Assessment of Minimal Residual Disease by Next Generation Sequencing in Peripheral Blood as a Complementary Tool for Personalized Transplant Monitoring in Myeloid Neoplasms
Abstract
:1. Introduction
2. Experimental Section
2.1. Patient Cohorts and Acquisition of Samples
2.2. Indel-qPCR Chimerism Analysis
2.3. Next Generation Sequencing (NGS)
2.4. Variant Data Analysis
3. Results
3.1. Assessment of the NGS Sensitivity on PB Samples
3.2. Identification of NGS Variants in PB of Myeloid Neoplasms
3.3. Molecular Variants and Chimerism Dynamics after Allogenic HSCT
3.4. NGS-MRD Specificity in PB Samples from Non-Relapsed Patients
3.5. NGS-MRD Sensitivity in PB Samples from Relapsed Patients
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cornelissen, J.J.; Gratwohl, A.; Schlenk, R.F.; Sierra, J.; Bornhäuser, M.; Juliusson, G.; Råcil, Z.; Rowe, J.M.; Russell, N.; Mohty, M.; et al. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: An integrated-risk adapted approach. Nat. Rev. Clin. Oncol. 2012, 9, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Schlenk, R.F.; Döhner, K.; Mack, S.; Stoppel, M.; Király, F.; Götze, K.; Hartmann, F.; Horst, H.A.; Koller, E.; Petzer, A.; et al. Prospective Evaluation of Allogeneic Hematopoietic Stem-Cell Transplantation from Matched Related and Matched Unrelated Donors in Younger Adults with High-Risk Acute Myeloid Leukemia: German-Austrian Trial AMLHD98A. J. Clin. Oncol. 2010, 28, 4642–4648. [Google Scholar] [CrossRef]
- Cornelissen, J.J.; Van Putten, W.L.J.; Verdonck, L.F.; Theobald, M.; Jacky, E.; Daenen, S.M.G.; Kooy, M.V.M.; Wijermans, P.; Schouten, H.; Huijgens, P.C.; et al. Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: Benefits for whom? Blood 2007, 109, 3658–3666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, B.L.; Pasquini, M.C.; Logan, B.R.; Wu, J.; Devine, S.M.; Porter, D.L.; Maziarz, R.T.; Warlick, E.D.; Fernandez, H.F.; Alyea, E.P.; et al. Myeloablative Versus Reduced-Intensity Hematopoietic Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndromes. J. Clin. Oncol. 2017, 35, 1154–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buccisano, F.; Maurillo, L.; Del Principe, M.I.; Del Poeta, G.; Sconocchia, G.; Lo-Coco, F.; Arcese, W.; Amadori, S.; Venditti, A. Prognostic and therapeutic implications of minimal residual disease detection in acute myeloid leukemia. Blood 2012, 119, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Schlenk, R.F.; Kayser, S.; Bullinger, L.; Kobbe, G.; Casper, J.; Ringhoffer, M.; Held, G.; Brossart, P.; Lübbert, M.; Salih, H.R.; et al. Differential impact of allelic ratio and insertion site in FLT3-ITD–positive AML with respect to allogeneic transplantation. Blood 2014, 124, 3441–3449. [Google Scholar] [CrossRef] [Green Version]
- Kongtim, P.; Hasan, O.; Perez, J.M.R.; Varma, A.; Wang, S.A.; Patel, K.P.; Chen, J.; Rondon, G.; Srour, S.; Bashir, Q.; et al. Novel Disease Risk Model for Patients with Acute Myeloid Leukemia Receiving Allogeneic Hematopoietic Cell Transplantation. Biol. Blood Marrow Transplant. 2020, 26, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Araki, D.; Wood, B.L.; Othus, M.; Radich, J.P.; Halpern, A.B.; Zhou, Y.; Mielcarek, M.; Estey, E.H.; Appelbaum, F.R.; Walter, R.B. Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia: Time to Move Toward a Minimal Residual Disease–Based Definition of Complete Remission? J. Clin. Oncol. 2016, 34, 329–336. [Google Scholar] [CrossRef]
- Choi, S.-J.; Lee, K.-H.; Lee, J.-H.; Kim, S.-H.; Chung, H.-J.; Park, C.-J.; Chi, H.-S.; Kim, W.-K. Prognostic value of hematopoietic chimerism in patients with acute leukemia after allogeneic bone marrow transplantation: A prospective study. Bone Marrow Transplant. 2000, 26, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Mosna, F.; Capelli, D.; Gottardi, M. Minimal Residual Disease in Acute Myeloid Leukemia: Still a Work in Progress? J. Clin. Med. 2017, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Schuurhuis, G.J.; Heuser, M.; Freeman, S.; Béné, M.-C.; Lo-Coco, F.; Cloos, J.; Grimwade, D.; Haferlach, T.; Hills, R.K.; Hourigan, C.S.; et al. Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2018, 131, 1275–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Avilés, F.; Urbano-Ispizua, A.; Aymerich, M.; Colomer, D.; Rovira, M.; Martinez, C.; Nadal, E.; Talarn, C.; Carreras, E.; Montserrat, E. Serial quantification of lymphoid and myeloid mixed chimerism using multiplex PCR amplification of short tandem repeat-markers predicts graft rejection and relapse, respectively, after allogeneic transplantation of CD34+ selected cells from peripheral blood. Leukemia 2003, 17, 613–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sufliarska, S.; Minarik, G.; Horakova, J.; Bodova, I.; Bojtarova, E.; Czako, B.; Mistrik, M.; Drgona, L.; Demitrovicova, M.; Lakota, J.; et al. Establishing the method of chimerism monitoring after allogeneic stem cell transplantation using multiplex polymerase chain reaction amplification of short tandem repeat markers and Amelogenin. Neoplasma 2007, 54, 424–430. [Google Scholar] [PubMed]
- Thiede, C.; Bornhauser, M.; Ehninger, G. Evaluation of STR informativity for chimerism testing–comparative analysis of 27 STR systems in 203 matched related donor recipient pairs. Leukepia 2004, 18, 248–254. [Google Scholar] [CrossRef]
- Alizadeh, M.; Bernard, M.; Danic, B.; Dauriac, C.; Birebent, B.; Lapart, C.; Lamy, T.; Le Prisé, P.-Y.; Beauplet, A.; Bories, D.; et al. Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood 2002, 99, 4618–4625. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Velasco, A.; Román-Gómez, J.; Agirre, X.; Barrios, M.; Navarro, G.; Vázquez, I.; Prósper, F.; Torres, A.; Heiniger, A. Downregulation of the large tumor suppressor 2 (LATS2/KPM) gene is associated with poor prognosis in acute lymphoblastic leukemia. Leukepia 2005, 19, 2347–2350. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Jeong, M.H.; Park, N.; Ra, E.; Park, H.; Seo, S.H.; Kim, J.Y.; Seong, M.-W.; Park, S.S. Chimerism Monitoring after Allogeneic Hematopoietic Stem Cell Transplantation Using Quantitative Real-Time PCR of Biallelic Insertion/Deletion Polymorphisms. J. Mol. Diagn. 2014, 16, 679–688. [Google Scholar] [CrossRef]
- Shimoni, A.; Nagler, A.; Kaplinsky, C.; Reichart, M.; Avigdor, A.; Hardan, I.; Yeshurun, M.; Daniely, M.; Zilberstein, Y.; Amariglio, N.; et al. Chimerism testing and detection of minimal residual disease after allogeneic hematopoietic transplantation using the bioView (Duet™) combined morphological and cytogenetical analysis. Leukepia 2002, 16, 1413–1418. [Google Scholar] [CrossRef] [Green Version]
- Jacobsohn, D.A.; Loken, M.R.; Fei, M.; Adams, A.; Brodersen, L.E.; Logan, B.R.; Ahn, K.W.; Shaw, B.E.; Kletzel, M.; Olszewski, M.; et al. Outcomes of Measurable Residual Disease in Pediatric Acute Myeloid Leukemia before and after Hematopoietic Stem Cell Transplant: Validation of Difference from Normal Flow Cytometry with Chimerism Studies and Wilms Tumor 1 Gene Expression. Biol. Blood Marrow Transplant. 2018, 24, 2040–2046. [Google Scholar] [CrossRef] [Green Version]
- Papaemmanuil, E.; Gerstung, M.; Bullinger, L.; Gaidzik, V.I.; Paschka, P.; Roberts, N.D.; Potter, N.E.; Heuser, M.; Thol, F.; Bolli, N.; et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016, 374, 2209–2221. [Google Scholar] [CrossRef]
- Jongen-Lavrencic, M.; Grob, T.; Hanekamp, D.; Kavelaars, F.G.; Al Hinai, A.; Zeilemaker, A.; Erpelinck-Verschueren, C.A.; Gradowska, P.L.; Meijer, R.; Cloos, J.; et al. Molecular Minimal Residual Disease in Acute Myeloid Leukemia. N. Engl. J. Med. 2018, 378, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Getta, B.M.; Devlin, S.M.; Levine, R.L.; Arcila, M.E.; Mohanty, A.S.; Zehir, A.; Tallman, M.S.; Giralt, S.A.; Roshal, M. Multicolor Flow Cytometry and Multigene Next-Generation Sequencing Are Complementary and Highly Predictive for Relapse in Acute Myeloid Leukemia after Allogeneic Transplantation. Biol. Blood Marrow Transplant. 2017, 23, 1064–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Press, R.D.; Eickelberg, G.; Froman, A.; Yang, F.; Stentz, A.; Flatley, E.M.; Fan, G.; Lim, J.Y.; Meyers, G.; Maziarz, R.T.; et al. Next-generation sequencing-defined minimal residual disease before stem cell transplantation predicts acute myeloid leukemia relapse. Am. J. Hematol. 2019, 94, 902–912. [Google Scholar] [CrossRef] [PubMed]
- Spencer, D.H.; Ketkar-kulkarni, S.; Wartman, L.D.; Christopher, M.; Lamprecht, T.L.; Helton, N.M.; Eric, J.; Payton, J.E.; Baty, J.; Heath, S.E.; et al. Association Between Mutation Clearance After Induction Therapy and Outcomes in Acute Myeloid Leukemia. JAMA 2016, 314, 811–822. [Google Scholar] [CrossRef]
