Comparison of Contrast Enhanced Magnetic Resonance Angiography to Computed Tomography in Detecting Pulmonary Arteriovenous Malformations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Trans Thoracic Contrast Echocardiography Protocol
2.3. CT Acquisition Protocol
2.4. CE-MRA Acquisition Protocol
2.5. CT and CE-MRA Assessment
2.6. Statistical Analysis
3. Results
3.1. Per-Patient Analysis
3.2. Per-PAVM Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cottin, V.; Chinet, T.; Lavolé, A.; Corre, R.; Marchand, E.; Reynaud-Gaubert, M.; Plauchu, H.; Cordier, J.-F. Pulmonary Arteriovenous Malformations in Hereditary Hemorrhagic Telangiectasia. Medicine 2007, 86, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Shovlin, C.; Jackson, J.E.; Bamford, K.B.; Jenkins, I.H.; Benjamin, A.R.; Ramadan, H.; Kulinskaya, E. Primary determinants of ischaemic stroke/brain abscess risks are independent of severity of pulmonary arteriovenous malformations in hereditary haemorrhagic telangiectasia. Thorax 2008, 63, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faughnan, M.E.; Palda, V.A.; Garcia-Tsao, G.; Geisthoff, U.W.; McDonald, J.; Proctor, D.D.; Spears, J.; Brown, D.H.; Buscarini, E.; Chesnutt, M.S.; et al. International guidelines for the diagnosis and management of hereditary haemorrhagic telangiectasia. J. Med Genet. 2011, 48, 73–87. [Google Scholar] [CrossRef] [PubMed]
- Müller-Hülsbeck, S.; Marques, L.; Maleux, G.; Osuga, K.; Pelage, J.-P.; Wohlgemuth, W.A.; Andersen, P.E. CIRSE Standards of Practice on Diagnosis and Treatment of Pulmonary Arteriovenous Malformations. Cardiovasc. Interv. Radiol. 2019, 43, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, C.; Chartrand-Lefebvre, C.; Soulez, G.; Faughnan, M.E.; Tahir, M.R.; Giroux, M.-F.; Gilbert, P.; Perreault, P.; Bouchard, L.; Oliva, V.L.; et al. Pulmonary arteriovenous malformation (PAVM) reperfusion after percutaneous embolization: Sensitivity and specificity of non-enhanced CT. Eur. J. Radiol. 2016, 85, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Letourneau-Guillon, L.; Faughnan, M.E.; Soulez, G.; Giroux, M.-F.; Oliva, V.L.; Boucher, L.-M.; Dubois, J.; Prabhudesai, V.; Therasse, E. Embolization of Pulmonary Arteriovenous Malformations with Amplatzer Vascular Plugs: Safety and Midterm Effectiveness. J. Vasc. Interv. Radiol. 2010, 21, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Woodward, C.S.; Pyeritz, R.E.; Chittams, J.L.; Trerotola, S.O. Treated Pulmonary Arteriovenous Malformations: Patterns of Persistence and Associated Retreatment Success. Radiology 2013, 269, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Tau, N.; Atar, E.; Mei-Zahav, M.; Bachar, G.N.; Dagan, T.; Birk, E.; Bruckheimer, E. Amplatzer Vascular Plugs Versus Coils for Embolization of Pulmonary Arteriovenous Malformations in Patients with Hereditary Hemorrhagic Telangiectasia. Cardiovasc. Interv. Radiol. 2016, 39, 1110–1114. [Google Scholar] [CrossRef] [PubMed]
- Stein, E.J.; Chittams, J.L.; Miller, M.; Trerotola, S.O. Persistence in Coil-Embolized Pulmonary Arteriovenous Malformations with Feeding Artery Diameters of 3 mm or Less: A Retrospective Single-Center Observational Study. J. Vasc. Interv. Radiol. 2017, 28, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Brinjikji, W.; Latino, G.A.; Parvinian, A.; Gauthier, A.; Pantalone, R.; Yamaki, V.; Apala, D.R.; Prabhudesai, V.; Cyr, V.; Chartrand-Lefèbvre, C.; et al. Diagnostic Yield of Rescreening Adults for Pulmonary Arteriovenous Malformations. J. Vasc. Interv. Radiol. 2019, 30, 1982–1987. [Google Scholar] [CrossRef] [PubMed]
- Hanneman, K.; Faughnan, M.E.; Prabhudesai, V. Cumulative Radiation dose in Patients with Hereditary Hemorrhagic Telangiectasia and Pulmonary Arteriovenous Malformations. Can. Assoc. Radiol. J. 2014, 65, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Digumarthy, S.R.; Muse, V.V.; Kambadakone, A.R.; Blake, M.A.; Tabari, A.; Hoi, Y.; Akino, N.; Angel, E.; Madan, R.; et al. Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT. Am. J. Roentgenol. 2020, 214, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Velthuis, S.; Buscarini, E.; Mager, J.J.; Vorselaars, V.M.; Van Gent, M.W.; Gazzaniga, P.; Manfredi, G.; Danesino, C.; Diederik, A.L.; Vos, J.A.; et al. Predicting the size of pulmonary arteriovenous malformations on chest computed tomography: A role for transthoracic contrast echocardiography. Eur. Respir. J. 2014, 44, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Jackson, C.L.; Huber, J.F. Correlated Applied Anatomy of the Bronchial Tree and Lungs with a System of Nomenclature. Dis. Chest 1943, 9, 319–326. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Schneider, G.; Uder, M.; Koehler, M.; Kirchin, M.A.; Massmann, A.; Buecker, A.; Geisthoff, U. MR Angiography for Detection of Pulmonary Arteriovenous Malformations in Patients with Hereditary Hemorrhagic Telangiectasia. Am. J. Roentgenol. 2008, 190, 892–901. [Google Scholar] [CrossRef] [PubMed]
