Pornography Use in Adolescents and Its Clinical Implications
Abstract
:1. Introduction
2. Experimental Section
2.1. Participants and Procedure
2.2. Assessment
2.2.1. Dispositional Variables
2.2.2. Developmental Variables
2.2.3. Social Variables
2.2.4. Criterion Variables
2.2.5. Media Use
2.3. Statistical Analysis
2.4. Ethics
3. Results
3.1. Characteristics of the Sample
3.2. Predictive Models of Pornography Use
3.3. Path Analysis
4. Discussion
4.1. Clinical Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Doornwaard, S.M.; Moreno, M.A.; Van Den Eijnden, R.J.J.M.; Vanwesenbeeck, I.; Ter Bogt, T.F.M. Young adolescents’ sexual and romantic reference displays on facebook. J. Adolesc. Health 2014, 55, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Vandenbosch, L.; Van Oosten, J.M.F.; Peter, J. The Relationship between Sexual Content on Mass Media and Social Media: A Longitudinal Study. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 697–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, P.J. A Longitudinal Analysis of US Adults’ Pornography Exposure. J. Media Psychol. 2012, 24, 67–76. [Google Scholar] [CrossRef]
- Willoughby, B.J.; Young-Petersen, B.; Leonhardt, N.D. Exploring Trajectories of Pornography Use through Adolescence and Emerging Adulthood. J. Sex Res. 2018, 55, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Giordano, A.L.; Cashwell, C.S. Cybersex Addiction among College Students: A Prevalence Study. Sex. Addict. Compuls. 2017, 24, 47–57. [Google Scholar] [CrossRef]
- Cooper, A.L. Sexuality and the internet: Surfing into the new millennium. Cyberpsychol. Behav. 1998, 1, 187–193. [Google Scholar] [CrossRef]
- Efrati, Y.; Amichai-Hamburger, Y. Are adolescents who consume pornography different from those who engaged in online sexual activities? Child. Youth Serv. Rev. 2020, 111. [Google Scholar] [CrossRef]
- Brown, C.C.; Durtschi, J.A.; Carroll, J.S.; Willoughby, B.J. Understanding and predicting classes of college students who use pornography. Comput. Hum. Behav. 2017, 66, 114–121. [Google Scholar] [CrossRef]
- Valkenburg, P.M.; Peter, J. The differential susceptibility to media effects model. J. Commun. 2013, 63, 221–243. [Google Scholar] [CrossRef]
- Bandura, A. Social Foundations of Thought and Action: Social Cognitive Theory; Prentice Hall: New Jersey, NJ, USA, 1986; ISBN 013815614X. [Google Scholar]
- Berkowitz, L. Some effects of thoughts on anti- and prosocial influences of media events: A cognitive-neoassociation analysis. Psychol. Bull. 1984, 95, 410–427. [Google Scholar] [CrossRef]
- Klapper, J.T. The Effects of Mass Communication; Free Press: New York, NY, USA, 1960. [Google Scholar]
- Steele, J.R.; Brown, J.D. Adolescent room culture: Studying media in the context of everyday life. J. Youth Adolesc. 1995, 24, 551–576. [Google Scholar] [CrossRef]
- Peter, J.; Valkenburg, P.M. Adolescents and Pornography: A Review of 20 Years of Research. J. Sex Res. 2016, 53, 509–531. [Google Scholar] [CrossRef] [Green Version]
- Ševčíková, A.; Šerek, J.; Barbovschi, M.; Daneback, K. The roles of individual characteristics and liberalism in intentional and unintentional exposure to online sexual material among European youth: A multilevel approach. Sex. Res. Soc. Policy 2014, 11, 104–115. [Google Scholar] [CrossRef]
- Mesch, G.S. Social bonds and Internet pornographic exposure among adolescents. J. Adolesc. 2009, 32, 601–618. [Google Scholar] [CrossRef] [PubMed]
- Shek, D.T.L.; Ma, C.M.S. Consumption of pornographic materials among early adolescents in Hong Kong: Profiles and psychosocial correlates. Int. J. Disabil. Hum. Dev. 2012, 11, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Wolak, J.; Mitchell, K.; Finkelhor, D. Unwanted and wanted exposure to online pornography in a national sample of youth internet users. Pediatrics 2007, 119, 247–257. [Google Scholar] [CrossRef] [Green Version]