- Morita, K.; Kantarjian, H.M.; Wang, F.; Yan, Y.; Bueso-Ramos, C.; Sasaki, K.; Issa, G.C.; Wang, S.; Jorgensen, J.; Song, X.; et al. Clearance of Somatic Mutations at Remission and the Risk of Relapse in Acute Myeloid Leukemia. J. Clin. Oncol. 2018, 36, 1788–1797. [Google Scholar] [CrossRef] [PubMed]
- Yoshizato, T.; Nannya, Y.; Atsuta, Y.; Shiozawa, Y.; Iijima-Yamashita, Y.; Yoshida, K.; Shiraishi, Y.; Suzuki, H.; Nagata, Y.; Sato, Y.; et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: Impact on outcome of stem cell transplantation. Blood 2017, 129, 2347–2358. [Google Scholar] [CrossRef]
- Gendzekhadze, K.; Gaidulis, L.; Senitzer, D. Chimerism Testing by Quantitative PCR Using Indel Markers. In Transplantation Immunology; Humana Press: Totowa, NJ, USA, 2013; Volume 1034, pp. 221–237. [Google Scholar] [CrossRef]
- Aguilera-Diaz, A.; Vazquez, I.; Ariceta, B.; Mañú, A.; Blasco-Iturri, Z.; Palomino-Echeverría, S.; Larrayoz, M.J.; García-Sanz, R.; Prieto-Conde, M.I.; Chillón, M.D.C.; et al. Assessment of the clinical utility of four NGS panels in myeloid malignancies. Suggestions for NGS panel choice or design. PLoS ONE 2020, 15, e0227986. [Google Scholar] [CrossRef] [Green Version]
- Koboldt, D.C.; Zhang, Q.; Larson, D.E.; Shen, D.; McLellan, M.D.; Lin, L.; Miller, C.A.; Mardis, E.R.; Ding, L.; Wilson, R.K. VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012, 22, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Cibulskis, K.; Lawrence, M.S.; Carter, S.L.; Sivachenko, A.; Jaffe, D.B.; Sougnez, C.; Gabriel, S.B.; Meyerson, M.L.; Lander, E.S.; Getz, G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 2013, 31, 213–219. [Google Scholar] [CrossRef]
- Palomo, L.; Ibáñez, M.; Abáigar, M.; Vázquez, I.; Álvarez, S.; Cabezón, M.; Tazón-Vega, B.; Rapado, I.; Fuster-Tormo, F.; Cervera, J.; et al. Spanish Guidelines for the use of targeted deep sequencing in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br. J. Haematol. 2019, 188, 605–622. [Google Scholar] [CrossRef] [Green Version]
- Steensma, D.P.; Bejar, R.; Jaiswal, S.; Lindsley, R.C.; Sekeres, M.A.; Hasserjian, R.P.; Ebert, B.L. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015, 126, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasserjian, R.P.; Steensma, D.P.; Graubert, T.A.; Ebert, B.L. Clonal hematopoiesis and measurable residual disease assessment in acute myeloid leukemia. Blood 2020, 135, 1729–1738. [Google Scholar] [CrossRef] [PubMed]
- Schaap, N.P.M.; Schattenberg, A.; Mensink, E.; Preijers, F.; Hillegers, M.; Knops, R.; Pennings, A.; Boezeman, J.; Van Kessel, A.G.; De Pauw, B.; et al. Long-term follow-up of persisting mixed chimerism after partially T cell-depleted allogeneic stem cell transplantation. Leukepia 2002, 16, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahci, M.; Stempelmann, K.; Buttkereit, U.; Crivello, P.; Trilling, M.; Heinold, A.; Steckel, N.K.; Koldehoff, M.; Horn, P.A.; Beelen, D.W.; et al. Clinical Utility of Quantitative PCR for Chimerism and Engraftment Monitoring after Allogeneic Stem Cell Transplantation for Hematologic Malignancies. Biol. Blood Marrow Transplant. 2017, 23, 1658–1668. [Google Scholar] [CrossRef] [Green Version]
- Sellmann, L.; Rabe, K.; Bünting, I.; Dammann, E.; Göhring, G.; Ganser, A.; Stadler, M.; Weissinger, E.M.; Hambach, L. Diagnostic value of highly-sensitive chimerism analysis after allogeneic stem cell transplantation. Bone Marrow Transplant. 2018, 53, 1457–1465. [Google Scholar] [CrossRef]
- Jacque, N.; Nguyen, S.; Golmard, J.-L.; Uzunov, M.; Garnier, A.; Leblond, V.; Vernant, J.-P.; Bories, D.; Dhédin, N. Chimerism analysis in peripheral blood using indel quantitative real-time PCR is a useful tool to predict post-transplant relapse in acute leukemia. Bone Marrow Transplant. 2014, 50, 259–265. [Google Scholar] [CrossRef]
- Bouvier, A.; Ribourtout, B.; François, S.; Orvain, C.; Paz, D.L.; Beucher, A.; Guérard, A.; Guardiola, P.; Ugo, V.; Blanchet, O.; et al. Donor cell-derived acute promyelocytic leukemia after allogeneic hematopoietic stem cell transplantation. Eur. J. Haematol. 2018, 101, 570–574. [Google Scholar] [CrossRef]
