.B.; Saito, T.B.; Nusbaum, R.J.; Naqvi, K.F.; Chauhan, S.; Hunter, R.L.; Actor, J.K.; Rudra, J.S.; Endsley, M.A.; Lisinicchia, J.G.; et al. Small Animal Model of Post-chemotherapy Tuberculosis Relapse in the Setting of HIV Co-infection. Front. Cell. Infect. Microbiol. 2020, 10, 150. [Google Scholar] [CrossRef] [PubMed]
- McIlleron, H.; Meintjes, G.; Burman, W.; Maartens, G. Complications of Antiretroviral Therapy in Patients with Tuberculosis: Drug Interactions, Toxicity, and Immune Reconstitution Inflammatory Syndrome. J. Infect. Dis. 2007, 196. [Google Scholar] [CrossRef] [Green Version]
- Li, A.P.; Reith, M.K.; Rasmussen, A.; Gorski, J.C.; Hall, S.D.; Xu, L.; Kaminski, D.L.; Cheng, L.K. Primary human hepatocytes as a tool for the evaluation of structure-activity relationship in cytochrome P450 induction potential of xenobiotics: Evaluation of rifampin, rifapentine and rifabutin. Chem. Biol. Interact. 1997, 107, 17–30. [Google Scholar] [CrossRef]
- Burman, W.; Jones, B. Treatment of HIV-related Tuberculosis in the Era of Effective Antiretroviral Therapy. Am. J. Respir. Crit. Care Med. 2001, 164, 7–12. [Google Scholar] [CrossRef]
- Gopalan, N.; Chandrasekaran, P.; Swaminathan, S.; Tripathy, S. Current trends and intricacies in the management of HIV-associated pulmonary tuberculosis. Aids Res. Ther. 2016, 13, 34. [Google Scholar] [CrossRef] [Green Version]
- Yimer, G.; Aderaye, G.; Amogne, W.; Makonnen, E.; Aklillu, E.; Lindquist, L.; Yamuah, L.; Feleke, B.; Aseffa, A. Anti-tuberculosis therapy-induced hepatotoxicity among Ethiopian HIV-positive and negative patients. PLoS ONE 2008, 3, e1809. [Google Scholar] [CrossRef]
- Schmitt, C.; Riek, M.; Winters, K.; Schutz, M.; Grange, S. Unexpected Hepatotoxicity of Rifampin and Saquinavir/Ritonavir in Healthy Male Volunteers. Arch. Drug Inf. 2009, 2, 8–16. [Google Scholar] [CrossRef]
- Bucher, H.C.; Griffith, L.E.; Guyatt, G.H.; Sudre, P.; Naef, M.; Sendi, P.; Battegay, M. Isoniazid prophylaxis for tuberculosis in HIV infection: A meta-analysis of randomized controlled trials. Aids 1999, 13, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, D.M.; Venter, W.D.; Van Rie, A.; Feldman, C. Immune reconstitution inflammatory syndrome (IRIS): Review of common infectious manifestations and treatment options. Aids Res. Ther. 2007, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Shelburne, S.A.; Hamill, R.J.; Rodriguez-Barradas, M.C.; Greenberg, S.B.; Atmar, R.L.; Musher, D.W.; Gathe, J.C., Jr.; Visnegarwala, F.; Trautner, B.W. Immune reconstitution inflammatory syndrome: Emergence of a unique syndrome during highly active antiretroviral therapy. Medicine 2002, 81, 213–227. [Google Scholar] [CrossRef]
- French, M.A.; Lenzo, N.; John, M.; Mallal, S.A.; McKinnon, E.J.; James, I.R.; Price, P.; Flexman, J.P.; Tay-Kearney, M.L. Immune restoration disease after the treatment of immunodeficient HIV-infected patients with highly active antiretroviral therapy. HIV Med. 2000, 1, 107–115. [Google Scholar] [CrossRef]
- Breton, G.; Duval, X.; Estellat, C.; Poaletti, X.; Bonnet, D.; Mvondo Mvondo, D.; Longuet, P.; Leport, C.; Vildé, J.L. Determinants of immune reconstitution inflammatory syndrome in HIV type 1-infected patients with tuberculosis after initiation of antiretroviral therapy. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2004, 39, 1709–1712. [Google Scholar] [CrossRef] [Green Version]
- Lawn, S.D.; Meintjes, G. Pathogenesis and prevention of immune reconstitution disease during antiretroviral therapy. Expert Rev. Anti Infect. Ther. 2011, 9, 415–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narendran, G.; Swaminathan, S. Tuberculosis Immune Reconstitution Inflammatory Syndrome: Profile of an Enigmatic Condition. Curr. Sci. 2013, 105, 657–665. [Google Scholar]
- Meintjes, G.; Lawn, S.D.; Scano, F.; Maartens, G.; French, M.A.; Worodria, W.; Elliott, J.H.; Murdoch, D.; Wilkinson, R.J.; Seyler, C.; et al. Tuberculosis-associated immune reconstitution inflammatory syndrome: Case definitions for use in resource-limited settings. Lancet Infect. Dis. 2008, 8, 516–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanzafame, M.; Vento, S. Tuberculosis-immune reconstitution inflammatory syndrome. J. Clin. Tuberc. Other Mycobact. Dis. 2016, 3, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Lawn, S.D.; Wainwright, H.; Orrell, C. Fatal unmasking tuberculosis immune reconstitution disease with bronchiolitis obliterans organizing pneumonia: The role of macrophages. Aids 2009, 23, 143–145. [Google Scholar] [CrossRef]
- Geri, G.; Passeron, A.; Heym, B.; Arlet, J.B.; Pouchot, J.; Capron, L.; Ranque, B. Paradoxical reactions during treatment of tuberculosis with extrapulmonary manifestations in HIV-negative patients. Infection 2013, 41, 537–543. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Universal Antiretroviral Therapy (ART) for All HIV-Infected TB Patients. Available online: https://www.who.int/hiv/topics/tb/art_hivpatients/en/ (accessed on 24 June 2013).