- Ybarra, M.L.; Mitchell, K.J. Exposure to Internet pornography among children and adolescents: A national survey. Cyberpsychol. Behav. 2005, 8, 473–486. [Google Scholar] [CrossRef]
- Peter, J.; Valkenburg, P.M. Adolescents’ exposure to sexually explicit material on the internet. Commun. Res. 2006, 33, 178–204. [Google Scholar] [CrossRef]
- Nieh, H.P.; Chang, L.Y.; Chang, H.Y.; Chiang, T.L.; Yen, L.L. Pubertal Timing, Parenting Style, and Trajectories of Pornography Use in Adolescence: Peer Pornography Use as the Mediator. J. Sex Res. 2020, 57, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Shek, D.T.L.; Ma, C.M.S. Using structural equation modeling to examine consumption of pornographic materials in Chinese adolescents in Hong Kong. Int. J. Disabil. Hum. Dev. 2014, 13, 239–245. [Google Scholar] [CrossRef]
- Vanden Abeele, M.; Campbell, S.W.; Eggermont, S.; Roe, K. Sexting, Mobile Porn Use, and Peer Group Dynamics: Boys’ and Girls’ Self-Perceived Popularity, Need for Popularity, and Perceived Peer Pressure. Media Psychol. 2014, 17, 6–33. [Google Scholar] [CrossRef]
- Shek, D.T.L.; Ma, C.M.S. A Six-Year Longitudinal Study of Consumption of Pornographic Materials in Chinese Adolescents in Hong Kong. J. Pediatr. Adolesc. Gynecol. 2016, 29, S12–S21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Efrati, Y.; Amichai-Hamburger, Y. The Use of Online Pornography as Compensation for Loneliness and Lack of Social Ties among Israeli Adolescents. Psychol. Rep. 2019, 122, 1865–1882. [Google Scholar] [CrossRef] [PubMed]
- Bekele, A.B.; van Aken, M.A.G.; Dubas, J.S. Sexual violence victimization among female secondary school students in eastern Ethiopia. Violence Vict. 2011, 26, 608–630. [Google Scholar] [CrossRef] [PubMed]
- Bonino, S.; Ciairano, S.; Rabaglietti, E.; Cattelino, E. Use of pornography and self-reported engagement in sexual violence among adolescents. Eur. J. Dev. Psychol. 2006, 3, 265–288. [Google Scholar] [CrossRef]
- Vega, V.; Malamuth, N.M. Predicting sexual aggression: The role of pornography in the context of general and specific risk factors. Aggress. Behav. 2007, 33, 104–117. [Google Scholar] [CrossRef]
- Efrati, Y. Problematic and Non-problematic Pornography Use and Compulsive Sexual Behaviors among Understudied Populations: Children and Adolescents. Curr. Addict. Rep. 2020, 7, 68–75. [Google Scholar] [CrossRef]
- Maas, M.K.; Bray, B.C.; Noll, J.G. Online Sexual Experiences Predict Subsequent Sexual Health and Victimization Outcomes among Female Adolescents: A Latent Class Analysis. J. Youth Adolesc. 2019, 48, 837–849. [Google Scholar] [CrossRef]
- Brown, J.D.; L’Engle, K.L. X-rated: Sexual attitudes and behaviors associated with U.S. early adolescents’ exposure to sexually explicit media. Commun. Res. 2009, 36, 129–151. [Google Scholar] [CrossRef]
- Doornwaard, S.M.; Bickham, D.S.; Rich, M.; ter Bogt, T.F.M.; van den Eijnden, R.J.J.M. Adolescents’ use of sexually explicit internet material and their sexual attitudes and behavior: Parallel development and directional effects. Dev. Psychol. 2015, 51, 1476–1488. [Google Scholar] [CrossRef]
- Lo, V.H.; Wei, R. Exposure to internet pornography and Taiwanese adolescents’ sexual attitudes and behavior. J. Broadcast. Electron. Media 2005, 49, 221–237. [Google Scholar] [CrossRef]
- Peter, J.; Valkenburg, P.M. The influence of sexually explicit internet material on sexual risk behavior: A comparison of adolescents and adults. J. Health Commun. 2011, 16, 750–765. [Google Scholar] [CrossRef] [PubMed]
- Luder, M.T.; Pittet, I.; Berchtold, A.; Akré, C.; Michaud, P.A.; Surís, J.C. Associations between online pornography and sexual behavior among adolescents: Myth or reality? Arch. Sex. Behav. 2011, 40, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Stata-Corp Stata Statistical Software; Release 16; Stata-Corp: College Station, TX, USA, 2019.