- Kim, T.; Moon, J.H.; Ahn, J.-S.; Kim, Y.-K.; Lee, S.-S.; Ahn, S.-Y.; Jung, S.-H.; Yang, D.-H.; Lee, J.-J.; Choi, S.H.; et al. Next-generation sequencing–based posttransplant monitoring of acute myeloid leukemia identifies patients at high risk of relapse. Blood 2018, 132, 1604–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thol, F.; Gabdoulline, R.; Liebich, A.; Klement, P.; Schiller, J.; Kandziora, C.; Hambach, L.; Stadler, M.; Koenecke, C.; Flintrop, M.; et al. Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 2018, 132, 1703–1713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balagopal, V.; Hantel, A.; Kadri, S.; Steinhardt, G.; Zhen, C.J.; Kang, W.; Wanjari, P.; Ritterhouse, L.L.; Stock, W.; Segal, J.P. Measurable residual disease monitoring for patients with acute myeloid leukemia following hematopoietic cell transplantation using error corrected hybrid capture next generation sequencing. PLoS ONE 2019, 14, e0224097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-M.; Kim, Y.-J.; Park, S.-S.; Han, E.; Kim, M.; Kim, Y. Simultaneous Monitoring of Mutation and Chimerism Using Next-Generation Sequencing in Myelodysplastic Syndrome. J. Clin. Med. 2019, 8, 2077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterhouse, M.; Pfeifer, D.; Duque-Afonso, J.; Follo, M.; Duyster, J.; Depner, M.; Bertz, H.; Finke, J. Droplet digital PCR for the simultaneous analysis of minimal residual disease and hematopoietic chimerism after allogeneic cell transplantation. Clin. Chem. Lab. Med. 2019, 57, 641–647. [Google Scholar] [CrossRef] [PubMed]
UPN | Sex | Age at HSCT | Diagnosis | AML/MDS Diagnosis | Genetic Risk | Classical Genetic Markers | NGS Genetic Markers Pre-HSCT | Pre-HSCT Disease Status | MRD Pre-HSCT Status | Days from Diagnosis to HSCT | HSCT Conditioning Regimen | Immunosupression Treatment | HLA Antigen Match | Chimerism Profile after HSCT | Chimerism Profile at Relapse | Clinical Outcome |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M | 18 | JMML | de novo | intermediate | 46,XY (3 0) | NRAS-p.Gln61Lys | CR1 | positive | 137 | MA (BuCy) | FK506 + MTX + ATG | fully matched unrelated donor | CC | MC | relapse |
2 | F | 66 | AML | de novo | intermediate | 46,XX,t (4;12)(q12;p13)(14)/46,XX(16) FLT3-ITD(-) | IDH2-p.Arg172Lys NF1-p.Ile1603Val DNMT3A-p.Val895Met DNMT3A-p.Arg729Gln | CR1 | positive | 188 | RIC (FLU + BU2) | FK506 + MTX | fully matched unrelated donor | CC | MC | relapse |
3 | F | 70 | AML | Secondary | adverse | 46,XX,del(5q)(22/25)/46,XX(3/25) | TP53-p.Arg273Cys NRAS-p.Gly13Asp SH2B3-p.? | Not CR | positive | 231 | RIC (FLU + BU2) | FK506 + MTX | fully matched sibling donor | CC | MC | relapse |
5 | F | 65 | AML | de novo | adverse | hypodiploid complex karyotype | TP53-p.Val173Met GATA2-p.Gly149Arg | CR1 | positive | 121 | RIC (FLU + BU2) | CS + MTX | fully matched sibling donor | CC | MC | relapse |
4 | F | 61 | AML | Secondary | adverse | 47,XX,-3,del(5)(q13q33),+8,-17,+21,+21(6)/48,idem,+20(3)/46,XX(7) | TP53-p.? ETV6-p.Arg291Glyfs*25 | CR1 | positive | 144 | RIC (FLU + BU2) | FK506 + MTX + ATG | single antigen mismatch unrelated donor | MC | MC | relapse |
11 | M | 37 | AML | de novo | intermediate | 46,XY(25) | PTPN11-p.Gly503Glu RUNX1-p.? | CR1 | ND | 129 | MA (BuCy) | CS + MTX + CAMPATH | fully matched unrelated donor | MC | MC | relapse |
12 | M | 69 | MDS | Secondary | adverse | trisomy 8 and monosomy 7 | DNMT3A-p.Arg326Cys U2AF1-p.Ser34Phe | CR1 | ND | 177 | RIC (FLU + BU2) | CS + MTX + CAMPATH | fully matched unrelated donor | MC | MC | relapse |
13 | F | 57 | MDS | de novo | adverse | 45,XX,-7(4)/45,X,-X(3)/46,XX(13) | KRAS-p.Gly12Cys | Not CR | positive | 259 | MA (FLU + BU4) | FK506 + MTX | fully matched unrelated donor | MC | MC | relapse |
14 | F | 59 | AML | de novo | intermediate | 47,XX,+4(5/20)/46,XX(15/20) | FLT3-p.Val592Ala NPM1-p.Trp288Cysfs*12 DNMT3A-p.Arg882His KRAS-p.Gly12Asp KMT2A-p.Gln147Arg | CR1 | negative | 161 | RIC (FLU + BU2) | FK506 + MTX | fully matched sibling donor | MC | MC | relapse |
18 | F | 56 | MDS | Secondary | adverse | 46,XX,inv(3)(q21q26)(20) | PHF6-p.Arg274Ter SF3B1-p.Ala708Pro CUX1-p.Arg554Gln | CR1 | positive | 155 | RIC (FLU + BU2) | FK506 + MTX | fully matched sibling donor | MC | MC | relapse |