- Blanc, F.X.; Sok, T.; Laureillard, D.; Borand, L.; Rekacewicz, C.; Nerrienet, E.; Madec, Y.; Marcy, O.; Chan, S.; Prak, N.; et al. CAMELIA (ANRS 1295–CIPRA KH001) Study Team Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N. Engl. J. Med. 2011, 365, 1471–1481. [Google Scholar] [CrossRef] [Green Version]
- Abdool Karim, S.S.; Naidoo, K.; Grobler, A.; Padayatchi, N.; Baxter, C.; Gray, A.L.; Gengiah, T.; Gengiah, S.; Naidoo, A.; Jithoo, N.; et al. Integration of antiretroviral therapy with tuberculosis treatment. N. Engl. J. Med. 2011, 365, 1492–1501. [Google Scholar] [CrossRef] [Green Version]
- Campbell, I.A.; Dyson, A.J. Lymph node tuberculosis: A comparison of various methods of treatment. Tubercle 1977, 58, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Brust, J.C.; Shah, N.S.; Mlisana, K.; Moodley, P.; Allana, S.; Campbell, A.; Gandhi, N.R. Improved Survival and Cure Rates With Concurrent Treatment for Multidrug-Resistant Tuberculosis–Human Immunodeficiency Virus Coinfection in South Africa. Clin. Infect. Dis. 2017, 66, 1246–1253. [Google Scholar] [CrossRef]
- Stephens, F.; Gandhi, N.R.; Brust, J.; Mlisana, K.; Moodley, P.; Allana, S.; Campbell, A.; Shah, S. Treatment Adherence Among Persons Receiving Concurrent Multidrug-Resistant Tuberculosis and HIV Treatment in KwaZulu-Natal, South Africa. J. Acquir. Immune Defic. Syndr. 2019, 82, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Nathanson, E.; Gupta, R.; Huamani, P.; Leimane, V.; Pasechnikov, A.D.; Tupasi, T.E.; Vink, K.; Jaramillo, E.; Espinal, M.A. Adverse events in the treatment of multidrug-resistant tuberculosis: Results from the DOTS-Plus initiative. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Against Tuberc. Lung Dis. 2004, 8, 1382–1384. [Google Scholar]
- Wells, C.D.; Cegielski, J.P.; Nelson, L.J.; Laserson, K.F.; Holtz, T.H.; Finlay, A.; Castro, K.G.; Weyer, K. HIV infection and multidrug-resistant tuberculosis: The perfect storm. J. Infect. Dis. 2007, 196 (Suppl. 1), S86–S107. [Google Scholar] [CrossRef] [Green Version]
- Martinson, N.A.; Barnes, G.L.; Moulton, L.H.; Msandiwa, R.; Hausler, H.; Ram, M.; McIntyre, J.A.; Gray, G.E.; Chaisson, R.E. New regimens to prevent tuberculosis in adults with HIV infection. N. Engl. J. Med. 2011, 365, 11–20. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.R.; Wolf, A.; Werner, L.; Horsburgh, C.R.; Padayatchi, N. Adherence in the treatment of patients with extensively drug-resistant tuberculosis and HIV in South Africa: A prospective cohort study. J. Acquir. Immune Defic. Syndr. (1999) 2014, 67, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Mumtaz, G.R.; Weiss, H.A.; Thomas, S.L.; Riome, S.; Setayesh, H.; Riedner, G.; Semini, I.; Tawil, O.; Akala, F.A.; Wilson, D.; et al. HIV among people who inject drugs in the Middle East and North Africa: Systematic review and data synthesis. PLoS Med. 2014, 11, e1001663. [Google Scholar] [CrossRef] [Green Version]
- Daftary, A.; Padayatchi, N.; O’donnell, M. Preferential adherence to antiretroviral therapy over tuberculosis treatment: A qualitative study of drug-resistant TB/HIV co-infected patients in South Africa. Glob. Public Health 2014, 9, 1107–1116. [Google Scholar] [CrossRef] [Green Version]
- Lawn, S.D.; Butera, S.T.; Folks, T.M. Contribution of immune activation to the pathogenesis and transmission of human immunodeficiency virus type 1 infection. Clin. Microbiol. Rev. 2001, 14, 753–777. [Google Scholar] [CrossRef] [Green Version]
- García, A.; Norambuena-Contreras, J.; Partl, M. Electrical, Thermal and Induction Heating Properties of Dense Asphalt Concrete. Adv. Mater. Res. 2013, 723, 303–311. [Google Scholar]
- Lian, G.; Gnanaprakasam, J.R.; Wang, T.; Wu, R.; Chen, X.; Liu, L.; Shen, Y.; Yang, M.; Yang, J.; Chen, Y.; et al. Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. eLife 2018, 7, e36158. [Google Scholar] [CrossRef]