- Kleinbaum, D.G.; Kupper, L.L.; Müller, K.E.; Nizam, A. Applied Regression Analysis and Other Multivariable Methods; Duxbury Applied Press: Pacific Grove, CA, USA, 2013. [Google Scholar]
- Cohen, J.; Miles, J.; Shevlin, M. Applying Regression and Correlation: A Guide for Students and Researchers; SAGE Publications Inc.: London, UK, 2001. [Google Scholar]
- Steyerberg, E.W.; Harrell, F.E.; Borsboom, G.J.J.M.; Eijkemans, M.J.C.; Vergouwe, Y.; Habbema, J.D.F. Internal validation of predictive models: Efficiency of some procedures for logistic regression analysis. J. Clin. Epidemiol. 2001, 54, 774–781. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 2nd ed.; The Guilford Press: New York, NY, USA, 2005. [Google Scholar]
- MacCallum, R.C.; Austin, J.T. Applications of structural equation modeling in psychological research. Annu. Rev. Psychol. 2000, 51, 201–226. [Google Scholar] [CrossRef]
- von Oertzen, T. Power equivalence in structural equation modelling. Br. J. Math. Stat. Psychol. 2010, 63, 257–272. [Google Scholar] [CrossRef]
- Borsboom, D.; Mellenbergh, G.J.; Van Heerden, J. The Theoretical Status of Latent Variables. Psychol. Rev. 2003, 110, 203–219. [Google Scholar] [CrossRef] [Green Version]
- Barrett, P. Structural equation modelling: Adjudging model fit. Pers. Individ. Differ. 2007, 42, 815–824. [Google Scholar] [CrossRef]
- Copen, C.E.; Chandra, A.; Febo-Vazquez, I. Sexual behavior, sexual attraction, and sexual orientation among adults aged 18-44 in the United States from 2011–2013. Natl. Health Stat. Rep. 2016, 88, 1–14. [Google Scholar]
- Hsieh, N.; Ruther, M. Sexual Minority Health and Health Risk Factors: Intersection Effects of Gender, Race, and Sexual Identity. Am. J. Prev. Med. 2016, 50, 746–755. [Google Scholar] [CrossRef] [Green Version]
- Phillips, G.; Beach, L.B.; Turner, B.; Feinstein, B.A.; Marro, R.; Philbin, M.M.; Salamanca, P.; Felt, D.; Birkett, M. Sexual Identity and Behavior Among U.S. High School Students, 2005–2015. Arch. Sex. Behav. 2019, 48, 1463–1479. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yuan, Z.; Clements-Nolle, K.; Yang, W. Sexual Orientation and Depressive Symptoms among High School Students in Jiangxi Province. Asia-Pac. J. Public Health 2018, 30, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Neymotin, F.; Downing-Matibag, T.M. Religiosity and Adolescents’ Involvement with Both Drugs and Sex. J. Relig. Health 2013, 52, 550–569. [Google Scholar] [CrossRef] [PubMed]
- de Mexico, F.G. Encuesta Nacional de Juventud 2010: Resultados Generales [National Survey of Youth 2010: General Results]; Secretaria de Educacion Publica: Mexico City, Mexico, 2010.