- Ohno, Y.; Hatabu, H.; Takenaka, D.; Adachi, S.; Hirota, S.; Sugimura, K. Contrast-enhanced MR perfusion imaging and MR angiography: Utility for management of pulmonary arteriovenous malformations for embolotherapy. Eur. J. Radiol. 2002, 41, 136–146. [Google Scholar] [CrossRef]
- Kawai, T.; Shimohira, M.; Kan, H.; Hashizume, T.; Ohta, K.; Kurosaka, K.; Muto, M.; Suzuki, K.; Shibamoto, Y. Feasibility of Time-Resolved MR Angiography for Detecting Recanalization of Pulmonary Arteriovenous Malformations Treated with Embolization with Platinum Coils. J. Vasc. Interv. Radiol. 2014, 25, 1339–1347. [Google Scholar] [CrossRef] [PubMed]
- Himohira, M.; Kawai, T.; Hashizume, T.; Ohta, K.; Nakagawa, M.; Ozawa, Y.; Sakurai, K.; Shibamoto, Y. Reperfusion Rates of Pulmonary Arteriovenous Malformations after Coil Embolization: Evaluation with Time-Resolved MR Angiography or Pulmonary Angiography. J. Vasc. Interv. Radiol. 2015, 26, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Hamamoto, K.; Matsuura, K.; Chiba, E.; Okochi, T.; Tanno, K.; Tanaka, O. Feasibility of Non-contrast-enhanced MR Angiography Using the Time-SLIP Technique for the Assessment of Pulmonary Arteriovenous Malformation. Magn. Reson. Med. Sci. 2016, 15, 253–265. [Google Scholar] [CrossRef] [PubMed]
Total | 53 |
---|---|
Female | 29 (55) |
Male | 24 (45) |
Age (y) | 47 ± 16 |
HHT | 52 (98) |
Eng | 36 (68) |
Alk | 5 (9) |
SMAD 4 | 3 (6) |
Unknown * | 8 (15) |
Idiopathic | 1 (2) |
PAVMs per patient | |
0 | 9 (17) |
1 | 15 (28) |
2–5 | 19 (36) |
>5 | 10 (19) |
Reader 1 | CT + | CT − | Total |
---|---|---|---|
CE-MRA + | 22 | 1 | 23 |
CE-MRA − | 2 | 28 | 30 |
Total | 24 | 29 | 53 |
Reader 2 | CT + | CT − | Total |
CE-MRA + | 22 | 11 | 33 |
CE-MRA − | 2 | 18 | 20 |
Total | 24 | 29 | 53 |
Per Patient Analysis | Per PAVM Analysis | |||
---|---|---|---|---|
CE-MRA Reader 1 | CE-MRA Reader 2 | CE-MRA Reader 1 | CE-MRA Reader 2 | |
Sensitivity | 92 (73–99) | 92 (73–99) | 96 (85–99) | 93 (82–99) |
Specificity | 97 (82–100) | 62 (42–79) | 99 (98–100) | 96 (95–97) |
NPV | 93 (78–99) | 90 (68–99) | 100 (99–100) | 100 (99–100) |
PPV | 96 (78–100) | 67 (48–82) | 86 (73–94) | 56 (44–67) |
Reader 1 | CT + | CT − | Total |
---|---|---|---|
CE-MRA + | 43 | 7 | 50 |
CE-MRA − | 2 | 902 | 904 |
Total | 45 | 909 | 954 |
Reader 2 | CT + | CT − | Total |
CE-MRA + | 42 | 33 | 75 |
CE-MRA − | 3 | 876 | 879 |
Total | 45 | 909 | 954 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van den Heuvel, D.A.F.; Post, M.C.; Koot, W.; Kelder, J.C.; Van Es, H.W.; Snijder, R.J.; Vos, J.-A.; Mager, J.J. Comparison of Contrast Enhanced Magnetic Resonance Angiography to Computed Tomography in Detecting Pulmonary Arteriovenous Malformations. J. Clin. Med. 2020, 9, 3662. https://doi.org/10.3390/jcm9113662
Van den Heuvel DAF, Post MC, Koot W, Kelder JC, Van Es HW, Snijder RJ, Vos J-A, Mager JJ. Comparison of Contrast Enhanced Magnetic Resonance Angiography to Computed Tomography in Detecting Pulmonary Arteriovenous Malformations. Journal of Clinical Medicine. 2020; 9(11):3662. https://doi.org/10.3390/jcm9113662
Chicago/Turabian StyleVan den Heuvel, Daniel A.F., Marco C. Post, Ward Koot, Johannes C. Kelder, Hendrik W. Van Es, Repke J. Snijder, Jan-Albert Vos, and Johannes J. Mager. 2020. "Comparison of Contrast Enhanced Magnetic Resonance Angiography to Computed Tomography in Detecting Pulmonary Arteriovenous Malformations" Journal of Clinical Medicine 9, no. 11: 3662. https://doi.org/10.3390/jcm9113662
APA StyleVan den Heuvel, D. A. F., Post, M. C., Koot, W., Kelder, J. C., Van Es, H. W., Snijder, R. J., Vos, J. -A., & Mager, J. J. (2020). Comparison of Contrast Enhanced Magnetic Resonance Angiography to Computed Tomography in Detecting Pulmonary Arteriovenous Malformations. Journal of Clinical Medicine, 9(11), 3662. https://doi.org/10.3390/jcm9113662