- Teskey, G.; Cao, R.; Islamoglu, H.; Medina, A.; Prasad, C.; Prasad, R.; Sathananthan, A.; Fraix, M.; Subbian, S.; Zhong, L.; et al. The Synergistic Effects of the Glutathione Precursor, NAC and First-Line Antibiotics in the Granulomatous Response Against Mycobacterium tuberculosis. Front. Immunol. 2018, 9, 2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siberry, G.K.; Abzug, M.J.; Nachman, S.; Brady, M.T.; Dominguez, K.L.; Handelsman, E.; Mofenson, L.M.; Nesheim, S.; Panel on Opportunistic Infections in HIV-Exposed and HIV-Infected Children; National Institutes of Health; et al. Guidelines for the prevention and treatment of opportunistic infections in HIV-exposed and HIV-infected children: Recommendations from the National Institutes of Health, Centers for Disease Control and Prevention, the HIV Medicine Association of the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the American Academy of Pediatrics. Pediatr. Infect. Dis. J. 2013, 32 (Suppl. 2), i-KK4. [Google Scholar] [CrossRef]
Factors of Mtb | Effect on HIV |
---|---|
Glutathione depletion | Increases in oxidative stress in areas of infection increase inflammation and permits proliferation of HIV infected immune cells [54,67,71] |
Decrease in pro-inflammatory cytokines in chronic infection due to T cell exhaustion | Decreased pro-inflammatory cytokines result in suboptimal immune responses to viral infection allowing for HIV disease progression [82,83,89,90,91,92]. |
Excess of TNF-α in acute infection | TNF-α is a major cytokine in granuloma formation that recruits macrophages and T cells forming a replication hot-spot for HIV infected immune cells [97,110,111,112]. |
Increase in anti-inflammatory cytokines in chronic infection due to T-cell exhaustion | Anti-inflammatory cytokines (mainly IL-10) are associated with increasing tunneling nanotubes which facilitate the transfer of HIV between T cells [103,105]. |
Mtb Treatment | Effect on HIV Treatment |
---|---|
Drug–drug interactions | Rifamycin induces liver enzyme CYP3A which increases metabolism of antiretrovirals, notably nelfinavir. Increased CYP3A activity also results in increased toxic metabolites that cause hepatotoxicity and reduce CD4+ counts [124,125,126,127,128,129,130]. |
IRIS with the initiation of ART | The initiation of ART increases the likelihood of developing IRIS which increases the rate of non-compliance to the anti-TB and ART regimens [131,133,134,135,136]. |
Treatment adherence | Individually, non-adherence to HIV or TB treatment regimens are common. Treatment for dually infected patients is associated with a higher rate of non-adherence due to side effects, pill burden, and complex drug interactions [145,146,147,148,149,150,151,152]. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wong, K.; Nguyen, J.; Blair, L.; Banjanin, M.; Grewal, B.; Bowman, S.; Boyd, H.; Gerstner, G.; Cho, H.J.; Panfilov, D.; et al. Pathogenesis of Human Immunodeficiency Virus-Mycobacterium tuberculosis Co-Infection. J. Clin. Med. 2020, 9, 3575. https://doi.org/10.3390/jcm9113575
Wong K, Nguyen J, Blair L, Banjanin M, Grewal B, Bowman S, Boyd H, Gerstner G, Cho HJ, Panfilov D, et al. Pathogenesis of Human Immunodeficiency Virus-Mycobacterium tuberculosis Co-Infection. Journal of Clinical Medicine. 2020; 9(11):3575. https://doi.org/10.3390/jcm9113575
Chicago/Turabian StyleWong, Kevin, James Nguyen, Lillie Blair, Marina Banjanin, Bunraj Grewal, Shane Bowman, Hailey Boyd, Grant Gerstner, Hyun Jun Cho, David Panfilov, and et al. 2020. "Pathogenesis of Human Immunodeficiency Virus-Mycobacterium tuberculosis Co-Infection" Journal of Clinical Medicine 9, no. 11: 3575. https://doi.org/10.3390/jcm9113575
APA StyleWong, K., Nguyen, J., Blair, L., Banjanin, M., Grewal, B., Bowman, S., Boyd, H., Gerstner, G., Cho, H. J., Panfilov, D., Tam, C. K., Aguilar, D., & Venketaraman, V. (2020). Pathogenesis of Human Immunodeficiency Virus-Mycobacterium tuberculosis Co-Infection. Journal of Clinical Medicine, 9(11), 3575. https://doi.org/10.3390/jcm9113575