- Nwagu, E.N. Alcohol and drug usage; and adolescents’ sexual behaviour in Nigeria. Health Promot. Int. 2016, 31, 405–413. [Google Scholar] [CrossRef] [Green Version]
- McCarty-Caplan, D.; Jantz, I.; Swartz, J. MSM and drug use: A latent class analysis of drug use and related sexual risk behaviors. AIDS Behav. 2014, 18, 1339–1351. [Google Scholar] [CrossRef]
- Riva, K.; Allen-Taylor, L.; Schupmann, W.D.; Mphele, S.; Moshashane, N.; Lowenthal, E.D. Prevalence and predictors of alcohol and drug use among secondary school students in Botswana: A cross-sectional study. BMC Public Health 2018, 18. [Google Scholar] [CrossRef] [Green Version]
- Antunes, H.D.; Rivadeneira-Guerrero, M.F.; de Goulart, B.N.G.; Oenning, N.S.X. Familiar factors and illicit drug use among brazilian adolescents: An analysis of the Brazilian national survey of school health (peNSE, 2015). Cad. Saude Publica 2018, 34. [Google Scholar] [CrossRef]
- Park, S.; Kim, Y. Prevalence, correlates, and associated psychological problems of substance use in Korean adolescents. BMC Public Health 2016, 16. [Google Scholar] [CrossRef] [Green Version]
- Vaughn, M.G.; Nelson, E.J.; Oh, S.; Salas-Wright, C.P.; DeLisi, M.; Holzer, K.J. Abstention from Drug Use and Delinquency Increasing among Youth in the United States, 2002–2014. Subst. Use Misuse 2018, 53, 1468–1481. [Google Scholar] [CrossRef]
- Simon, L.; Daneback, K. Adolescents’ Use of the Internet for Sex Education: A Thematic and Critical Review of the Literature. Int. J. Sex. Health 2013, 25, 305–319. [Google Scholar] [CrossRef]
- Aicken, C.R.H.; Estcourt, C.S.; Johnson, A.M.; Sonnenberg, P.; Wellings, K.; Mercer, C.H. Use of the Internet for Sexual Health Among Sexually Experienced Persons Aged 16 to 44 Years: Evidence from a Nationally Representative Survey of the British Population. J. Med. Internet Res. 2016, 18, e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, S.P.; Hilton, S.; Flowers, P.; Mcdaid, L.M. What are the barriers and challenges faced by adolescents when searching for sexual health information on the internet? Implications for policy and practice from a qualitative study. Sex. Transm. Infect. 2019, 95, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.L.V.; Fujimori, E.; Kuschnir, M.C.C.; Do Nascimento Chofakian, C.B.; De Moraes, A.J.P.; Azevedo, G.D.; Dos Santos, K.F.; De Vasconcellos, M.T.L. ERICA: Sexual initiation and contraception in Brazilian adolescents. Rev. Saude Publica 2016, 50, 1s–11s. [Google Scholar] [CrossRef] [Green Version]
- Morgan, A.; Saunders, B.; Dodge, B.; Harper, G.; Arrington Sanders, R. Exploring the Sexual Development Experiences of Black Bisexual Male Adolescents Over Time. Arch. Sex. Behav. 2018, 47, 1839–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenbosch, L.; Beyens, I.; Vangeel, L.; Eggermont, S. Online communication predicts Belgian adolescents’ initiation of romantic and sexual activity. Eur. J. Pediatr. 2016, 175, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Young, H.; Burke, L.; Nic Gabhainn, S. Sexual intercourse, age of initiation and contraception among adolescents in Ireland: Findings from the Health Behaviour in School-aged Children (HBSC) Ireland study. BMC Public Health 2018, 18. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.H.; Ting, T.T.; Chen, Y.T.; Chen, C.Y.; Chen, W.J. Sexual Initiation and Emotional/Behavioral Problems in Taiwanese Adolescents: A Multivariate Response Profile Analysis. Arch. Sex. Behav. 2015, 44, 717–727. [Google Scholar] [CrossRef]
- Arnarsson, Á.M.; Gísladóttir, K.H.; Jónsson, S.H. The prevalence of sexual abuse and sexual assault against icelandic adolescents. Laeknabladid 2016, 102, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Ricardo, C.; Eads, M.; Barker, G.T. Engaging Men and Boys in Pthe Prevention of Sexual Violence: A Systematic and Global Review of Evaluated Interventions; 2011; Available online: https://promundoglobal.org/resources/engaging-boys-and-young-men-in-the-prevention-of-sexual-violence-a-systematic-and-global-review-of-evaluated-interventions/# (accessed on 30 September 2020).