19 | M | 59 | CMML | de novo | intermediate | 45,X,-Y(1)/46,XY(3) | KRAS-p.Ala18Asp TET2-p.Gln764Profs*5 EZH2-p.Arg679Cys CUX1-p.? SRSF2-p.Ser54Phe TET2-p.Ser1853Argfs*35 | Not CR | ND | 1750 | RIC (FLU + BU2) | FK506 + MTX | fully matched sibling donor | MC | MC | relapse |
20 | F | 62 | MDS | de novo | adverse | 47,XX,+8(17/20)/46,XX(3/20) | ND | CR1 | negative | 239 | RIC (FLU + BU2) | FK506 + MTX | fully matched sibling donor | MC | MC | relapse |
6 | F | 45 | AML | de novo | adverse | 46,XX(13) FLT3-ITD(+) | FLT3-ITD-p.Tyr597_Glu611dup NPM1-p.Trp288Cysfs*12 DNMT3A-p.Leu639Serfs*12 | CR1 | positive | 138 | MA (BuCy) | FK506 + MTX + ATG | fully matched unrelated donor | CC | - | remission |
7 | F | 42 | AML | de novo | intermediate | 46,XX(24/25)/47,XX,+8(1/25]) nuc ish(D8Z2x3)(87/145) | IDH2-p.Arg172Lys SH2B3-p.Ser213Arg RUNX1-p.Ser390Profs*? | CR1 | positive | 136 | MA (BuCy) | FK506 + MTX | fully matched sibling donor | CC | - | remission |
10 | M | 39 | AML | de novo | adverse | 46,XY,t(3;3)(q21;q26) FLT3-ITD(+) | FLT3-ITD-p.Asp586_Glu598dup NPM1-p.Trp288Cysfs*12 CUX1-p.Arg219Gln GATA2-p.Gly135Trpfs*50 | CR1 | negative | 170 | MA (FLU + BU4) | FK506 + MTX | fully matched sibling donor | CC | - | remission |
15 | F | 61 | AML | Secondary | adverse | 45,XX,-7(6/20)/46,XX(14/20) | DNMT3A-p.Arg882His IDH1-p.Arg132Cys DNMT3A-p.Phe868Ser | CR1 | ND | 159 | RIC (FLU + BU2) | FK506 + MTX | fully matched sibling donor | CC | - | remission |
16 | M | 39 | MDS | de novo | adverse | 46,XYY,t(2;11)(q32;q13)?,-5,t(7;16)(q31;q22)?,del(20q)(7)/47,XYY(4) | TP53-p.Arg267Trp RUNX1-p.Arg139Gln SRSF2-p.Pro95Leu NF1-p.Leu380Phe | Not CR | positive | 262 | MA (FLU + BU4) | FK506 + MTX | fully matched sibling donor | CC | - | remission |
17 | M | 41 | MDS | de novo | adverse | 46,XY,del(12p)(7)/46,XY(18) | U2AF1-p.Ser34Phe CALR-p.Glu380Gly | Not CR | positive | 88 | MA (BuCy) | CS + MTX | fully matched sibling donor | CC | - | remission |
8 | F | 56 | AML | de novo | adverse | 47,XX,+8,t(5;9;11;13)(q33;p22;q23;q13) | KRAS-p.Gly13Asp PTPN11-p.Ala72Thr | CR1 | negative | 161 | RIC (FLU + BU2) | CS + MTX + CAMPATH | single antigen mismatch unrelated donor | MC | - | remission |
9 | M | 68 | AML | de novo | intermediate | 46,XY(20) | ASXL1-p.Gly646Trpfs*12 SRSF2-p.Pro95His KMT2A-p.Leu989Phe NF1-p.Leu2714Val RUNX1-p.Asn82Asp | CR1 | ND | 162 | RIC (FLU + BU2) | CS + MTX + CAMPATH | fully matched unrelated donor | MC | - | remission |
UPN | Gene | Chr | Position | Consequence | c.DNA | Protein | Classification | Diagnosis | Post-TM | Post-HSCT 1 | Post-HSCT 2 | Post-HSCT 3 | Post-HSCT 4 | Post-HSCT 5 | Relapse | Post-Relapse |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | NRAS | 1 | 115256530 | missense | c.181C > A | p.Gln61Lys | Pathogenic | 45.38% 8951x | - | ND | ND | ND | 12% 6457x | - | 14.07% 5872x | - |
WT1 | 11 | 32417914 | frameshift | c.1086dupA | p.Arg363Thrfs*5 | Uncertain significance | ND | ND | ND | ND | 10% 7688x | 13% 7444x | ||||
WT1 | 11 | 32417910 | frameshift | c.1077_1090dupGACTCTTGTACGGT | p.Ser364Ter | Uncertain significance | ND | ND | ND | 0.21% 6200x | 9% 7694x | 13% 7400x | ||||
2 | IDH2 | 15 | 90631838 | missense | c.515G > A | p.Arg172Lys | Pathogenic | 13.91% 4667x | - | ND | ND | - | - | - | 0.40% 3716x | 1.62% 5002x |
NF1 | 17 | 29652872 | missense | c.4807A > G | p.Ile1603Val | Uncertain significance | 48.96% 3619x | ND | ND | 0.42% 3352x | 1.60% 4634x | |||||
DNMT3A | 2 | 25457204 | missense | c.2683G > A | p.Val895Met | Uncertain significance | 12.61% 5688x | ND | ND | 0.47% 4510x | 1.81% 5967x | |||||
DNMT3A | 2 | 25463307 | missense | c.2186G > A | p.Arg729Gln | Uncertain significance | 12.04% 6036x | ND | ND | 0.37% 4884x | 1.41% 6183x | |||||
3 | TP53 | 17 | 7577121 | missense | c.817C > T | p.Arg273Cys | Pathogenic | 19.97% 3445x | - | ND | ND | 0.58% 5165x | - | - | 4.03% 6688x | - |
NRAS | 1 | 115258744 | missense | c.38G > A | p.Gly13Asp | Pathogenic | 4.20% 4020x | ND | ND | ND | ND | |||||
SH2B3 | 12 | 111885351 | splice site | c.1236 + 3A > G | p.? | Uncertain significance | 2.97% 3810x | 4.99% 3810x | 1.43% 4186x | 1.48% 4987x | 3.67% 4792x | |||||
5 | TP53 | 17 | 7578413 | missense | c.517G > A | p.Val173Met | Pathogenic | 1.32% 7719x | - | 0.32% 4999x | ND | - | - | - | ND | - |