- Lundgren, R.; Amin, A. Addressing intimate partner violence and sexual violence among adolescents: Emerging evidence of effectiveness. J. Adolesc. Health 2014, 56, S42–S50. [Google Scholar] [CrossRef] [Green Version]
- Mori, C.; Temple, J.R.; Browne, D.; Madigan, S. Association of Sexting with Sexual Behaviors and Mental Health among Adolescents: A Systematic Review and Meta-analysis. JAMA Pediatr. 2019, 173, 770–779. [Google Scholar] [CrossRef]
- Gassó, A.M.; Klettke, B.; Agustina, J.R.; Montiel, I. Sexting, mental health, and victimization among adolescents: A literature review. Int. J. Environ. Res. Public Health 2019, 16, 2364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titchen, K.E.; Maslyanskaya, S.; Silver, E.J.; Coupey, S.M. Sexting and Young Adolescents: Associations with Sexual Abuse and Intimate Partner Violence. J. Pediatr. Adolesc. Gynecol. 2019, 32, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Mattebo, M.; Tydén, T.; Häggström-Nordin, E.; Nilsson, K.W.; Larsson, M. Pornography consumption, sexual experiences, lifestyles, and self-rated health among male adolescents in Sweden. J. Dev. Behav. Pediatr. 2013, 34, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.S.C.; Agius, P.A.; Carrotte, E.R.; Vella, A.M.; Hellard, M.E. Young Australians’ use of pornography and associations with sexual risk behaviours. Aust. N. Z. J. Public Health 2017, 41, 438–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwulit, A.D.; Rzymski, P. Prevalence, patterns and self-perceived effects of pornography consumption in polish university students: A cross-sectional study. Int. J. Environ. Res. Public Health 2019, 16, 1861. [Google Scholar] [CrossRef] [Green Version]
- Romito, P.; Beltramini, L. Watching pornography: Gender differences, violence and victimization. An exploratory study in Italy. Violence Women 2011, 17, 1313–1326. [Google Scholar] [CrossRef]
- Anisimowicz, Y.; O’Sullivan, L.F. Men’s and Women’s Use and Creation of Online Sexually Explicit Materials Including Fandom-Related Works. Arch. Sex. Behav. 2017, 46, 823–833. [Google Scholar] [CrossRef]
- Strahler, J.; Kruse, O.; Wehrum-Osinsky, S.; Klucken, T.; Stark, R. Neural correlates of gender differences in distractibility by sexual stimuli. Neuroimage 2018, 176, 499–509. [Google Scholar] [CrossRef]
- Rupp, H.A.; Wallen, K. Sex differences in response to visual sexual stimuli: A review. Arch. Sex. Behav. 2008, 37, 206–218. [Google Scholar] [CrossRef] [Green Version]
- Wright, P.J.; Bae, S.; Funk, M. United States women and pornography through four decades: Exposure, attitudes, behaviors, individual differences. Arch. Sex. Behav. 2013, 42, 1131–1144. [Google Scholar] [CrossRef]
- Fritz, N.; Paul, B. From Orgasms to Spanking: A Content Analysis of the Agentic and Objectifying Sexual Scripts in Feminist, for Women, and Mainstream Pornography. Sex Roles 2017, 77, 639–652. [Google Scholar] [CrossRef]
- Peter, J.; Valkenburg, P.M. The use of sexually explicit internet material and its antecedents: A longitudinal comparison of adolescents and adults. Arch. Sex. Behav. 2011, 40, 1015–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, P.J. Pornography consumption, cocaine use, and casual sex among U.S. adults. Psychol. Rep. 2012, 111, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Grubbs, J.B.; Perry, S.L. Moral Incongruence and Pornography Use: A Critical Review and Integration. J. Sex Res. 2019, 56, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grubbs, J.B.; Perry, S.L.; Wilt, J.A.; Reid, R.C. Pornography Problems Due to Moral Incongruence: An Integrative Model with a Systematic Review and Meta-Analysis. Arch. Sex. Behav. 2019, 48, 397–415. [Google Scholar] [CrossRef]
- Kohut, T.; Štulhofer, A. The Role of Religiosity in Adolescents’ Compulsive Pornography Use: A Longitudinal Assessment. J. Sex Marital Ther. 2018, 44, 759–775. [Google Scholar] [CrossRef]
- Rasmussen, K.; Bierman, A. How does religious attendance shape trajectories of pornography use across adolescence? J. Adolesc. 2016, 49, 191–203. [Google Scholar] [CrossRef]
- Braun-Courville, D.K.; Rojas, M. Exposure to Sexually Explicit Web Sites and Adolescent Sexual Attitudes and Behaviors. J. Adolesc. Health 2009, 45, 156–162. [Google Scholar] [CrossRef]
Dispositional Variables | n | % | Social Variables | n | % | ||
---|---|---|---|---|---|---|---|
Gender | Female | 833 | 55.5% | Living with … | Both parents | 1424 | 94.9% |
Male | 667 | 44.5% | Other family | 40 | 2.7% | ||
Sexual orientation | Heterosexual | 1357 | 90.5% | Other | 36 | 2.4% | |
Homosexual | 31 | 2.1% | Living with … | 0 Siblings | 350 | 23.3% | |
Bisexual | 3.9% | 1 sibling | 818 | 54.5% | |||
Not defined | 54 | 3.6% | 2 siblings | 229 | 15.3% | ||
Substance use/abuse | Never | 1212 | 80.8% | 3 or more siblings | 103 | 6.9% | |
1×/month or less | 126 | 8.4% | Sexual abuse | No | 1403 | 93.5% | |
2×/month or 1×/week | 75 | 5.0% | Yes | 97 | 6.5% | ||
3× or more/month, or weekly | 87 | 5.8% | Forced to share sexual content | No | 1236 | 82.4% | |
Brought up in a religion | Atheist | 807 | 53.8% | Yes | 264 | 17.6% | |
Catholic | 541 | 36.1% | Pornography media use | ||||
Muslim | 73 | 4.9% | Pornography use | Yes | 654 | 43.6% | |
Other | 79 | 5.3% | Social media to send sex content | Yes | 112 | 7.5% | |
Religious practitioner | No | 1339 | 89.3% | Social media to send self-sex. | Yes | 98 | 6.5% |
Yes | 161 | 10.7% | Participation in sexual chats | Yes | 93 | 6.2% | |
Religious feeling | None | 936 | 62.4% | Use of erotic telephone lines | Yes | 91 | 6.1% |
A little religious | 308 | 20.5% | Downloading sexual content | Yes | 143 | 9.5% | |
Religious | 218 | 14.5% | Criterion variables | ||||
Very religious | 38 | 2.5% | Use of contraception | Yes | 465 | 31.0% | |
Sexual interest/Internet behavior | No | 1116 | 74.4% | Unprotected sex | Yes | 260 | 17.3% |
Yes | 384 | 25.6% | Use of emergency contraception | Yes | 130 | 8.7% | |
Developmental variables | Sex after alcohol | Yes | 449 | 29.9% | |||
Age | 14 years | 117 | 7.8% | Sex after other substances | Yes | 176 | 11.7% |
15 years | 340 | 22.7% | Infidelity | Yes | 236 | 15.7% | |
16 years | 360 | 24.0% | Infidelity: caresses | Yes | 145 | 9.7% | |
17 years | 454 | 30.3% | Infidelity: kisses | Yes | 41 | 2.7% | |
18 years | 229 | 15.3% | Infidelity: embraces | Yes | 221 | 14.7% | |
Age (years old) Mean—SD | 16.23 | 1.18 | Infidelity: oral sex | Yes | 58 | 3.9% | |
First sexual experience at | Never | 1008 | 67.2% | Infidelity: masturbation | Yes | 143 | 9.5% |
Under 13 | 20 | 1.3% | Infidelity: penetration | Yes | 44 | 2.9% | |
13–14 years | 130 | 8.7% | |||||
15–16 years | 284 | 18.9% | |||||
17–18 years | 58 | 3.9% | |||||