GATA2 | 3 | 128204996 | missense | c.445G > A | p.Gly149Arg | Uncertain significance | 51.46% 6528x | 4.32% 6246x | ND | 0.68% 3691x | ||||||
4 | TP53 | 17 | 7578370 | splice site | c.559 + 1G > A | p.? | Pathogenic | 28.94% 7888x | - | ND | ND | - | - | - | ND | ND |
ETV6 | 12 | 12022762 | frameshift | c.870delC | p.Arg291Glyfs*25 | Uncertain significance | 17.69% 8934x | ND | ND | ND | ND | |||||
11 | PTPN11 | 12 | 112926888 | missense | c.1508G > A | p.Gly503Glu | Pathogenic | 32.91% 5585x | - | ND | - | - | - | - | ND | - |
RUNX1 | 21 | 36252852 | splice site | c.427 + 2T > C | p.? | Uncertain significance | 35.04% 1096x | ND | ND | |||||||
12 | DNMT3A | 2 | 25470498 | missense | c.976C > T | p.Arg326Cys | Likely pathogenic | 7.12% 5648x | - | 0.79% 2341x | 0.30% 7718x | - | - | - | 0.48% 2935x | - |
U2AF1 | 21 | 44524456 | missense | c.101C > T | p.Ser34Phe | Pathogenic | 5.35% 5363x | ND | ND | ND | ||||||
13 | KRAS | 12 | 25398285 | missense | c.34G > T | p.Gly12Cys | Pathogenic | 7.54% 2919x | - | ND | 0.58% 1733x | - | - | - | 2.38% 3237x | - |
14 | FLT3 | 13 | 28608281 | missense | c.1775T > C | p.Val592Ala | Pathogenic | 23.42% 3151x | - | - | - | - | - | - | ND | ND |
NPM1 Type A | 5 | 170837543 | frameshift | c.860_863dupTCTG | p.Trp288Cysfs*12 | Pathogenic | 15.27% 1821x | ND | ND | |||||||
DNMT3A | 2 | 25457242 | missense | c.2645G > A | p.Arg882His | Pathogenic | 36.24% 3797x | 2.22% 2832x | 2.07% 13045x | |||||||
KRAS | 12 | 25398284 | missense | c.35G > A | p.Gly12Asp | Pathogenic | 1.94% 2167x | ND | ND | |||||||
KMT2A | 11 | 118339497 | missense | c.440A > G | p.Gln147Arg | Uncertain significance | 28.84% 2691x | ND | ND | |||||||
18 | PHF6 | X | 133549136 | stop codon | c.820C > T | p.Arg274Ter | Likely pathogenic | 12.74% 2834x | - | ND | - | - | - | - | ND | - |
SF3B1 | 2 | 198266810 | missense | c.2122G > C | p.Ala708Pro | Uncertain significance | 17.97% 3016x | ND | ND | |||||||
CUX1 | 7 | 101923357 | missense | c.1661G > A | p.Arg554Gln | Uncertain significance | 49.19% 3015x | 3.27% 6597x | 3.31% 2446x | |||||||
19 | KRAS | 12 | 25398266 | missense | c.53C > A | p.Ala18Asp | Pathogenic | 41.46% 2383x | - | 1.69% 5756x | - | - | - | - | 10.82% 1303x | - |
TET2 | 4 | 106157384 | frameshift | c.2290dupC | p.Gln764Profs*5 | Pathogenic | 39.64% 3042x | 1.71% 8269x | 16.83% 2400x | |||||||
EZH2 | 7 | 148506462 | missense | c.2035C > T | p.Arg679Cys | Likely pathogenic | 84.49% 2243x | 3.28% 6309x | 34.12% 1603x | |||||||
CUX1 | 7 | 101713618 | splice site | c.223-1G > T | p.? | Uncertain significance | 88.84% 1945x | 2.36% 4997x | 39.76% 1484x | |||||||
SRSF2 | 17 | 74733082 | missense | c.161C > T | p.Ser54Phe | Uncertain significance | 43.34% 2469x | 1.65% 10315x | 18.52% 2921x | |||||||
TET2 | 4 | 106197221 | frameshift | c.5557_5558dup | p.Ser1853Argfs*35 | Uncertain significance | 41.81% 3449x | 1.49% 9252x | 19.31% 3729x | |||||||
20 | SRSF2 | 17 | 74732959 | missense | c.284C > G | p.Pro95Arg | Pathogenic | - | - | 9.07% 11465x | - | - | - | - | 42.72% 11317x | - |
CUX1 | 7 | 101848405 | missense | c.3118G > A | p.Val1040Met | Uncertain significance | 15.12% 4187x | 42.32% 3852x | ||||||||
TET2 | 4 | 106190851 | missense | c.4129T > G | p.Phe1377Val | Uncertain significance | 10.52% 6340x | 74.32% 5947x | ||||||||
RUNX1 | 21 | 36259163 | missense | c.247A > C | p.Lys83Gln | Uncertain significance | 1.41% 3757x | 5.83% 4271x | ||||||||
6 | FLT3-ITD | 13 | 28608223 | inframe | c.1788_1832dup | p.Tyr597_Glu611dup | Pathogenic | 51% 6880x | - | ND | ND | ND | - | - | - | - |
NPM1 Type A | 5 | 170837543 | frameshift | c.860_863dupTCTG | p.Trp288Cysfs*12 | Pathogenic | 36.09% 3497x | ND | ND | ND | ||||||
DNMT3A | 2 | 25466788 | frameshift | c.1914delT | p.Leu639Serfs*12 | Uncertain significance | 43.80% 7175x | ND | ND | ND | ||||||
7 | IDH2 | 15 | 90631838 | missense | c.515G > A | p.Arg172Lys | Pathogenic | 16.09% 6232x | - | ND | ND | - | - | - | - | - |
SH2B3 | 12 | 111856588 | missense | c.639C > A | p.Ser213Arg | Uncertain significance | 47.90% 5635x | 0.79% 2404x | ND | |||||||
RUNX1 | 21 | 36164626 | frameshift | c.1167delC | p.Ser390Profs*? | Uncertain significance | 15.24% 4613x | ND | ND | |||||||
10 | FLT3-ITD | 13 | 28608261 | inframe | c.1756_1794dup39 | p.Asp586_Glu598dup | Pathogenic | 43% 4503x | - | ND | ND | - | - | - | - | - |
NPM1 Type D | 5 | 170837544 | frameshift | c.863_864i-CCTG | p.Trp288Cysfs*12 | Pathogenic | 36.74% 2730x | ND | ND | |||||||
CUX1 | 7 | 101758502 | missense | c.656G > A | p.Arg219Gln | Uncertain significance | 47.41% 3634x | 1.19% 2010x | ND | |||||||
GATA2 | 3 | 128205042 | frameshift | c.399_430 | p.Gly135Trpfs*50 | Uncertain significance | 45.04% 4043x | ND | ND | |||||||
15 | DNMT3A | 2 | 25457242 | missense | c.2645G > A | p.Arg882His | Pathogenic | 10.33% 6246x | - | ND | - | - | - | - | - | - |
IDH1 | 2 | 209113113 | missense | c.394C > T | p.Arg132Cys | Pathogenic | 3.82% 5495x | ND | ||||||||
DNMT3A | 2 | 25457284 | missense | c.2603T > C | p.Phe868Ser | Uncertain significance | 5.53% 6092x | ND | ||||||||
16 | TP53 | 17 | 7577139 | missense | c.799C > T | p.Arg267Trp | Pathogenic | 51.86% 3922x | - | 1.72% 7751x | ND | - | - | - | - | - |
RUNX1 | 21 | 36252865 | missense | c.416G > A | p.Arg139Gln | Pathogenic | 12.11% 1024x | ND | ND | |||||||
SRSF2 | 17 | 74732959 | missense | c.284C > T | p.Pro95Leu | Pathogenic | 5.40% 3539x | ND | ND | |||||||
NF1 | 17 | 29528130 | missense | c.1138C > T | p.Leu380Phe | Uncertain significance | 35.46% 2033x | 44% 3011x | 51% 1413x | |||||||
17 | U2AF1 | 21 | 44524456 | missense | c.101C > T | p.Ser34Phe | Pathogenic | 25.20% 3012x | - | ND | ND | - | - | - | - | - |
CALR | 19 | 13054612 | missense | c.1139A > G | p.Glu380Gly | Uncertain significance | 51.90% 3703x | 1.22% 3865x | ND | |||||||
8 | KRAS | 12 | 25398281 | missense | c.38G > A | p.Gly13Asp | Pathogenic | 38.32% 5128x | - | ND | ND | ND | - | - | - | - |
PTPN11 | 12 | 112888198 | missense | c.214G > A | p.Ala72Thr | Pathogenic | 4.63% 6042x | ND | ND | ND | ||||||
9 | ASXL1 | 20 | 31022441 | frameshift | c.1934dupG | p.Gly646Trpfs*12 | Pathogenic | - | 1.40% 6069x | 1.49% 3293x | 1.61% 2231x | 1.62% 3769x | 7.18% 5675x | 16% 14672x | - | - |
SRSF2 | 17 | 74732959 | missense | c.284C > A | p.Pro95His | Pathogenic | 1.21%6677x | ND | ND | 1.12%3479x | 7.11%4879x | 16.52%15740x | ||||
KMT2A | 11 | 118344839 | missense | c.2965C > T | p.Leu989Phe | Uncertain significance | 48.66%6178x | ND | 0.69%2036x | 1.61%5476x | 6.87%4539x | 12%4007x | ||||
NF1 | 17 | 29687547 | missense | c.8140C > G | p.Leu2714Val | Uncertain significance | 49.82%5221x | ND | ND | 1.87%4547x | 5.71%4117x | 8.50%3624x | ||||
RUNX1 | 21 | 36259166 | missense | c.244A > G | p.Asn82Asp | Uncertain significance | 0.97%3005x | ND | ND | 0.69%2188x | 6.27%3143x | 11.85%5427x |
UPN | Diagnosis | Patient Group | Moment of Sample | Days after HSCT | % Chimerism | NGS-Trackable Variants 1 | NGS-MRD Variants 2 |
---|---|---|---|---|---|---|---|
1 | JMML | Relapse | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 100 | 0.95% | Negative | Negative | |||
Post-HSCT | 600 | <0.01% | Negative | Negative | |||
Post-HSCT | 850 | 0.3% | Positive | Negative | |||
Post-HSCT | 950 | 12% | Positive | Positive | |||
Relapse | 985 | 64% | Positive | Positive | |||
2 | AML | Relapse | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 250 | <0.01% | Negative | Negative | |||
Post-HSCT | 360 | 0.09% | Negative | Negative | |||
Relapse | 380 | 0.67% | Positive | Positive | |||
Post-Relapse | 400 | 2.24% | Positive | Positive | |||
3 | AML | Relapse | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 90 | 6.87% | Positive | Negative | |||
Post-HSCT | 580 | <0.01% | Positive | Negative | |||
Post-HSCT | 650 | 0.12% | Positive | Positive | |||
Relapse | 690 | 7.7% | Positive | Positive | |||
5 | AML | Relapse | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 90 | 6.8% | Positive | Positive | |||
Post-HSCT | 540 | <0.01% | Negative | Negative | |||
Relapse | 1350 | 1.41% | Positive | Negative | |||
4 | AML | Relapse | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 100 | 0.1% | Negative | Negative | |||
Post-HSCT | 300 | 0.12% | Negative | Negative | |||
Relapse | 410 | 0.2% | Negative | Negative | |||
Post-Relapse | 470 | 0.34% | Negative | Negative | |||
11 | AML | Relapse | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 100 | 19% | Negative | Negative | |||
Relapse | 130 | 67% | Negative | Negative | |||
12 | MDS | Relapse | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 600 | 3.3% | Positive | Positive | |||
Post-HSCT | 720 | 2.7% | Positive | Positive | |||