Frequency of sexual experience | Never | 1012 | 67.5% | ||||
Only 1 time | 64 | 4.3% | |||||
2–5 times | 99 | 6.6% | |||||
6–10 times | 55 | 3.7% | |||||
More than 10 times | 270 | 18.0% |
Criterion: Pornography Use. Fitting Indexes: H-L(p-Value) = 0.385; N-R2 = 318; AUC = 0.790 (95%CI: 0.767 to 0.813) | |||||||
---|---|---|---|---|---|---|---|
Predictor | Contrast | B | SE | p | OR | 95%CI | |
Sex | Male vs. Female | 2.122 | 0.128 | <0.001 | 8.349 | 6.503 | 10.720 |
Sexual orientation | 0.019 | ||||||
Homosex. vs. Heterosex. | 0.221 | 0.425 | 0.603 | 1.247 | 0.543 | 2.867 | |
Ambisex. vs. Heterosex. | 0.702 | 0.307 | 0.022 | 2.019 | 1.107 | 3.682 | |
Non-defined vs. Heterosex. | 0.738 | 0.324 | 0.023 | 2.092 | 1.108 | 3.949 | |
Drugs use/abuse | 0.003 | ||||||
Linear trend | 0.413 | 0.192 | 0.032 | 1.511 | 1.036 | 2.202 | |
Quadratic trend | −0.364 | 0.214 | 0.088 | 0.695 | 0.457 | 1.056 | |
Cubic trend | −0.113 | 0.233 | 0.627 | 0.893 | 0.566 | 1.410 | |
Brought up in religion | 0.064 | ||||||
Catholic vs. Atheist | 0.028 | 0.131 | 0.832 | 1.028 | 0.796 | 1.328 | |
Muslim vs. Atheist | −0.771 | 0.300 | 0.010 | 0.463 | 0.257 | 0.833 | |
Other vs. Atheist | −0.159 | 0.274 | 0.562 | 0.853 | 0.498 | 1.460 | |
Sexual interest/Internet behavior | Yes vs. No | 0.747 | 0.139 | <0.001 | 2.112 | 1.608 | 2.773 |
Age (years-old) | 0.252 | 0.053 | <0.001 | 1.287 | 1.159 | 1.429 |
Criterion: Downloading Sexually Explicit Material. Fitting Indexes: H‒L (p-Value) = 0.193; N-R2 = 0.155; AUC = 0.748 (95% CI: 0.709 to 0.787). | |||||||
---|---|---|---|---|---|---|---|
Predictor | Contrast | B | SE | p | OR | 95%CI | |
Sex | Male vs. Female | 1.554 | 0.211 | <0.001 | 4.730 | 3.126 | 7.157 |
Sexual orientation | 0.011 | ||||||
Homosex.vs. Heterosex. | −0.774 | 0.761 | 0.309 | 0.461 | 0.104 | 2.050 | |
Ambisex. vs. Heterosex. | 1.147 | 0.372 | 0.002 | 3.149 | 1.519 | 6.530 | |
Non-defined vs. Heterosex. | −0.293 | 0.560 | 0.601 | 0.746 | 0.249 | 2.235 | |
Sexual interest/Internet beh. | Yes vs. No | 0.916 | 0.191 | <0.001 | 2.498 | 1.718 | 3.632 |
1st sexual experience at age… | 0.006 | ||||||
Linear trend | 0.222 | 0.289 | 0.442 | 1.249 | 0.709 | 2.200 | |
Quadratic trend | −0.053 | 0.297 | 0.858 | 0.948 | 0.530 | 1.697 | |
Cubic trend | 1.086 | 0.360 | 0.003 | 2.961 | 1.462 | 5.997 | |
Quartic trend | −0.561 | 0.347 | 0.106 | 0.571 | 0.289 | 1.126 | |
Criterion: using social media to send sexual content. Fitting indexes: H‒L (p-value) = 0.755; N-R2 = 0.181; AUC = 0.776 (95% CI: 0.728 to 0.825). | |||||||
Predictor | B | SE | p | OR | 95%CI | ||
Sex | Male vs. Female | 0.989 | 0.221 | <0.001 | 2.690 | 1.744 | 4.149 |
Drugs use/abuse | 0.022 | ||||||
Linear trend | 0.415 | 0.260 | 0.111 | 1.514 | 0.909 | 2.523 | |
Quadratic trend | 0.025 | 0.320 | 0.936 | 1.026 | 0.548 | 1.920 | |
Cubic trend | 0.603 | 0.368 | 0.101 | 1.827 | 0.889 | 3.755 | |
Sexual interest/Internet behavior | Yes vs. No | 1.705 | 0.210 | <0.001 | 5.504 | 3.647 | 8.306 |
He/she has been abused | Yes vs. No | 1.372 | 0.308 | <0.001 | 3.943 | 2.156 | 7.210 |
Criterion: using social media to send self-sexual material. Fitting indexes: H‒L (p-value) = 0.554; N-R2 = 0.190; AUC = 0.790 (95% CI: 0.740 to 0.841). | |||||||
Predictor | B | SE | p | OR | 95%CI | ||
Sexual orientation | 0.001 | ||||||
Homosex. vs. Heterosex | 0.842 | 0.560 | 0.133 | 2.320 | 0.774 | 6.960 | |