Relapse | 820 | 2.85% | Positive | Positive | |||
13 | MDS | Relapse | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 45 | 3.6% | Negative | Negative | |||
Post-HSCT | 80 | 5.2% | Positive | Positive | |||
Relapse | 100 | 11.6% | Positive | Positive | |||
14 | AML | Relapse | Before HSCT | - | - | Positive | Positive |
Relapse | 60 | 5.5% | Positive | Positive | |||
Post-Relapse | 140 | <0.01% | Positive | Positive | |||
18 | MDS | Relapse | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 90 | 6.2% | Positive | Negative | |||
Relapse | 180 | 5.5% | Positive | Negative | |||
19 | MDS | Relapse | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 80 | 6.7% | Positive | Positive | |||
Relapse | 120 | 19% | Positive | Positive | |||
20 | MDS | Relapse | Before HSCT | - | - | NA | NA |
Post-HSCT | 90 | 29% | Positive | Positive | |||
Relapse | 130 | 100% | Positive | Positive | |||
6 | AML | Remission | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 90 | 0.02% | Negative | Negative | |||
Post-HSCT | 300 | 0.01% | Negative | Negative | |||
Post-HSCT | 820 | <0.01% | Negative | Negative | |||
7 | AML | Remission | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 90 | 1.02% | Positive | Negative | |||
Post-HSCT | 420 | <0.01% | Negative | Negative | |||
10 | AML | Remission | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 110 | 1.79% | Positive | Negative | |||
Post-HSCT | 170 | <0.01% | Negative | Negative | |||
15 | AML | Remission | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 60 | 0.85% | Negative | Negative | |||
16 | MDS | Remission | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 90 | 3.85% | Positive | Positive | |||
Post-HSCT | 360 | <0.01% | Negative | Negative | |||
17 | MDS | Remission | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 30 | 1.6% | Positive | Negative | |||
Post-HSCT | 160 | <0.01% | Negative | Negative | |||
8 | AML | Remission | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 90 | 15.4% | Negative | Negative | |||
Post-HSCT | 200 | 14.9% | Negative | Negative | |||
Post-HSCT | 1140 | 33% | Negative | Negative | |||
9 | AML | Remission | Before HSCT | - | - | Positive | Positive |
Post-HSCT | 100 | 0.21% | Positive | Positive | |||
Post-HSCT | 370 | 1.7% | Positive | Positive | |||
Post-HSCT | 1250 | 2% | Positive | Positive | |||
Post-HSCT | 1360 | 10% | Positive | Positive | |||
Post-HSCT | 1550 | 26% | Positive | Positive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguirre-Ruiz, P.; Ariceta, B.; Viguria, M.C.; Zudaire, M.T.; Blasco-Iturri, Z.; Arnedo, P.; Aguilera-Diaz, A.; Jauregui, A.; Mañú, A.; Prosper, F.; et al. Assessment of Minimal Residual Disease by Next Generation Sequencing in Peripheral Blood as a Complementary Tool for Personalized Transplant Monitoring in Myeloid Neoplasms. J. Clin. Med. 2020, 9, 3818. https://doi.org/10.3390/jcm9123818
Aguirre-Ruiz P, Ariceta B, Viguria MC, Zudaire MT, Blasco-Iturri Z, Arnedo P, Aguilera-Diaz A, Jauregui A, Mañú A, Prosper F, et al. Assessment of Minimal Residual Disease by Next Generation Sequencing in Peripheral Blood as a Complementary Tool for Personalized Transplant Monitoring in Myeloid Neoplasms. Journal of Clinical Medicine. 2020; 9(12):3818. https://doi.org/10.3390/jcm9123818
Chicago/Turabian StyleAguirre-Ruiz, Paula, Beñat Ariceta, María Cruz Viguria, María Teresa Zudaire, Zuriñe Blasco-Iturri, Patricia Arnedo, Almudena Aguilera-Diaz, Axier Jauregui, Amagoia Mañú, Felipe Prosper, and et al. 2020. "Assessment of Minimal Residual Disease by Next Generation Sequencing in Peripheral Blood as a Complementary Tool for Personalized Transplant Monitoring in Myeloid Neoplasms" Journal of Clinical Medicine 9, no. 12: 3818. https://doi.org/10.3390/jcm9123818
APA StyleAguirre-Ruiz, P., Ariceta, B., Viguria, M. C., Zudaire, M. T., Blasco-Iturri, Z., Arnedo, P., Aguilera-Diaz, A., Jauregui, A., Mañú, A., Prosper, F., Mateos, M. C., Fernández-Mercado, M., Larráyoz, M. J., Redondo, M., Calasanz, M. J., Vázquez, I., & Bandrés, E. (2020). Assessment of Minimal Residual Disease by Next Generation Sequencing in Peripheral Blood as a Complementary Tool for Personalized Transplant Monitoring in Myeloid Neoplasms. Journal of Clinical Medicine, 9(12), 3818. https://doi.org/10.3390/jcm9123818