Ambisex. vs. Heterosex | 1.289 | 0.360 | <0.001 | 3.630 | 1.791 | 7.356 | |
Non-defined. vs. Heterosex. | 0.750 | 0.464 | 0.106 | 2.116 | 0.853 | 5.252 | |
Sexual interest/Internet behavior. | Yes vs. No | 1.295 | 0.225 | <0.001 | 3.650 | 2.349 | 5.669 |
1st sexual experience at age… | <0.001 | ||||||
Linear trend | 0.670 | 0.325 | 0.039 | 1.955 | 1.034 | 3.697 | |
Quadratic trend | −0.120 | 0.328 | 0.716 | 0.887 | 0.466 | 1.689 | |
Cubic trend | 1.023 | 0.404 | 0.011 | 2.782 | 1.261 | 6.135 | |
Quartic trend | −0.714 | 0.374 | 0.056 | 0.490 | 0.235 | 1.019 | |
He/she has been abused | Yes vs. No | 1.021 | 0.310 | 0.001 | 2.776 | 1.512 | 5.098 |
Forced to share sex content | Yes vs. No | 0.595 | 0.247 | 0.016 | 1.813 | 1.117 | 2.941 |
Criterion: participation in sexual chats. Fitting indexes: H‒L (p-value) = 0.878; N-R2 = 0.045; AUC = 0.642 (95% CI: 0.582 to 0.702). | |||||||
Predictor | B | SE | p | OR | 95%CI | ||
Sex | Male vs. Female | 0.684 | 0.227 | 0.003 | 1.983 | 1.270 | 3.095 |
Sexual interest/Internet behavior. | Yes vs. No | 0.588 | 0.224 | 0.009 | 1.801 | 1.161 | 2.795 |
Forced to share sex content | Yes vs. No | 0.907 | 0.251 | <0.001 | 2.477 | 1.515 | 4.047 |
Criterion: use of erotic telephone lines. Fitting indexes: H-L (p-value) = 0.744; N-R2 = 0.083; AUC = 0.703 (95% CI: 0.646 to 0.761). | |||||||
Predictor | B | SE | p | OR | 95%CI | ||
Sex | Male. vs. Female | 0.730 | 0.231 | 0.002 | 2.074 | 1.319 | 3.263 |
Drugs use/abuse | 0.019 | ||||||
Linear trend | 0.566 | 0.280 | 0.043 | 1.762 | 1.018 | 3.050 | |
Quadratic trend | −0.356 | 0.302 | 0.238 | 0.701 | 0.388 | 1.265 | |
Cubic trend | 0.147 | 0.332 | 0.659 | 1.158 | 0.604 | 2.218 | |
Age (years-old) | −0.234 | 0.101 | 0.021 | 0.791 | 0.649 | 0.965 | |
Frequency sexual experiences | 0.001 | ||||||
Linear trend | −0.215 | 0.342 | 0.530 | 0.807 | 0.413 | 1.576 | |
Quadratic trend | −0.713 | 0.315 | 0.024 | 0.490 | 0.264 | 0.909 | |
Cubic trend | 0.784 | 0.530 | 0.139 | 2.190 | 0.774 | 6.194 | |
Quartic trend | 0.708 | 0.445 | 0.112 | 2.031 | 0.849 | 4.860 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farré, J.M.; Montejo, A.L.; Agulló, M.; Granero, R.; Chiclana Actis, C.; Villena, A.; Maideu, E.; Sánchez, M.; Fernández-Aranda, F.; Jiménez-Murcia, S.; et al. Pornography Use in Adolescents and Its Clinical Implications. J. Clin. Med. 2020, 9, 3625. https://doi.org/10.3390/jcm9113625
Farré JM, Montejo AL, Agulló M, Granero R, Chiclana Actis C, Villena A, Maideu E, Sánchez M, Fernández-Aranda F, Jiménez-Murcia S, et al. Pornography Use in Adolescents and Its Clinical Implications. Journal of Clinical Medicine. 2020; 9(11):3625. https://doi.org/10.3390/jcm9113625
Chicago/Turabian StyleFarré, Josep M., Angel L. Montejo, Miquel Agulló, Roser Granero, Carlos Chiclana Actis, Alejandro Villena, Eudald Maideu, Marta Sánchez, Fernando Fernández-Aranda, Susana Jiménez-Murcia, and et al. 2020. "Pornography Use in Adolescents and Its Clinical Implications" Journal of Clinical Medicine 9, no. 11: 3625. https://doi.org/10.3390/jcm9113625
APA StyleFarré, J. M., Montejo, A. L., Agulló, M., Granero, R., Chiclana Actis, C., Villena, A., Maideu, E., Sánchez, M., Fernández-Aranda, F., Jiménez-Murcia, S., & Mestre-Bach, G. (2020). Pornography Use in Adolescents and Its Clinical Implications. Journal of Clinical Medicine, 9(11), 3625. https://doi.org/10.3390/jcm9113625